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Disclaimer 
MARRMoT (“the program”) is licensed under the GNU GPL v3.0 license. You should have received a 

copy of the GNU General Public License along with this program.  If not, see 

https://www.gnu.org/licenses/. Please take note of the following: 

This program is free software: you can redistribute it and/or modify it under the terms of the GNU 

General Public License as published by the Free Software Foundation, either version 3 of the License, 

or (at your option) any later version. 

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without 

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

GNU General Public License for more details. 

 

In practical terms, this means that: 

1. The developers do not and cannot warrant that the program meets your requirements or that 

the program is error free or bug free, nor that these errors or bugs can be corrected; 

2. You install and use the program at your own risk; 

3. The developers do not accept responsibility for the accuracy of the results obtained from using 

the program. In using the program, you are expected to make the final evaluation of any 

results in the context of your own problem. 

  

https://www.gnu.org/licenses/
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1 Introduction 

1.1 Place within MARRMoT documentation 
This document provides practical guidance for users who want to use or adapt the base Modular 

Assessment of Rainfall-Runoff Models Toolbox (MARRMoT) code. The following documents give 

details about various aspects of MARRMoT: 

1. Journal paper – “Modular Assessment of Rainfall-Runoff Models Toolbox (MARRMoT) v1.2: 

an open-source, extendable framework providing implementations of 46 conceptual 

hydrologic models as continuous space-state formulations” [https://dx.doi.org/10.5194/gmd-

2018-332]: describes the rationale behind MARRMoT development; 

2. Supporting Material S2 – Model Descriptions: this contains descriptions of 46 models 

currently included in MARRMoT, giving the Ordinary Differential Equations (ODEs) that 

describe changes in model storage per time, and the constitutive functions that describe the 

model’s fluxes; 

3. Supporting Material S3 – Equations table: describes how the constitutive equations given in 

the model descriptions are implemented as Matlab code; 

4. Supporting Material S4 – Unit Hydrographs table: describes the input requirements and 

general functioning of the currently implemented Unit Hydrograph routing functions; 

5. Supporting Material S5 – Parameter ranges: describes the reasoning and provides references 

to support the provided MARRMoT parameter ranges. 

1.2 Contents 
This manual provides practical guidance for MARRMoT users. Topics covered: 

1. Understanding model files, data requirements and time step sizes (section 2); 

2. How to use a model that is part of the framework (section 3); 

3. How to create a new model from scratch (section 4); 

4. How to create a new flux equation for a model that is part of the framework (section 5); 

5. Possible speed-ups to Matlab root-finding methods (section 6); 

6. Quick guide to running MARRMoT in Octave (section 7). 

Certain words/phrases in the text of this manual are italicized. These are words with a specific 

meaning, defined in section 1.5.  

  

https://dx.doi.org/10.5194/gmd-2018-332
https://dx.doi.org/10.5194/gmd-2018-332
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1.3 General toolbox outline 
MARRMoT currently provides model code for 46 different hydrological models of the conceptual 

(bucket) type. Input requirements are standardized across all models, and model output is provided 

in a standardized way as well.  

The framework is set up in a modular fashion with individual flux files as the basic building blocks 

(Figure 1). Model files specify the inner workings of a given model.  

Parameter_ranges_for_model_1 (function)

Parameter_ranges_for_model_2 (function)

...

model_1 (function)

model_2 (function)

...

Each model is a unique selection
and arrangement of fluxes and 
implemented as a separate function 
within the framework

model_m (function)
 
Each model function performs the following tasks:

o Handle function inputs
- Climate data
- Parameters
- Initial conditions for stores

o Initialize storage and flux vectors
o Specify model fluxes
o Initialize solver settings

- Numerical scheme
- Root-finding method

o Run the time-series
- Model setup

 Specify ODE’s at time = t
 Create numerical ODE approximation

- Model solving
 Solve numerical ODE approximation 
 Check solver accuracy, re-run if needed

- Update states and fluxes at time = t
o Generate outputs

Parameter_ranges_for_model_m (function)
 
parameter_1 = [u,v]
Parameter_2 = [w,x]
…
parameter_o = [y,z]

Climate 
observations 

(P, T, PET)

Initial 
storage 
values

Time-stepping 
and solver 

settings

Model parameter 
values (sampled, 

optimized)

Observed flow, fluxes, storages, 
water balance

flux_1

flux_2

...

flux_n

Each model is accompanied by a file 
that specifies parameter ranges that 
have been standardized across all 
models (e.g. maximum interception 
depth is [0,5] mm in each model with 
interception). Use of these ranges is 
optional. The ranges can be used for 
parameter sampling or calibration, if 
they are combined with a sampling 
scheme (e.g. Monte Carlo) or 
optimization algorithm.

model_1: simulations

model_2: simulations

...

model_m: simulations of 
flow, fluxes, storages, 
water balance

Model inputs & settings

MARRMoT 

Modelling study

Model outputs

 

Figure 1: Schematic overview of the MARMMoT framework (Figure 1 in the MARRMoT paper). MARRMoT provides 46 
conceptual models implemented in a standardized way (part below the dotted line). Each model is a unique collection and 
arrangement of fluxes, but the code-wise setup of each model is the same. Inputs required to run a model are time series of 
climate variables, values for the model parameters (which can optionally be sampled or optimized using provided, 
standardized ranges), and initial conditions for each model store. The model returns time series of simulated flow, fluxes and 
storages and a summary of the simulated water balance. 
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1.4 Folder structure 
The main directory (./MARRMoT/) contains the following folders: 

- Functions 

o Flux smoothing: contains logistic smoothing functions for storage and temperature 

thresholds 

o Objective functions: contains a few example objective functions that can be used to 

compare simulated and observed streamflow. These are the Kling-Gupta efficiency 

(Gupta et al., 2009) calculated on regular flows, inverted flows (e.g. Garcia et al., 2017) 

and a combination of the two. 

o Solver functions: contains a function to re-run a solver if accuracy of a solution is 

below a user-specified threshold. 

o Time stepping: contains functions that create numerical approximations of any 

Ordinary Differential Equations (ODEs) that describe a model’s change in storage per 

time. Currently contains functions for Explicit Euler and Implicit Euler.  

o Water balance: contains a function that calculates the water balance for most models.  

- Models 

o Auxiliary files: contains files that are required within (a) model(s) but are not fluxes or 

unit hydrographs. Usually used only to keep model files more readable. 

o Flux files: contains flux files 

o Model files: contains model files 

o Parameter range files: contains parameter range files 

o Unit hydrograph files: contains Unit Hydrograph functions. These spread a single input 

pulse over a user-specified number of time steps. Used in various models to mimic 

flow routing. 

- User Manual: contains this manual and files belonging to the examples in this manual. 
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1.5 Definitions 
This section provides definitions for several words/phrases. These are italicized in the main text. 

Word/phrase Definition 

Flux equation Equation that represents a certain understanding of a hydrological process in 
mathematical terms. In MARRMoT, flux equations are implemented as 
anonymous functions using flux files.  
 
Example: Baseflow is sometimes understood to have a linear relationship 
with catchment storage. A suitable equation to represent this behaviour is qb 
= ks * S. Where qb is simulated baseflow [mm t-1], S the current catchment 
storage [mm], and ks a coefficient that connects storage to baseflow [t-1]. In 
code: 
 

Example using the notation above Q    = @(ks,S) ks.*S; 

Same code with generalized notation func = @(p1,S) p1.*S; 

  
Flux file File that contains code to create a single anonymous function. The 

anonymous function is of the shape “handle = @(inputs) f(inputs)”. Here 
f(inputs) is the flux equation that this flux file creates. Example: 
 

File name baseflow_1.m 
File contents function [func] = baseflow_1(~) 

%baseflow_1 Creates function for baseflow: 

linear reservoir 

  
func = @(p1,S) p1.*S; 

  
end 

  
Model descriptions Document that gives model equations. See Supporting Material S2. 
  
Model file A file unique to a given model. It specifies which flux files are used within the 

model and the ODE’s that describe the change in model storage through 
time. It also contains all the code necessary to run the model (see the block 
labelled “model_m (function)” in Figure 1). 

  
Parameter range 
file 

A file that accompanies every model. Its output is a matrix with minimum and 
maximum values for each parameter in the model. 

 
Structure 

 
Arrays with named fields that can contain data of varying types and sizes 
(Matlab documentation). In MARRMoT, structures are used to define certain 
model file inputs. Most model file output comes as structures too. The user 
can specify the structure’s name. The names of the fields within each 
structure must follow certain naming conventions. See sections 2.1.1 and 
2.1.2 for details. 
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2 Navigating a model file 
This section shows how each model file is set up (section 2.1), which inputs are needed to use a model 

file (section 2.1.1), which outputs are provided (section 2.1.3) and an in-depth look into a simple model 

file (section 2.2). 

