
xCAT and Masterless Puppet: Aiming For Ideal
Configuration Management

Jason St. John
Research Computing

Purdue University
West Lafayette, IN, USA

jstjohn@purdue.edu

Abstract—Configuration management is a major factor in the
design of an HPC system. This paper provides an evaluation of
the new architecture of the HPC systems operated by Purdue
University, focusing on the configuration management system.

Index Terms—configuration management, puppet, system ad-
ministration, xcat, stateless

I. INTRODUCTION

Configuration management is one of the primary ways
of administering an HPC system as a means of ensuring
a sane, stable, and consistent platform for users. An ideal
configuration management system is one that

• is easy to use and is intuitive
• provides for an easy way of testing changes before

deploying to production
• is quick to deploy changes
• has minimal disruption to running jobs
• is easy to debug and fix when something breaks
• is scalable to hundreds or thousands of nodes
Purdue University has gone through many different styles

of configuration management [1]. The first was a proprietary
administration platform for an IBM SP2 system, followed
soon after by an in-house configuration tool called Master
Source. An in-house, stateless image provisioning system
named STACI soon followed. Due to scaling problems at
the time, STACI was abandoned for a stateful CFEngine
[2] system. Approximately four years later, CFEngine 2 was
reaching its end-of-life and a decision was made to switch to
stateful and masterful Puppet [3]. This new Puppet system
involved heavy use of templates and variables to manage
the entire infrastructure and all HPC systems. Five years
later, the masterful Puppet system had become unsustainable,
burdened by difficulties with scaling and seeing what should
have been innocuous changes causing rippling outages across
the infrastructure, and again, the decision was made to switch
configuration management systems. A new system using xCAT
[4] and GoCD [5] for continuous integration and continuous
delivery (CICD) was developed. The CICD system was very
brittle and changes took a very long time to deploy in
production, and a change was needed again.

Within the past year, we have created a new configuration
management system using xCAT and masterless Puppet that
is used for all of the HPC systems at Purdue University that

takes into account the many lessons learned over the years.
We believe this new system meets or exceeds all of the items
listed above, and we want to share our experience with the
community.

II. NEW HPC SYSTEM ARCHITECTURE AT PURDUE

Each cluster is designed as an island with as few external
dependencies as possible. Each cluster has its own LDAP
replicas, static /etc/hosts files, DNS server, NTP server,
xCAT master, etc.

A. xCAT

xCAT is an extensible whole-cluster management and pro-
visioning toolkit. Our xCAT deployments PXE boot a minimal
initial RAM disk that formats the local system disks on boot,
downloads the stateless front-end and compute node system
images, and then switches root to the downloaded system
image that contains a copy of our Puppet configuration that
runs after the systems boot. xCAT can do much more this to
manage a cluster, but at Purdue, we use a very minimalist
deployment of xCAT.

We have made a clear delineation of which things should
be managed in Puppet versus which things should be managed
in xCAT. xCAT is used to install the kernel, OFED, firmware,
Lustre/GPFS kernel modules, and the basic packages needed
to run Puppet. All other packages and system services are
configured in Puppet.

When creating system images, our build scripts run Puppet
in a chroot on the root file system that becomes the system
image, so the system images come with most of the package
and system service configuration already complete when the
nodes boot.

1) Drift Reduction: The stateless model was chosen to
reduce system drift and for ease of fixing broken nodes. If
a node is broken, reboot it; if the node is still broken, there is
defective hardware.

Additionally, we run LBNL’s Node Health Check [6] to
ensure that firmware, BIOS, and OFED versions are a specific
version.

B. Masterless Puppet

Puppet traditionally has servers called “Puppet masters” that
determine what the state of the client machines should be. This



becomes complex and expensive to scale when the number
of client machines gets into the hundreds or thousands. To
bypass this, we cut out the Puppet masters and have each
client machine review and apply its own configuration state,
effectively distributing the entire load across the entire cluster.

1) Git Branches: The configuration for each cluster is kept
in its own Git repository from which machines pull updates
and then ensure the desired state via Puppet. Each repository
has three branch types:

• development
• master
• deployed

The development branches are for new feature development or
testing bug fixes. Once the change has been considered stable,
the development branch is merged into the master branch,
which is the authoritative branch of the configuration. Prior
to a scheduled maintenance, a deployed branch is forked from
the head of the master branch, and this deployed branch will
be used in production on the cluster after pre-maintenance
testing and verification.

2) Maintenances: Stateless system images are built days
or weeks in advance, depending on the amount of pending
changes, and a small portion of the cluster will be booted
into the new images for real-world testing ahead of the
maintenance. On the day of maintenance, the cluster is booted
into the new images and further testing begins. In the event
of an unexpected, severe problem, maintenances with stateless
system images can be reverted by simply booting the cluster
into the prior system image. After the maintenance, the cluster
will be running on a deployed branch that is expected to stay
stable—only the most important of changes should be merged
into a deployed branch once in production.

3) System Roles: The Puppet configuration is split into
multiple “roles”. There are many ways these roles could
be implemented, and the following is simply the high-level
implementation that we have used so far.