2.1 Setup of a model file 
All model files follow the same general layout (Figure 1, box named “model_m (function)”). Inputs and 

outputs are standardized. This ensures that it is straightforward to test different models within a single 

study. The general layout is as follows: 

[fluxOutput, fluxInternal, storeInternal, waterBalance] =  

modelFunction(fluxInput, storeInitial, theta, solver) 
(1) 

 

2.1.1 Data requirements and time step size 
Using any of the current 46 MARRMoT models requires time series of precipitation, temperature and 

potential evapotranspiration data. These must be provided as a structure with pre-defined names (see 

section 2.1.2 for an example). Currently, each model requires an input structure with fields “.precip”, 

“.temp” and “.pet”. However, not every model requires temperature data for its calculations. In these 

cases, a placeholder value can be used in the field “.temp”, instead of a time series (e.g. 

[structure_name].temp = NaN).  

Climate input can use an arbitrary time resolution (e.g. hourly, daily, monthly), but it must be the same 

for precipitation, potential evapotranspiration and temperature time series. The time resolution of 

the climate data must be specified in the same structure as the data are in, in a field called “.delta_t”. 

.delta_t must be specified as a fraction or multiple of the units [days]. E.g. daily climate data has Δt = 

1, hourly data has Δt = 1/24, and weekly data has Δt = 7. Model outputs (simulated runoff, internal 

fluxes) are given at the same temporal resolution as the climate inputs. 

The internal model calculations use [mm/d] as its base unit and units for model states and model 

parameters are derived from this (e.g. [mm] for storages, [d-1] for runoff coefficients, [d] for unit 

hydrograph delays). Precipitation and PET inputs are internally converted from [mm/Δt] to [mm/d], 

using the user-specified time step size in .delta_t. Internal model fluxes (e.g. saturation excess, 

evaporation, total streamflow) are internally calculated in [mm/d] and converted back to [mm/Δt] 

during model output generation.  

To summarize, model input can be of any temporal resolution provided it is the same for all climate 

input time series. The time step size must be specified by the user. Model outputs are returned at the 

same time resolution as the climate input data. Model parameter values are independent of the user-

provided time step size. 

2.1.2 Input to a model file 
Inputs to a model file are expected in a fixed order (eq. 1). They are: 

fluxInput Climate data input. This is expected as a Matlab structure with the following fields: 
- example.delta_t 
- example.precip 
- example.pet 
- example.temp 
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.delta_t is a field within the structure “example” which contains the time step size 
of the climate data, expressed in units [days]. E.g. daily climate data has Δt = 1 [d], 
whereas hourly data would have Δt = 1/24 [d]. 
 
.precip, .pet, .temp are fields within the structure that contain a time series of 
precipitation, potential evapotranspiration and temperature respectively. Not 
every model requires temperature data for its calculations. In these cases, a 
placeholder input can be used instead (e.g. example.temp = NaN;). It would be 
straightforward to allow different inputs (e.g. minimum and maximum temperature 
time series) in a new user-created model, by using new structure field names (e.g. 
example.temp_min and example.temp_max). Existing models would not need to 
be changed if the climate input structure has more fields than the four fields already 
expected. 
 
Note: the names of these fields are hard-coded in each current model file. User 
input for these models must be defined using these field names.  
 

storeInitial Initial values for each model store. This is expected as a vector with a length equal 
to the number of stores. The ordering of stores can be found in the model file, by 
looking at the comments in the “%% Setup section”. The header 
“%%INITIALISE MODEL STORES” shows the part of the code that handles initial 
storages. 
 

theta Parameter values for each model parameter. This is expected as a vector with a 
length equal to the number of stores. The ordering of parameters can be found in 
the model file, by looking at the comments in the “%% Setup section”. The 
header “% Parameters” shows the part of the code that handles parameter 
values. 
 

solver Settings for the solver and time stepping scheme. This is expected as a Matlab 
structure with the following fields: 

- example.name 
- example.resnorm_tolerance 
- example.resnorm_maxiter 

 
.name contains the name of the time stepping functions that should be used. This 
dictates how the ODE equations that describe the model’s change in storages per 
time are solved on every time step. Currently Explicit Euler and Implicit Euler are 
provided, with names 'createOdeApprox_EE' and 'createOdeApprox_IE' 
respectively. These functions can be found in ./MARRMoT/Functions/Time 
stepping/. 
 
.resnorm_tolerance specifies the required accuracy for estimates of new storage 
values. Ideally, the solver returns an exact solution for each new storage value that 

satisfies the chosen numerical scheme (e.g. 
𝑆𝑛𝑒𝑤−𝑆𝑜𝑙𝑑

𝛥𝑡
− (𝑃(𝑡) − 𝑄(𝑆𝑛𝑒𝑤)) = 0 in 

the case of an Implicit Euler estimate the change in storage S). In practice, the 
solution is an approximation that is not quite 0. .resnorm_tolerance is the  allowed 
summed, squared deviation from zero [mm]. For n stores, resnorm is:  
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𝑟𝑒𝑠𝑛𝑜𝑟𝑚 =  ∑ (
𝑆𝑛,𝑛𝑒𝑤 − 𝑆𝑛,𝑜𝑙𝑑

𝛥𝑡
− (𝑃(𝑡) − 𝑄(𝑆𝑛)))

2𝑆=𝑛

𝑆=1

 

 
If the solver has not found an accurate enough solution, the storages are calculated 
ones more with a more thorough but slower solver. The current default solvers are 
‘fzero’ for models with 1 store and ‘fsolve’ for models with >1 stores. ‘lsqnonlin’ is 
a more robust but slower solver. ‘lsqnonlin’ is the solver used when ‘fzero’ or 
‘fsolve’ can’t find a solution that satisfies the .resnorm_tolerance. 
 
.resnorm_maxiter (default = 6) specifies the maximum number of iterations that 
can be spent to recalculate storage values with ‘lsqnonlin’, when ‘fzero’ or ‘fsolve’ 
fail to find a sufficiently accurate solution. 
 
Note: the names of these fields are hard-coded in each model file. User input must 
be defined using these field names. 
 

2.1.3 Output of a model file 
Outputs generated by a model file (eq. 1) are as follows:  

fluxOutput Fluxes ‘leaving’ the model. Given as a structure with at least the fields: 
- example.Q 
- example.Ea 

 
.Q contains a time series of the total simulated streamflow in the same time 
resolution as the climate input. In most cases, this is the sum of various internal 
fluxes that represents different types of runoff (e.g. surface runoff, interflow, 
baseflow) 
 
.Ea  contains a time series of the total simulated evaporation in the same time 
resolution as the climate input. In several cases, this is the sum of various internal 
fluxes that represent different types of evaporation (e.g. bare soil evaporation and 
transpiration) 
 
In several cases, other model-specific fields are also included in this output 
structure, that might represent fluxes such as a groundwater sink. 
 

fluxInternal Fluxes internal to the model. Given as a structure with model-specific fields. Each 
field contains a time series of flux values during the simulation period. These are 
essentially all the fluxes used in the model that are not given in the fluxOutput 
structure. See the model descriptions in Supporting Material S2. for schematics 
that show the flux names. 
 

storeInternal Storages in the model. Given as a structure with a number of fields equal to the 
number of stores in the model. Currently, all models include at least 1 store: 

- example.S1 
 
.S1 contains a time series of store 1 storage values during the simulation period, 
in the same time resolution as the climate input. The field name is always ‘S’ 
followed by a number. If the models contains more than 1 store, subsequent 
stores are named .S2, .S3, etc 
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waterBalance Returns the sum of all incoming and outgoing fluxes and changes in storage. This 
is approximately zero in a well-performing model. When this output is requested, 
a summary showing the main fluxes and storage changes is also printed to the 
screen.  
 

2.2 Step-by-step description of a model file 
This section gives a step-by-step overview of a model file. Figure 1 lists the steps taken in each model 

file: 

1. Handle function inputs 

2. Initialize storage and flux vectors 

3. Specify model fluxes 

4. Initialize solver settings 

5. Run the time series 

6. Generate outputs 

Each step is discussed here, using a classic bucket model as an example. This model is included in 

MARRMoT in the file “m_01_collie1_1p_1s.m”. Each step is discussed in the next sections of this 

document.  

2.2.1 Handle function inputs 
%% Setup 
%%INPUTS 
% Time step size  
delta_t = fluxInput.delta_t; 

[Lines 31-34] The time step size is taken from the “fluxInput” structure and assigned to a temporary 

variable. This information is essential to convert climate inputs from the user’s [mm/Δt] resolution to 

the internal units of [mm/d]. It is also used to calculate the numerical approximation of the model’s 

ODEs and to convert the internal fluxes and output fluxes back from [mm/d] to the user’s [mm/Δt]. 

 

% Data: adjust the units so that all fluxes (rates) inside this model 
% function are calculated in [mm/d] 
P     = fluxInput.precip./delta_t;          % [mm/delta_t] > [mm/d] 
Ep    = fluxInput.pet./delta_t;             % [mm/delta_t] > [mm/d] 
T     = fluxInput.temp; 
t_end = length(P); 

[Lines 36-41] Climate input is taken from the “fluxInput” structure, converted into [mm/d] where 

needed and assigned to temporary variables. The number of time steps in the time series is calculated. 

This information is later used as the length of the modelling loop. 

 

% Parameters 
% [name in documentation] = theta(order in which specified in parameter file] 
S1max   = theta(1);                % Maximum soil moisture storage     [mm] 

[Lines 43-45] Parameter values are taken from the third input variable “theta” and assigned to a 
temporary variable. Almost always, these parameters share names with their counterparts in the 
model descriptions. Occasionally, auxiliary or derived parameters are used. This is clearly marked 
inside the model file if applicable. 
 
%%INITIALISE MODEL STORES 
S10     = storeInitial(1);          % Initial soil moisture storage 



MARRMoT User Manual 

13 
 

[Lines 47-48] Initial storage values are taken out of the second input variable “storeInitial“ and 
assigned to a temporary variable.  
 

%%DEFINE STORE BOUNDARIES 
store_min = [0];                    % lower bounds of stores 
store_upp = [];                     % optional higher bounds 

[Lines 50-52] Lower and upper storage bounds are defined. These are used within the ‘lsqnonlin’ 

solver, in case the default solvers (‘fzero’ and ‘fsolve’) do not provide a sufficiently accurate solution. 

Generally, providing store minimum bounds is useful and possible. Upper bounds are generally harder 

to define and do not seem to provide any reasonable benefit to the solver. 

 

2.2.2  Initialize storage and flux vectors 
%%INITIALISE STORAGE VECTORS (all upper case) 
store_S1 = zeros(1,t_end); 

  
flux_ea   = zeros(1,t_end); 
flux_qse  = zeros(1,t_end); 

[Lines 54-58] Zero vectors are created for all model stores and fluxes, to allocate memory efficiently. 

These are filled with values during the model run. 

 

2.2.3 Specify model fluxes 
%% 3. Specify and smooth model functions 
% Store numbering: 
% S1. Soil moisture 

 [Lines 66-68] The store numbering that is used in this model file is shown. This numbering is important 
during model file creation. It shows the order of expected initial storage value in the 
“storeInitial” input variable and serves as a memory aid when the user specifies the model 
equations and inputs to the flux files. 

 

% EA(S1,Smax,Ep,delta_t): evaporation from soil moisture 
EA = evap_7; 

  
% QSE(P,S1,Smax): Saturation excess flow 
QSE = saturation_1; 

[Lines 70-74] This model uses only two flux files: one to simulate evaporation and one to simulate 
saturation excess overflow. EA and QSE use function calls to functions “evap_7” and “saturation_1” 
respectively. These functions return the function handle to an anonymous function each. The 
commented lines above each function handle assignment show which inputs each function will use 
(e.g. EA(S1,Smax,Ep,delta_t)) and a summary of which flux this represents (e.g. evaporation 
from soil moisture). 
 
The anonymous function assigned to EA represents the following constitutive relationship: 

𝐸𝑎 =
𝑆

𝑆𝑚𝑎𝑥
𝐸𝑝(𝑡), 𝐸𝑎 ≤

𝑆

𝛥𝑡
 (2) 

 
And looks like:  
 

func = @(S,Smax,Ep,dt) min(S./Smax.*Ep,S/dt); 
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[Line 20 in “evap_7.m”] This function gives a mathematical implementation of evaporation that 

occurs at the potential rate Ep when soil moisture S is at maximum capacity Smax and decreases linearly 

as storage drops below its maximum level.  Evaporation is not allowed to be larger than the total 

available storage. 

The anonymous function assigned to QSE represents the following constitutive relationship:  

𝑄𝑠𝑒 {
𝑃(𝑡), 𝑖𝑓 𝑆 = 𝑆𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3) 

 
And looks like:  
 

if size(varargin,2) == 0 
    func = @(In,S,Smax) In.*(1-smoothThreshold_storage_logistic(S,Smax)); 
elseif size(varargin,2) == 1 
    func = @(In,S,Smax) In.*(1-

smoothThreshold_storage_logistic(S,Smax,varargin(1))); 
elseif size(varargin,2) == 2 
    func = @(In,S,Smax) In.*(1-

smoothThreshold_storage_logistic(S,Smax,varargin(1),varargin(2)));     
end 

[Lines 21-27 in “saturation_1.m”] This function gives a mathematical implementation of flow that 

only occurs when storage S is at its maximum capacity Smax. This is achieved through a logistic 

smoothing function (Clark et al., 2008; Kavetski and Kuczera, 2007) that is 0 when S < Smax and 1 when 

S ≥ Smax. The smoothing function has two parameters, r and e. These can be specified as optional 

arguments when “saturation_1” is first called (e.g. QSE = saturation_1(r,e)). If no values are specified 

the defaults r = 0.01, e = 5.00 are used (Clark et al., 2008). See the files 

“smoothThreshold_storage_logistic” and “smoothThreshold_temperature_logistic” in the folder 

./MARRMoT/Functions/Flux smoothing/ for more details.  

 

2.2.4 Initialize solver settings 
%% 4. Determine numerical scheme and solver settings 
% Function name of the numerical scheme 
scheme            = solver.name;                                             

[Lines 76-78] Find the name of the time stepping scheme function from the fourth input structure 
“solver”. 
 
% Define which storage values should be used to update fluxes 
[~,store_fun] = feval(scheme,storeInitial,delta_t); % storeInitial = number 

stores 

[Lines 80-81] This section evaluates the time stepping function and requests the second output only. 

This returns a string that tells Matlab which variables it should use to update the model fluxes. These 

variables differ in different numerical ODE approximations; e.g. with an Explicit Euler scheme the 

variable S(t-1) is used to update flux(t), while with an Implicit Euler scheme the variable S(t) is 

estimated iteratively and used to update flux(t). In the Explicit Euler case, the returned string reads:  

‘tmp_sFlux = [S1old]’ 

 

While in the Implicit Euler case the string reads (for this 1-store model): 

‘tmp_sFlux = [tmp_sNew(1)]’ 
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In both cases, tmp_sFlux is the variable used in the remainder of the model function (lines 138-

139), but the variables assigned to it are different (and appropriate for the chosen numerical scheme). 

The appropriate variables are assigned to tmp_sFlux in line 135. 

 

% settings of the root finding method 
fzero_options = optimset('Display','off');  
lsqnonlin_options = optimoptions('lsqnonlin',...                             

                                 'Display','none',... 
                                 'MaxFunEvals',1000); 

[Lines 83-87] Options for the root-finding method are defined. This model file uses only a single store 

and thus has only a single ODE that needs to be solved on each time step (i.e. the change in storage 

of the single model store). For this problem the ‘fzero’ solver can be used. For a multi-store model, 

several ODEs need to be solved simultaneously and this requires use of the ‘fsolve’ solver. The 

‘lsqnonlin’ solver is only called when the first solver (‘fzero’ in this case) is not sufficiently accurate as 

specified by the .resnorm_tolerance user input (see section 2.1.1). Through a large number of trials, it 

seems that ‘lsqnonlin’ usually needs in the order of 10 to 100 iterations to converge. Therefore, a 

default maximum value of 1000 evaluations is used. In general, the only cases where both solvers 

struggle to find an accurate solution is when unrealistically small store sizes are used (<1 mm store 

depth). 

By default, all solver display settings are turned off to avoid unnecessary printing to the display. It can 

be helpful to turn the display settings on for debugging purposes.  

Note: for models with multiple stores, an additional option of ‘fsolve’ and ‘lsqnonlin’ is used, that 

allows a user to specify a Jacobian matrix for the multi-store problem. Specifying the Jacobian is not 

required but can significantly reduce computational times. An example is provided in section 0. 

 

2.2.5 Run the time series 
On every time step, three different actions are performed: 

1. First, the ODEs for this time step are defined with current climate inputs and rewritten in 

terms of the chosen time stepping scheme; 

2. Next, the (collection of) storage equations are solved for the given time step, and the accuracy 

of these solutions is compared to a user-specified threshold; 

3. Finally, model fluxes and storages are updated. 

 

%% 5. Solve the system for the full time series 
for t = 1:t_end 

[Lines 89-90] Start of the time loop.  

 

% Model setup ------------------------------------------------------------- 
    % Determine the old storages (at t-1) 
    if t == 1; S1old = S10; else; S1old = store_S1(t-1); end  

[Lines 92-94] Storages at t-1 are stored into temporary variables. These are later used as starting 

points for the numerical solver(s).  
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 % Create temporary store ODE's that need to be solved 
    tmpf_S1 = @(S1)    (P(t) - ... 
                        EA(S1,S1max,Ep(t),delta_t) - ... 
                        QSE(P(t),S1,S1max));  

[Lines 96-99] The right-hand side of each ODE is created. ODEs are specified in the model descriptions. 

For this model, it would read: 

𝑑𝑆

𝑑𝑡
= 𝑃(𝑡) − 𝐸𝑎(𝑆, 𝑆𝑚𝑎𝑥, 𝐸𝑝(𝑡), 𝛥𝑡) − 𝑄𝑠𝑒(𝑆, 𝑆𝑚𝑎𝑥, 𝑃(𝑡)) 

(4) 

 

With constitutive functions 

𝐸𝑎 =
𝑆

𝑆𝑚𝑎𝑥
𝐸𝑝(𝑡) 

(5) 

  

𝑄𝑠𝑒 {
𝑃(𝑡), 𝑖𝑓 𝑆 = 𝑆𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(6) 

 

The constitutive functions have been defined before as function handles assigned by flux files. Here, 

the proper variables and parameters are inserted into these and a new anonymous function tmpf_S1 

is created. The unknown in tmpf_S1 is the storage value S1. Parameter Smax, climate P(t) and Ep(t) 

and time step size Δt [d] are known. 