The base role, named “common”, is applied to every system
in the cluster, and this role is responsible for managing user
accounts, SSH settings, system monitoring and logging, and
other generic settings that are uniform across the cluster. Other
roles are then applied in a second Puppet run after “common”,
depending on a system’s function. Table I shows the various
Puppet roles we have created, along with a description of each.

4) Puppet Configuration Style: Puppet has the ability—via
tools named Hiera [7], a key-value store, and Facter [8], a
system profiler—to use templates in a programmatic, in-line
style, similar to PHP; however, we decided to avoid using this
approach unless absolutely necessary (e.g. if a configuration
file or manifest needs the local machine’s hostname from
Facter or a decrypted value from Hiera). Puppet roles present
a minimal root file system-like directory of static configuration
files, and our Puppet configuration simply takes a static file
from the directory and places it in the same location on
the running system. This means that configuration files are
where system administrators expect them to be and what they

TABLE I
PUPPET ROLES

Role Description
common base role applied to all systems

adm job scheduler & InfiniBand subnet manager
aux auxiliary services: DNS & LDAP replicas,

NTP server, VM hypervisor
compute compute nodes
frontend front-end nodes
samba Samba server exporting scratch file system (VM)
system xCAT management node/master

thinlinc master master server for the ThinLinc desktop (VM)

expect them to contain. There is no guesswork about what a
configuration variable will be—the file is static.

Hiera is a hierarchical key-value store for Puppet that is
frequently used for templates. Hiera has an extension called
eyaml [9] that supports encrypted values. We use Hiera only
for encrypting secrets.

Additionally, there is an explicit separation of package
installation and configuration file installation. The Puppet roles
are designed so that packages are always installed successfully
first before any configuration file gets installed.

5) Stateful Infrastructure: All cluster roles from Table I
are stateful except for “compute” and “frontend” which are
stateless.

III. EVALUATION AND THOUGHTS

A. Maintenances

Maintenances are trivial. System images can be built easily
and tested in advance, so most bugs can be caught and
fixed before the day of maintenance. If major problems are
encountered during the maintenance, it is trivial to just activate
the previous system image and reboot the cluster. With stateful
cluster nodes, reverting is much more difficult because it
would typically involve a yum downgrade for every system
package and being bottlenecked by the Puppet master and
yum repository servers, in addition to a lack of confidence
in our Puppet implementation successfully reverting all of the
changes and updates.

B. Speed

Masterless Puppet, without complex templates and variables
for every configuration knob, is quite fast compared to the
opposite system we had previously. Our masterful Puppet
environment would usually take several minutes per Puppet
run whereas our masterless Puppet system usually completes
in around 10 seconds.

The masterful Puppet system was so slow because the Pup-
pet master servers had to calculate regularly the desired state of
each machine in our environment which, at its peak, numbered
around 4,000 servers; however, with masterless Puppet, this
state calculation is distributed among every machine in our
environment.



C. Disaster Recovery

Recovering broken nodes is trivial with stateless images. If
a node is acting strange, simply reboot it. If the node is still
having problems, then investigate the cause and look first for
failed hardware. For example, one of our old, stateful clusters
needed its kernel downgraded. A mistake during the kernel
downgrade broke the GRUB bootloader configuration, causing
all of the nodes to get stuck during boot, requiring manual
intervention on most of the 660 compute nodes. If the cluster
was stateless, simply reverting to the previous system image
would have fixed the problem.

D. No Drift

Reinstalls of compute nodes have been a source of pain
with stateful hosts. We would see an assortment of firmware,
BIOS, and package versions depending on when a compute
node was reinstalled or replaced. Now with stateless system
images, every compute node is always identical to every other
compute node so drift of package versions, etc. does not occur.

E. Easy On-boarding of New Administrators

The training time required to bring a new system adminis-
trator up to speed is low. Configuration files are where most
people expect them to be. There is no complex new language
to learn; all Puppet code used is almost entirely at the “Puppet
101” level of “take this static file and put it here”.

Advanced templating made it very difficult to find where
you needed to make a change. Simply changing a single value
in a single configuration file would regularly take many times
as long as just changing a value in a static file—first, one
would have to see whether the file was properly put into a
template, then one would have to check if the variable to be
changed is set in the module configuration with the template
or whether it is set in Hiera, then one would have to make
sure the variable is being set in the correct level of the Hiera
hierarchy. The significantly complex process made everything
tedious compared to finding a file in a known place in the file
system and changing the value directly.

F. Development Nodes

Because development occurs on Git branches, it is trivial to
test changes:

1) offline a compute node
2) switch its running configuration branch
3) run Puppet on the new development branch
4) iterate over changes
5) merge the completed feature to master
6) reboot the compute node
7) re-enable the compute node in the job scheduler

After rebooting, the compute node boots from the production
system image, and all traces of the development environment
are gone.