 
    % Call the numerical scheme function to create the ODE approximations.  
    % This returns a new anonymous function that we solve in the next step. 
    solve_fun = feval(scheme,... 
                      [S1old],... 
                      delta_t,... 
                      tmpf_S1);       

[Lines 101-106] Here the entire ODE is re-written to a form that allows the use of a root-finding 

method: 

𝑑𝑆

𝑑𝑡
− (𝑃(𝑡) − 𝐸𝑎(𝑆, 𝑆𝑚𝑎𝑥, 𝐸𝑝(𝑡)) − 𝑄𝑠𝑒(𝑆, 𝑆𝑚𝑎𝑥, 𝑃(𝑡))) = 0 

 

(7) 

The choice of time stepping method specified in scheme determines how the differential equation is 

treated and which storage value the constitutive functions depend on. In the case of an Implicit Euler 

scheme, solve_fun is:  

𝑆𝑛𝑒𝑤 − 𝑆1𝑜𝑙𝑑

𝑑𝑒𝑙𝑡𝑎_𝑡
− (𝑃(𝑡) − 𝐸𝑎(𝑆𝑛𝑒𝑤, 𝑆𝑚𝑎𝑥, 𝐸𝑝(𝑡)) − 𝑄𝑠𝑒(𝑆𝑛𝑒𝑤, 𝑆𝑚𝑎𝑥, 𝑃(𝑡))) = 0 

(8) 

 

Where the part between the brackets is the anonymous function tmpf_S1with input Snew. However, 

due to its general nature, the function that generates solve_fun can not show this specific equation. 

Instead solve_fun shows a generalized version: 

𝑆𝑛𝑒𝑤 − 𝑆1𝑜𝑙𝑑

𝑑𝑒𝑙𝑡𝑎_𝑡
− 𝑣𝑎𝑟𝑎𝑟𝑔𝑖𝑛(𝑆𝑛𝑒𝑤) = 0 

(9) 

 



MARRMoT User Manual 

17 
 

Where varargin(Snew) fulfils the same function as the specific equation in eq. 8. In case of a multi-store 

model, solve_fun would be a matrix containing a similarly re-written ODE for each store in the 

model. 

 

% Model solving -----------------------------------------------------------             
    % --- Use the specified numerical scheme to solve storages --- 
    [tmp_sNew,tmp_fval] = fzero(solve_fun,... 
                                    S1old,... 
                                    fzero_options); 

[Lines 108-112] Here the equation stored in solve_fun (eq. 8) is solved using Matlab’s ‘fzero’ 

algorithm. The starting point for the solver is the storage value at t-1 S1old. fzero_options 

contains solver settings specified before. Section 6.1 details a small modification that can be made to 

Matlab’s ‘fzero’ to suppress output message generation. The gains in computational efficiency are 

significant however. 

Function output tmp_sNew contains the solver’s estimate of the storage value at time = t. Output 

tmp_fval contains the resulting function value if the new store estimate from tmp_sNew were to be 

used as Snew in equation 8. If the solver has found a proper solution, this value is approximately zero. 

 

    % --- Check if the solver has found an acceptable solution and re-run 
    % if not. The re-run uses the 'lsqnonlin' solver which is slower but  
    % more robust. It runs solver.resnorm_iterations times, with different 
    % starting points for the solver on each iteration --- 
    tmp_resnorm = sum(tmp_fval.^2); 

[Lines114-118] Normalized residuals are calculated using the new estimated storage value(s).  

 

if tmp_resnorm > solver.resnorm_tolerance 
        [tmp_sNew,~,~] = rerunSolver('lsqnonlin', ...                        
                                        lsqnonlin_options, ...               
                                        @(eq_sys) solve_fun(...              
                                                    eq_sys(1)), ... 
                                        solver.resnorm_maxiter, ...          
                                        solver.resnorm_tolerance, ...        
                                        tmp_sNew, ...                        
                                        [S1old], ...                         
                                        store_min, ...                       
                                        store_upp);                                        
    end 

[Lines 120-131] If the residuals are above a user-specified threshold solver.resnorm_tolerance, 

new storages are calculated again with the more robust solver ‘lsqnonlin’. Solver options 

lsqnonlin_options have been specified before.  “@(eq_sys) solve_fun(eq_sys(1))” is a 

construction that lets ‘lsqnonlin’ interact properly with the function it needs to solve. Multi-store 

solver ‘fsolve’ uses the same construction.  tmp_sNew and S1old are the (inaccurately estimated) 

new storages and the old storages from t-1 respectively. Both are used as starting points for ‘lsqnonlin’ 

in its attempts to find a better solution. store_min and store_upp are lower and upper store 

bounds respectively. Both are optional, but the lower bounds are occasionally useful to constrain the 

solver to realistic store estimates. Upper bounds are generally less useful because they are 

harder/impossible to define. 

The function “rerunSolver” will attempt to find new solutions for the current time step that are within 

the accuracy threshold specified in “solver.resnorm_tolerance”. It does this up to 
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“solver.resnorm_maxiter” times, and restarts the solving procedure from different initial guesses each 

time. This provides better chances of finding a solution with the requested accuracy. 

Currently, two optional output arguments of “rerunSolver” are unused. Output argument 2 provides 

the final value of “resnorm” which the user can request and check to see whether the accuracy 

specified in “solver.resnorm_tolerance” has been achieved. Alternatively, the user can request output 

argument 3 (“flag”) which returns 0 if the function “rerunSolver” returned a sufficiently accurate 

solution. “flag” will return -1 if “rerunSolver” has not been able to find a sufficiently accurate solution.  

 

% Model states and fluxes -------------------------------------------------     
    % Find the storages needed to update fluxes: update 'tmp_sFlux' 
    eval(store_fun);                                                       

[Lines 133-135] This evaluates the string created in “%% 4. Determine numerical scheme and 
solver settings”, which tells Matlab which variables it should use to update the model fluxes. 
 

    % Calculate the fluxes 
    flux_ea(t)   = EA(tmp_sFlux(1),S1max,Ep(t),delta_t); 
    flux_qse(t)  = QSE(P(t),tmp_sFlux(1),S1max); 

     
    % Update the stores 
    store_S1(t) = S1old + (P(t) - flux_ea(t) - flux_qse(t)) * delta_t; 

[Lines 137-142] The time series of flux and storage values are updated using the appropriate storage 

values; e.g. S(t-1) with an Explicit Euler scheme and final estimates of S(t) with an Implicit Euler 

scheme. Storages are updated based on the calculated fluxes, converted into the proper time step 

size. 

    

end 

[Line 144] End of the time loop. 

 

2.2.6 Generate outputs 
%% 6. Generate outputs 
    % --- Fluxes leaving the model --- 
    % 'Ea' and 'Q' are used outside the function and should NOT be renamed 
    fluxOutput.Ea     = flux_ea  * delta_t; 
    fluxOutput.Q      = flux_qse * delta_t; 

     
    % --- Fluxes internal to the model --- 
    fluxInternal.noInternalFluxes = NaN; 

  
    % --- Stores --- 
    storeInternal.S1  = store_S1; 

[Lines 146-156] Temporary vectors with flux and storage values are assigned to the appropriate output 

structures. Because this is such a simple model, both fluxes describe processes the ‘leave’ the model 

(evaporation and streamflow), so the fluxInternal structure is filled with a placeholder value. In the 

time loop fluxes have been calculated in [mm/d] for consistency with parameter and storage units. 

During output generation these fluxes are converted back into the user-specified [mm/Δt]. Storage 

values do not need to be changed, because these are already based on flux values given in [mm/Δt] 

(see lines 137-142). 
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% Check water balance 
if nargout == 4 
    waterBalance = ... 
     checkWaterBalance(... 
      P,...              % Incoming precipitation 
      fluxOutput,...     % Fluxes Q and Ea leaving the model 
      storeInternal,...  % Time series of storages ... 
      storeInitial,...   % And initial store values to calculate delta S 
      0);                % Whether the model uses a routing scheme that 
                         % still contains water. Use '0' for no routing 
end 

 [Lines 158-168] If requested, a water balance check is performed. This returns the sum of all incoming 

and outgoing fluxes and changes in storage. This is approximately zero in a well-performing model. 

When this output is requested, a summary showing the main fluxes and storage changes is also printed 

to the screen.  
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3 Using the framework 
This section provides several examples accompanied by computer code in the folder 

“./MARRMoT/User manual/”. The examples show how to use a model from the framework in a few 

basic applications. The first example shows how a pre-defined model can be used to simulate runoff 

in a catchment using a single parameter set. The second example shows how the provided parameter 

ranges for each model can be used to generate random parameter sets for a model. The third example 

shows how several pre-defined models can be used in a single loop. The fourth example shows how a 

model can be calibrated using a few of MARRMoT’s provided functions. 

This guide uses 5 years’ worth of climate and streamflow data from Buffalo River near Flat Woods, 

Tennessee, USA, to illustrate examples. The catchment was randomly selected from those provided 

within the CAMELS dataset (Addor et al., 2017). The USGS gauge ID for this catchment is 3604000. 

3.1 Setup: add MARRMoT folders to the Matlab path 
MARRMoT files are spread out in different folders within the main ./MARRMoT/ folder. These must 

be added to the Matlab path: 

1. Open Matlab 

2. Navigate Matlab’s “current folder” to the folder that contains MARRMoT 

3. Right-click the MARRMoT folder 

4. Select [Add to Path] > [Selected Folders and Subfolders] 

5. Note: ensure that the folder “Octave” is not part of this folder structure. Remove the folder if 

present 

3.2 Workflow: 1 model, 1 parameter set, 1 catchment 
In this example a version of the HyMOD model (Wagener et al., 2001) is applied to the Buffalo River 

catchment using a single parameter set. Three different objective functions are calculated to 

determine the similarity between observed and simulated flows. This example is shown in the file 

“workflow_example_1”. 

3.3 Workflow: 1 model, N parameter sets, 1 catchment 
In this example the HyMOD model is applied to the Buffalo River catchment with N different 

parameter sets, randomly sampled within the provided HyMOD parameter ranges. This example is 

shown in the file “workflow_example_2”. 

3.4 Workflow: 3 models, 1 random parameter set, 1 catchment 
In this example, the HyMOD model, TANK model (Sugawara, 1995) and Collie1 model (Jothityangkoon 

et al., 2001) are applied to the Buffalo River catchment. Parameters for each model are randomly 

taken from the provided parameter ranges. This example is shown in the file “workflow_example_3”. 

3.5 Workflow: calibration of 1 parameter set for 1 model and 1 catchment 
In this example, the HyMOD model is calibrated for streamflow simulation in the Buffalo River 

catchment using a custom Matlab function from the File Exchange. A single parameter set is calibrated 

using 2 years of data and evaluated using 2 different years of data. MARRMoT’s provided parameter 

ranges are used to constraint the parameter space. This example is shown in the file 

“workflow_example_4”. Note: this workflow example does not work with Octave. 
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4 How to create a new model 
This section shows how a new model can be created to fit within MARRMoT. The current 46 models 

are all created based on the following generalized principles: 

- The only climate inputs are precipitation, temperature and potential evapotranspiration 

- Within the model files, no spatial discretization is applied (i.e. the model file is spatially 

lumped, although spatial discretization could be created by the user outside the model file) 

- The time step size can be specified by the user, but the internal model file computations use 

[mm/d] as the base unit 

For simplicity, we assume that the new model created in this section is built according to certain 

assumptions of how a particular catchment functions (i.e. on some perceptual model of the 

catchment). Justifying these assumptions is outside the scope of this guide. This section is intentionally 

divided into many small sub-sections, to make it easier to follow all steps. The headers of each sub 

section can be used as a check list. 

4.1 Create the model description 
Creating a new model starts with a model description: a model schematic and the model equations.  

4.1.1 Create a model schematic based on assumptions about the catchment 
Create a model schematic that shows the behaviour the model is intended to simulate (Figure 2).  

The assumptions in this model are as follows: 

- There is no snowfall 

- Precipitation enters the upper zone 

- Evaporation is taken from the upper zone  

- Saturation excess surface flow occurs when the upper zone is full 

- Percolation drains the upper zone and refills the lower zone 

- Capillary rise drains the lower zone and refills the upper zone 

- Lower zone drainage occurs while water is available 

- Part of the lower zone drainage is fast flow 

- The remainder of lower zone drainage goes to groundwater 

- Groundwater generates slow flow 

- Surface runoff, fast flow and slow flow combine and are sent through 

a triangular routing scheme to form Qsim 

 

 

4.1.2 Specify the model Ordinary Differential Equations (ODEs) 
Model schematics are a useful aid in the next step: defining the ODEs that specify the changes in model 

storages. This model has three stores, so three ODEs are needed: 

𝑑𝑈𝑍

𝑑𝑡
= 𝑃 + 𝑞𝑐 − 𝐸 − 𝑞𝑠𝑒 − 𝑞𝑝 

(10) 

  
𝑑𝐿𝑍

𝑑𝑡
= 𝑞𝑝 − 𝑞𝑙𝑧 − 𝑞𝑐 

(11) 

  
𝑑𝐺

𝑑𝑡
= 𝑞𝑔 − 𝑞𝑠 

(12) 

Figure 2: Model schematic 
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4.1.3 Specify the constitutive functions that define the model fluxes 
Next, define the constitutive equations that describe the individual fluxes. These equations are based 

on a conceptual understanding of how the catchment functions. For example, if there is reason to 

believe that actual evaporation rates decline when the available soil moisture reduces, the flux 

equation E in our model should reflect this. The following equations reflect several of such 

assumptions, but it is beyond the scope of this guide to justify these. 

𝐸 =  𝐸𝑝

𝑈𝑍

𝑈𝑍𝑚𝑎𝑥
 

(13) 

  

𝑞𝑐 =  𝑐𝑟𝑎𝑡𝑒 (1 −
𝑈𝑍

𝑈𝑍𝑚𝑎𝑥
) 

(14) 

  

𝑞𝑠𝑒 = {
𝑃, 𝑖𝑓 𝑈𝑍 =  𝑈𝑍𝑚𝑎𝑥

0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(15) 

  
𝑞𝑝 =  𝑝𝑟𝑎𝑡𝑒 (16) 

  
𝑞𝑙𝑧 =  𝑘𝑙𝑧 ∗ 𝐿𝑍 (17) 

  
𝑞𝑔 =  𝛼 ∗ 𝑞𝑙𝑧 (18) 

  
𝑞𝑠 =  𝑘𝑔 ∗ 𝐺 (19) 

  
In some cases (such as this one) not all fluxes are directly part of an ODE. The fraction of lower zone 

outflow that becomes fast flow is not yet specified:  

𝑞𝑓 = (1 − 𝛼) ∗ 𝑞𝑙𝑧 (20) 

  
Last, the triangular routing scheme distributes the incoming runoff in a triangular way over a certain 

time period. By definition, the area under the triangle sums to 1 (see section 4.2.8 for details). Now 

all required equations are known. Our model has 7 parameters: maximum capillary rise rate crate 

[mm/d], maximum upper zone storage UZmax [mm], constant percolation rate prate [mm/d], lower zone 

runoff coefficient klz [d-1], fraction of lower zone runoff to groundwater α [-] , groundwater runoff 

coefficient kg [d-1], and routing delay d [d]. 

4.2 Create the model file 
The next step is creating the model file.  

4.2.1 Copy and rename a model file  
Navigate to the folder “./MARRMoT/Models/Main” and copy the file “m_00_template_5p_2s.m”. 

Paste this file in the same directory and rename it (Figure 3). The new name should follow the same 

structure as the current model files: 

“m_[number]_[name in lower case]_[number of parameters]p_[number of stores]s.m” 

The example model created in this manual can be found in the folder “./MARRMoT/User manual”. 
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Figure 3: Copy the template model file and rename it. Left: template model. Right: example model 

4.2.2 Open the new model file and change the function name 
Open the renamed model file and change the function’s name to match the file name. Optional: 

change the comments to reflect the model’s name and provide a reference (Figure 4). 

function [ fluxOutput, fluxInternal, storeInternal, waterBalance ] = ... 
    m_00_template_5p_2s( fluxInput, storeInitial, theta, solver ) 
% Hydrologic conceptual model: [xxx]  
%    
% Model reference 
%   [reference] 

 

function [ fluxOutput, fluxInternal, storeInternal, waterBalance ] = ... 
    m_nn_example_7p_3s( fluxInput, storeInitial, theta, solver ) 
% Hydrologic conceptual model: [MARRMoT User Manual example model]  
%    
% Model reference 
% MARRMoT User Manual, 2018.  

Figure 4: Change the function's name to match the file name. Top: template model. Bottom: example model 

4.2.3 Do not change the “INPUTS – Time step size and Data” section 
Climate input is handled in a standardized way across all models. This does not need to be changed 

(Figure 5). 

%%INPUTS 
% Time step size  
delta_t = fluxInput.delta_t; 

  
% Data 
P     = fluxInput.precip./delta_t;          % [mm/delta_t] > [mm/d]        
Ep    = fluxInput.pet./delta_t;             % [mm/delta_t] > [mm/d] 
T     = fluxInput.temp; 
t_end = length(P); 

Figure 5: Do not change the “Inputs – time step size” and “Inputs – data” sections 

4.2.4 Update the “INPUTS – Parameters” section  
This part of the code assigns parameter values from the model file input variable “theta” to temporary 

variables. The easiest approach is using the parameter names from the model description as names 

for these variables (Figure 6). Note:  make sure to increment the index of “theta” for models with 

more than 5 parameters. 
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% Parameters  
% [name in documentation] = theta(order in which specified in parameter file] 
S1max   = theta(1);     % Maximum soil moisture storage [mm] 
kc      = theta(2);     % Maximum capillary rise [mm/d] 
kp      = theta(3);     % Maximum percolation [mm/d] 
ks      = theta(4);     % Runoff coefficient [d-1] 
delay   = theta(5);     % Routing delay [d] 
% ... 