G. Lightweight Impact on Infrastructure

Because of the siloed architecture and the use of system
images, there are no centralized configuration masters, DNS
servers, or Yum repository servers that must bear the constant
load of thousands of compute nodes. The per-cluster auxiliary
servers handle the brunt of this responsibility, and the cen-
tralized infrastructure must only handle the burden when an
auxiliary server goes down. We have also found that PXE
booting 550+ compute nodes simultaneously is trivial and
non-impacting when the provisioning server has a 25+ Gbps
connection.

H. Smaller Failure Domains

Our previous monolithic configuration management system
regularly had problems where seemingly innocuous changes to
one cluster would cause failures on other clusters because of
unforeseen consequences, and the root cause of the failure may
not be evident or obvious. For example, a MariaDB package
was put into our Yum repositories, and over the course of
several hours, MySQL servers were breaking everywhere in
our infrastructure. The root cause was that the MariaDB pack-
age obsoleted MySQL. Isolating configuration management
systems from each other limits the scope of such a mistake.

I. Inter-cluster Drift

Because each cluster’s configuration is siloed off inde-
pendently, there will be some drift between clusters in the
configuration. We have accepted the risk of differences be-
tween cluster configurations, and we are not worried about it.
Important changes will get the proper care needed to make sure
they propagate everywhere, but minor or cosmetic changes will
simply go in the most up-to-date configuration repository and
may not be pushed to all repositories.

IV. CONCLUSION

While there are many ways to architect an HPC cluster, we
have found this model to be excellent to work with because
of these main points:

• xCAT provisioning stateless nodes
• masterless Puppet reducing load on infrastructure
• minimal use of templates
We have had such positive experiences with this model that

in May and June of this year, we upgraded five of our HPC
clusters from the old, masterful Puppet system running RHEL
6 to CentOS 7 using the new xCAT/masterless Puppet model.

REFERENCES

[1] P. M. Smith, J. St. John, and S. L. Harrell, “There and back
again: A case study of configuration management of HPC,” in
Proceedings of the HPC Systems Professionals Workshop, ser.
HPCSYSPROS’17. ACM, 2017, pp. 5:1–5:7. [Online]. Available:
https://doi.acm.org/10.1145/3155105.3155110

[2] “CFEngine,” https://cfengine.com.
[3] “Puppet documentation,” https://puppet.com/docs/puppet/5.5/puppet index.html.
[4] IBM, “xCAT: Extreme cluster/cloud administration toolkit,”

https://xcat.org.
[5] “GoCD,” https://www.gocd.org.
[6] M. Jennings, “LBNL node health check,” https://github.com/mej/nhc.
[7] “About Hiera,” https://puppet.com/docs/puppet/5.5/hiera intro.html.



[8] “Facter documentation,” https://puppet.com/docs/facter/3.11/index.html.
[9] T. Poulton, G. Meakin, S. Hildrew, and R. Fielding, “Hiera eyaml,”

https://github.com/voxpupuli/hiera-eyaml.

APPENDIX

A. Abstract

This artifact is an extremely minimal example of the Puppet
configuration highlighting some of the primary design goals.
This artifact illustrates:

• how the run puppet script works with the multiple roles
• how Hiera is used as a secrets store for SSH host private

keys
• the basic Hiera, Puppet, and eyaml configuration files
• the separation of package installation versus configuration

files
• the basic method of installing configuration files without

using templates

B. Description

1) Check-list (artifact meta information): Fill in whatever
is applicable with some informal keywords and remove the rest

• Program: Puppet, Hiera, hiera-eyaml, eyaml
• Run-time environment: Linux, yum
• Publicly available?: yes
2) How software can be obtained: https://github.

com/HPCSYSPROS/Workshop18/tree/master/xCAT and
Masterless Puppet Aiming For Ideal Configuration
Management

3) Hardware dependencies: None
4) Software dependencies: This system was developed us-

ing Puppet 3.7.5, hiera-eyaml 2.1.0, and CentOS 7; however,
a Linux distribution with yum as the package manager should
still work with the example artifact.

5) Datasets: None

C. Installation

• install Puppet
• remove the directory /etc/puppet
• extract the artifact into the directory /etc/puppet

so that the directories hieradata, modules,
manifests, etc. are directly under /etc/puppet

• install the hiera-eyaml Ruby gem
• create eyaml keys and put them in the default location so

Puppet can see them
• copy
modules/common/files/etc/eyaml/config.yaml
to /etc/eyaml/config.yaml

• look at the SSH host keys under
modules/common/files/etc/ssh,
in hieradata/common.yaml, and in
modules/common/manifests/config.pp,
and replace these with local SSH host keys that have
been encrypted with the eyaml keys from the previous
few steps

• execute the command puppet apply
--hiera_config=/etc/puppet/hiera.yaml
/etc/puppet/manifests/common.pp

• execute the command puppet apply
--hiera_config=/etc/puppet/hiera.yaml
/etc/puppet/manifests/compute.pp
(optionally replace compute.pp with frontend.pp

• execute the command
/usr/site/rcac/sbin/run_puppet

D. Experiment workflow

Complete the installation section, above, and add new
configuration files and packages to the Puppet manifests based
on the provided examples.