 

% Parameters 
% [name in documentation] = theta(order in which specified in parameter file] 
crate = theta(1);     % Maximum capillary rise rate [mm/d] 
uzmax = theta(2);     % Maximum upper zone storage [mm] 
prate = theta(3);     % Maximum percolation rate [mm/d] 
klz   = theta(4);     % Lower zone runoff coefficient [d-1] 
alpha = theta(5);     % Fraction of lower zone runoff to groundwater [-] 
kg    = theta(6);     % Groundwater runoff coefficient [d-1] 
d     = theta(7);     % Routing delay [d] 

Figure 6: Update the parameter section. Top: template model. Bottom: example model 

4.2.5 Update the “INITIALISE MODEL STORES” section if the model has 1 or >2 stores 
This part of the code assigns initial storage from the model file input variable “storeInitial” to 

temporary variables. If the model has 1 or more than 2 stores, this section needs to be updated. Note:  

make sure to increment the index of “storeInitial” for models with more than 2 stores. 

%%INITIALISE MODEL STORES 
S10         = storeInitial(1);       % Initial soil moisture storage 
S20         = storeInitial(2);       % Initial groundwater storage 
% ... 

 

%%INITIALISE MODEL STORES 
S10   = storeInitial(1);       % Initial upper zone storage 
S20   = storeInitial(2);       % Initial lower zone storage 
S30   = storeInitial(3);       % Initial groundwater storage 

Figure 7: Update initial storages section. Top: template model. Bottom: example model 

4.2.6 Define store boundaries 
This section defines upper and lower store boundaries that can be used by the ‘lsqnonlin’ solver. The 

example model has three stores, all of which have a defined lower boundary of S = 0. The upper zone 

has a defined maximum storage given by the parameter UZmax, but the lower zone and groundwater 

stores have a theoretical infinite storage. In practice however, defining the upper store boundaries 

has little to no benefit for the solver. The option to define them is included in MARRMoT but not used 

by any of the included models. For this example model, the upper store boundaries vector is kept 

empty (Figure 8). 

%%DEFINE STORE BOUNDARIES 
store_min = [0,0];                   % lower bounds of stores 
store_upp = [];                      % optional higher bounds 

 

%%DEFINE STORE BOUNDARIES 
store_min = [0,0,0];           % lower bounds of stores 
store_upp = [];                % optional higher bounds 

Figure 8: Update the store boundary vector(s). Top: template model. Bottom: example model 
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4.2.7 Define empty flux and storage vectors 
Allocating vectors of the right size before using them (in contrast to increasing their size by one per 

iteration) results in increased computational efficiency. Create an empty vector for each store and 

each flux (Figure 9). 

%%INITIALISE STORAGE VECTORS 
store_S1 = zeros(1,t_end); 
store_S2 = zeros(1,t_end); 
% ... 

  
flux_cap  = zeros(1,t_end); 
flux_ea   = zeros(1,t_end); 
flux_qo   = zeros(1,t_end); 
flux_perc = zeros(1,t_end); 
flux_qs   = zeros(1,t_end); 
flux_qt   = zeros(1,t_end); 
% ... 

 %%INITIALISE STORAGE VECTORS  
store_S1 = zeros(1,t_end); 
store_S2 = zeros(1,t_end); 
store_S3 = zeros(1,t_end); 

  
flux_qse = zeros(1,t_end); 
flux_e   = zeros(1,t_end); 
flux_qp  = zeros(1,t_end); 
flux_qc  = zeros(1,t_end); 
flux_qlz = zeros(1,t_end); 
flux_qf  = zeros(1,t_end); 
flux_qg  = zeros(1,t_end); 
flux_qs  = zeros(1,t_end); 
flux_qt  = zeros(1,t_end); 

 
Figure 9: Create empty storage and flux vectors. Left: template model. Right: example model 

4.2.8 Select the routing weighting scheme if applicable 
MARRMoT includes several routing schemes (Table 1: Overview of Unit Hydrograph based routing 

schemes in MARRMoT (see also Supporting Material S4)). All are based on a Unit Hydrograph (UH) 

principle and quantify how a single unit of input is distributed over n time steps.  

The example model uses a triangular routing scheme with time base “d” (Figure 10). In the current 

setup of model files, the Unit Hydrograph (i.e. the percentage-based distribution of 1 flow unit in time) 

is defined before the time loop starts. Hence, only the second output of the UH flux file is required, 

and the inputs to the UH flux file are 1 (flow unit) and the time delay parameter “d”. “uh_full” contains 

the percentage-wise distribution of incoming flow over subsequent time steps. 

%%PREPARE UNIT HYDROGRAPHS 
% [Optional] 
[~,uh_full] = uh_4_full(1,delay,delta_t); 
% ... 

 

%%PREPARE UNIT HYDROGRAPHS 
[~,uh_full] = uh_4_full(1,d,delta_t); 

Figure 10: Choose and parameterize the routing scheme if applicable. Left: template model. Right: example model 

4.2.9 Update or remove the “INITIALISE ROUTING VECTOR” section 
The example model has a routing component, so this section needs to be kept. The empty vector 

“tmp_Qt_old” will be used later when flow routing is computed.  

If the model has no routing component, this section can be removed. Model 07 (GR4J) and model 34 

(FLEX-IS) are good examples of models with different types of routing schemes. 

%%INITIALISE ROUTING VECTORS 
tmp_Qt_old  = 

zeros(1,length(uh_full)); 

 %%INITIALISE ROUTING VECTORS 
tmp_Qt_old  = 

zeros(1,length(uh_full)); 
Figure 11: Update routing storage vector with the correct parameter. Left: template model. Right: example model 
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Table 1: Overview of Unit Hydrograph based routing schemes in MARRMoT (see also Supporting Material S4) 

Flux file Inputs Diagram Description Used in model 
… 

uh_1_half 1: amount to be routed 
2: time base  
3: Δt 

 

Exponentially 
increasing 
scheme 

7 

     

uh_2_full 1: amount to be routed 
2: time base (time is 
doubled inside the 
function) 
3: Δt 

 

Exponential 
triangular 
scheme 

7 

     

uh_3_half 1: amount to be routed 
2: time base 
3: Δt 

 

Triangular 
scheme: linearly 
increasing 

13, 15, 21, 26, 
34 

     

uh_4_full 1: amount to be routed 
2: time base 
3: Δt 

 

Triangular 
scheme: linearly 
increasing and 
decreasing 

0 (template), 
16, 37,  
nn (example) 

     

uh_5_half 1: amount to be routed 
2: time base 
3: Δt 

 

Exponentially 
decreasing 
scheme 

5 

     

uh_6_gamma 1: amount to be routed 
2: gamma parameter [-] 
3: time for flow to 
reduce by factor e [d] 
4: length of time series  

 

Gamma 
function-based 

40 

     

uh_7_uniform 1: amount to be routed 
2: time base 
3: Δt 
 

 

Uniform 
distribution 

39 

uh_8_delay 1: amount to be 
delayed 
2: time delay 
3: Δt 

 

Pure time delay 5 

 

4.2.10 Specify how the model stores are numbered in the model file 
It is generally easiest to number model stores from the top-left of the model diagram to the bottom-

right. The numbering determines which variable name (e.g. “S1”, “S2”) is used to refer to each store’s 

current value. These comments serve the purpose of clarifying upfront how stores are ordered and 

prevent possible confusion when inputs for each flux function are determined.  
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%% 3. Specify and smooth model functions 
% Store numbering: 
% S1. Soil moisture 
% S2. Groundwater 

 

%% 3. Specify and smooth model functions 
% Store numbering: 
% S1. Upper zone 
% S2. Lower zone 
% S3. Groundwater 

Figure 12: Determine store order and numbering. Top: template model. Bottom: example model 

4.2.11 Update the flux file selection  
Select the appropriate flux files for the model using Table S1 (Supporting Material S3). Per flux, specify 

a function handle name (e.g. “E” for evaporation) and assign the proper flux function to the handle 

(e.g. “E = evap_7;”). Use the comments to clarify which inputs (i.e. climate, parameters, storage values, 

time step size) the function needs (e.g. E(S1,uzmax,Ep(t),delta_t); Figure 13). 

Detailed explanation: we have specified that evaporation in the model decreases linearly as a fraction 

of potential evapotranspiration Ep as the upper zone dries. The flux file “evap_7.m” contains an 

anonymous function that describes the desired evaporation behaviour. In the model file we use the 

flux file “evap_7” to assign this anonymous function to the function handle “E”, with the line “E = 

evap_7;”. The function generated by “evap_7” requires 3 inputs (this can be checked by opening the 

flux file “evap_7”: S, Smax and Ep. Here S is the current storage in the store where evaporation is taken 

from; Smax is the maximum storage value of this store; and Ep is the current evaporation demand. 

We have determined that evaporation is taken from the upper zone and numbered this store as “S1”. 

Thus, the first input for evaporation function “E” is “S1”. The maximum value of “S1” is given by 

parameter “uzmax”. Thus, the second input in “E” is “uzmax”. The current evaporation demand is 

found in the climate vector “Ep”. Thus, the third input to “E” is “Ep(t)”. 

% E(S1,uzmax,Ep(t),delta_t): evaporation from upper zone (S1).  
E = evap_7; 

Figure 13: Example showing how to use flux files to create flux equations in a model file 

The example model only uses flux files that have already been included in MARRMoT. See section 5 

for help with creating a new flux file. The example model uses the following flux files (Figure 14): 

- evap_7 for evaporation E (eq. 13) 

- saturation_1 for saturation excess qse (eq. 15) 

- percolation_1 for percolation to the lower zone qp (eq. 16) 

- capillary_1 for capillary rise from the lower to upper zone qc (eq. 14) 

- baseflow_1 for outflow from the lower zone qlz (17) 

- split_1 for the division between fast flow qf and groundwater recharge qg (eq. 20, 18) 

- baseflow_1 for slow flow from groundwater qs (eq. 19) 
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% Ea: evaporation from soil moisture. Angle discontinuity 
EA = @(S1,Ep,delta_t) min(S1/delta_t,Ep); 

  
% Qo: overflow from soil moisture. This formula uses a threshold - this  
% gives a threshold discontinuity which we deal with using a logistic smoother 
QO = @(P,S1,S1max) P.*(1-smoothThreshold_storage_logistic(S1,S1max,0.001)); 

  
% cap: capillary rise frm groundwater to soil moisture. This can use min  
% function, this leads to an angle discontinuity 
CAP = @(kc,S1,S1max,S2,delta_t) min(max(kc*(S1max-S1)/S1max,0),S2/delta_t); 

  
% perc: percolation from soil moisture to groundwater. Angle discontinuity 

at S1 = 0 
PERC = @(kp,S1,S1max,delta_t) min(kp.*S1/S1max,S1/delta_t); 

  
% Qs: flow from groundwater. An angle discontinuity at S2 = 0 
QS = @(ks,S2) ks*S2; 

 

% E(S1,uzmax,Ep(t),delta_t): evaporation from upper zone (S1).  
E = evap_7; 

  
% QSE(P(t),S1,uzmax): saturation excess from upper zone (S1).  
% Has a threshold discontinuity and needs logistic smoothing 
QSE = saturation_1; 

  
% QP(prate,S1,delta_t): percolation from upper zone (S1) to lower zone (S2) 
QP = percolation_1; 

  
% QC(crate,S1,uzmax,S2,delta_t): capillary rise from lower (S2) to upper  
% zone (S1) 
QC = capillary_1; 

  
% QLZ(klz,S2): outflow from lower zone (S2) 
QLZ = baseflow_1; 

  
% QF(1-alpha,QLZ(klz,S2)): fraction (1-alpha) of lower zone outflow (QLZ)  
% that is fast flow 
QF = split_1; 

  
% QG(alpha,QLZ(klz,S2)): fraction (alpha) of lower zone outflow (QLZ) that  
% goes to groundwater (S3) 
QG = split_1; 

  
% QS(kg,S3): outflow from groundwater (S3) 
QS = baseflow_1; 

Figure 14: Selection of flux equations. Top: template model. Bottom: example model 

4.2.12 Do not change the “Settings for the numerical scheme” section 
This part of the code handles user-defined inputs that specify the choice of time-stepping scheme. 

These are handled in a standardized way and this section does not need to be changed (Figure 15).  
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%% 4. Determine numerical scheme and solver settings 
% Function name of the numerical scheme 
scheme  = solver.name;                                                       

  
% Define which storage values should be used to update fluxes 
[~,store_fun]     = feval(scheme,storeInitial,delta_t);                      

Figure 15: Do not change the numerical time stepping scheme initialization section 

4.2.13 Remove unnecessary solver options 
‘fzero’ is the proper option for a model with 1 store, ‘fsolve’ is used for multiple stores. ‘lsqnonlin’ is 

used as a back-up in case the first solver is unable to find a sufficiently accurate solution. If ‘fzero’ is 

not used, the line that generates an option structure for ‘fzero’ can be removed. Similarly, if ‘fsolve’ is 

not used, the corresponding lines can be deleted. 

The example model has three stores, so ‘fsolve’ must be used (Figure 16).  

4.2.14 Specify the Jacobian  
Specifying the Jacobian matrix increases computational efficiency in multi-store models. It specifies 

how the ODEs that quantify storage changes in a given store depend on storage levels in stores besides 

themselves (see option ‘JacobPattern’, Figure 16).  

Extended reasoning: E.g. in the example model, the first ODE (eq. 10) quantifies the change in store 

1 level (ΔS1) over time. This depends on several fluxes: precipitation P, evaporation E, surface runoff 

qse, percolation qp and capillary rise qc. P and E are store-independent; i.e. their value does not depend 

on the current level of any of the model stores. qse and qp are store-dependent: their value depends 

on the current storage in the upper zone (S1). qc is multi-store-dependent: its value depends on the 

current (lack of) storage in the upper zone (S1) and the available water in the lower zone (S2). Thus, 

ODE 1 (eq. 9) describes the change in storage levels of store S1, and this change depends on the 

current values of both S1 and S2 – because these storages control the magnitude of the 

aforementioned fluxes and these in turn dictate the change in storage. ΔS1 is not influenced by the 

level in the groundwater store S3. In the Jacobian pattern this can be indicated as shown in Table 2: 

Table 2: Partly filled Jacobian matrix for the example model 

 Depends on current value of 
 S1 S2 S3 

ΔS1 1 1 0 
ΔS2    
ΔS3    

 

A Jacobian matrix must be square and show all dependencies between ODEs. Similar to store S1, the 

change in store S2 level depends on the current storage in both S1 and S2 but is independent from 

store S3. The change in store S3 is dependent on the current level in S2 (because this controls the 

magnitude of the groundwater inflow flux qg) and its own current level (because this controls the 

magnitude of the groundwater outflow flux qs). The full Jacobian is (Table 3: Filled Jacobian matrix for 

the example model): 
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Table 3: Filled Jacobian matrix for the example model 

 Depends on current value of 

 S1 S2 S3 
ΔS1 1 1 0 
ΔS2 1 1 0 
ΔS3 0 1 1 

 

%% 4. Determine numerical scheme and solver settings 
% Function name of the numerical scheme 
scheme  = solver.name;                                                       

  
% Define which storage values should be used to update fluxes 
[~,store_fun]     = feval(scheme,storeInitial,delta_t);                      

  
% Root-finding options 
fsolve_options = optimoptions('fsolve','Display','none',...                  
                              'JacobPattern', [1,1; 
                                               1,1]);                       % 

Specify the Jacobian pattern                                                
% fzero_options = optimset('Display','off');                                 
lsqnonlin_options = optimoptions('lsqnonlin',...                             
                                 'Display','none',... 
                                 'JacobPattern', [1,1; 
                                                  1,1],... 
                                 'MaxFunEvals',1000); 

  

 

%% 4. Determine numerical scheme and solver settings 
% Function name of the numerical scheme 
scheme  = solver.name;                                                       

  
% Define which storage values should be used to update fluxes 
[~,store_fun]     = feval(scheme,storeInitial,delta_t);                      

  
% Root-finding options 
fsolve_options = optimoptions('fsolve','Display','none',...                  
                              'JacobPattern', [1,1,0; 
                                               1,1,0; 
                                               0,1,1]);                     % 

Specify the Jacobian pattern                                                
lsqnonlin_options = optimoptions('lsqnonlin',...                             
                                 'Display','none',... 
                                 'JacobPattern', [1,1,0; 
                                                  1,1,0; 
                                                  0,1,1],... 
                                 'MaxFunEvals',1000); 

  

Figure 16: Update the numerical scheme and solver settings/options. Top: template model. Bottom: example model 

4.2.15 Inside the time loop, update the “old storages” section if applicable 
This section only needs to be changed if the new model does not have 2 stores (Figure 17). 
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% Model setup ------------------------------------------------------------- 
    % Determine the old storages 
    if t == 1; S1old = S10; else; S1old = store_S1(t-1); end                 
    if t == 1; S2old = S20; else; S2old = store_S2(t-1); end 

 

% Model setup ------------------------------------------------------------- 
    % Determine the old storages 
    if t == 1; S1old = S10; else; S1old = store_S1(t-1); end                 
    if t == 1; S2old = S20; else; S2old = store_S2(t-1); end                 
    if t == 1; S3old = S30; else; S3old = store_S3(t-1); end 

Figure 17: Update these lines to reflect the right number of model stores. Top: template model. Bottom: example model 

4.2.16 Inside the time loop, update the temporary ODEs 
Define an anonymous function for each of the model’s ODEs (eq. 9, 10, 11). Use the earlier defined 

flux equations for this (section 4.2.11). The only inputs to each ODE must be store values (S1, S2, S3; 

Figure 18). 

% Create temporary store ODE's that need to be solved 
tmpf_S1 = ... 
    @(S1,S2) ...                          % Change in S1 depends on ... 
     (P(t) + ...                          % Precipitation             + 
      CAP(kc,S1,S1max,S2,delta_t) - ...   % Capillary rise to S1      - 
      EA(S1,Ep(t),delta_t) - ...          % Evaporation from S1       - 
      QO(P(t),S1,S1max) - ...             % Surface runoff from S1    - 
      PERC(kp,S1,S1max,delta_t));         % Percolation from S1 

  
tmpf_S2 = ... 
    @(S1,S2) ...                          % Change in S2 depends on ... 
     (PERC(kp,S1,S1max,delta_t) - ...     % Percolation to S2         - 
      QS(ks,S2) - ...                     % Slow flow from S2         - 
      CAP(kc,S1,S1max,S2,delta_t));       % Capillary rise from S2 

 

% Create temporary store ODE's that need to be solved 
tmpf_S1 = ... 
    @(S1,S2,S3) ...                       % Change in S1 depends on ... 
     (P(t) + ...                          % Precipitation to S1      + 
      QC(crate,S1,uzmax,S2,delta_t) - ... % Capillary rise to S1     - 
      E(S1,uzmax,Ep(t),delta_t) - ...     % Evaporation from S1      - 
      QSE(P(t),S1,uzmax) - ...            % Surface runoff from S1   - 
      QP(prate,S1,delta_t));              % Percolation from S1         

  
tmpf_S2 = ... 
    @(S1,S2,S3) ...                       % Change in S2 depends on ... 
     (QP(prate,S1,delta_t) - ...          % Percolation to S2        -      
      QC(crate,S1,uzmax,S2,delta_t) - ... % Capillary rise from S2   - 
      QLZ(klz,S2));                       % Lower zone outflow from S2        

  
tmpf_S3 = ... 
    @(S1,S2,S3) ...                       % Change in S2 depends on ... 
     (QG(alpha,QLZ(klz,S2)) - ...         % Recharge to S3           - 
      QS(kg,S3));                         % Slow flow from S3 

Figure 18: Updated ODEs.  Top: template model. Bottom: example model 

4.2.17 Inside the time loop, update the “ODE approximation” section if applicable 
This section only needs to be changed if the new model has fewer than 2, or more than 2 stores. Two 

sections need to be changed: the line that specifies the values of each store at t-1, and the line that 

specifies which ODEs need to be re-written (Figure 19). 
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This part of the code calls the time-stepping function specified by the user (e.g. 

“createOdeApprox_IE”). 

% Call the numerical scheme function to create the ODE approximations. 
% This returns a new anonymous function that we solve in the next step. 
solve_fun = feval(scheme,... 
                  [S1old,S2old],... 
                  delta_t,... 
                  tmpf_S1,tmpf_S2); 

 

% Call the numerical scheme function to create the ODE approximations. 
% This returns a new anonymous function that we solve in the next step. 
solve_fun = feval(scheme,...                % time-stepping function 
                  [S1old,S2old,S3old],...   % Store values at t-1 
                  delta_t,...               % time step size 
                  tmpf_S1,tmpf_S2,tmpf_S3); % anonymous functions of ODEs 

Figure 19: Update the time stepping scheme section. Top: template model. Bottom: example model 

4.2.18 Inside the time loop, update the “Model solving” section 
This section only needs to be changed if the new model has fewer than 2, or more than 2 stores. In 

case of a 1-store model, remove the ‘fsolve’ lines and activate the ‘fzero’ lines. In case of 2+-store 

models, change the ‘fsolve’ lines to reflect the correct number of stores. Note that both the ‘eq_sys(x)’ 

and ‘[S1old,…]’ lines need to be changed (Figure 20). Section 0 details two improvements that can be 

made to ‘fsolve’ to achieve increased computational efficiency. 

    % --- Use the specified numerical scheme to solve storages --- 
    [tmp_sNew,tmp_fval] = fsolve(@(eq_sys) solve_fun(...               
                        eq_sys(1),eq_sys(2)),...                             
                        [S1old,S2old],...                                    
                        fsolve_options);                      

     
%     [tmp_sNew, tmp_fval] = fzero(solve_fun,... 
%                                     S1old,... 
%                                     fzero_options); 

 

% --- Use the specified numerical scheme to solve storages --- 
    [tmp_sNew,tmp_fval] = fsolve(@(eq_sys) solve_fun(...              
                        eq_sys(1),eq_sys(2),eq_sys(3)),...                  
                        [S1old,S2old,S3old],...                              
                        fsolve_options);           

Figure 20: Update the solver settings, so that the right number of stores are represented. Top: template model. Bottom: 
example model 

4.2.19 Inside the time loop, update the solver accuracy section if applicable 
This section only needs to be changed if the new model has fewer than 2, or more than 2 stores. In 

case of a 1-store model, remove ‘eq_sys(2)’ and ‘S2old’. In case of a 2+-store model, add subsequent 

elements for the total number of stores in the model (Figure 21). Section 0 shows a small modification 

that can be made to ‘lsqnonlin’ to gain some computational efficiency. 
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% --- Check if the solver has found an acceptable solution and re-run 
    % if not. The re-run uses the 'lsqnonlin' solver which is slower but  
    % more robust. It runs solver.resnorm_iterations times, with different 
    % starting points for the solver on each iteration --- 
    tmp_resnorm = sum(tmp_fval.^2); 

      
    if tmp_resnorm > solver.resnorm_tolerance 
        [tmp_sNew,~,~] = rerunSolver('lsqnonlin', ...                        
                                        lsqnonlin_options, ...               
                                        @(eq_sys) solve_fun(...              
                                          eq_sys(1),eq_sys(2)), ... 
                                        solver.resnorm_maxiter, ...          
                                        solver.resnorm_tolerance, ...        
                                        tmp_sNew, ...                        
                                        [S1old,S2old], ...                   
                                        store_min, ...                       
                                        store_upp);                          
    end 

 

% --- Check if the solver has found an acceptable solution and re-run 
    % if not. The re-run uses the 'lsqnonlin' solver which is slower but  
    % more robust. It runs solver.resnorm_iterations times, with different 
    % starting points for the solver on each iteration --- 
    tmp_resnorm = sum(tmp_fval.^2); 

      
    if tmp_resnorm > solver.resnorm_tolerance 
        [tmp_sNew,~,~] = rerunSolver('lsqnonlin', ...                        
                                        lsqnonlin_options, ...               
                                        @(eq_sys) solve_fun(...              
                                          eq_sys(1),eq_sys(2),... 
                                          eq_sys(3)), ... 
                                        solver.resnorm_maxiter, ...          
                                        solver.resnorm_tolerance, ...        
                                        tmp_sNew, ...                        
                                        [S1old,S2old,S3old], ...             
                                        store_min, ...                       
                                        store_upp);                          
    end 

Figure 21: Update the solver accuracy control section. Top: template model. Bottom: example model 

4.2.20 Inside the time loop, do not change the ‘Find storages to update fluxes’ section 
This part of the code evaluates an earlier defined function (section 4.2.12) that specifies which storage 

variables should be used to update the model fluxes (). 

% Model states and fluxes ------------------------------------------------- 
    % This line creates/updates a variable called 'tmp_sFlux' which is used 

    % to update the model fluxes for the current time step. Which variables 

    % get assigned to 'tmp_sFlux' is a feature of the chosen numerical time 

    % stepping scheme (see line 123-124). 

    eval(store_fun); 

 

% Model states and fluxes -------------------------------------------------     
    % This line creates/updates a variable called 'tmp_sFlux' which is used 

    % to update the model fluxes for the current time step. Which variables 

    % get assigned to 'tmp_sFlux' is a feature of the chosen numerical time 

    % stepping scheme (see line 133-134). 

    eval(store_fun);                                                         

Figure 22: Do not change the “Find storage needed to update fluxes” section. Top: template model. Bottom: example model 
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4.2.21 Inside the time loop, update the “Model fluxes” section 
In this part of the code, the time series of flux values are updated (Figure 23). This uses the variable 

“tmp_sFlux” which gets its values assigned based on the choice of time stepping scheme. “tmp_sFlux” 

is a vector that contains a value for each model store, and is thus of size [1,number of stores]. The flux 

equations can be copied directly from the ODEs, but the temporary variables “S1”, “S2”, etc must be 

replace with “tmp_sFlux(1)”, “tmp_sFlux(2)”, etc.  

Note: fluxes in the time loop are calculated in units [mm/d]. Conversion back to the user’s specified 

[mm/Δt] occurs when outputs are generated, after the time loop has completed. 

% Calculate the fluxes 
    flux_cap(t)  = CAP(kc,tmp_sFlux(1),S1max,tmp_sFlux(2),delta_t); 
    flux_ea(t)   = EA(tmp_sFlux(1),Ep(t),delta_t); 
    flux_qo(t)   = QO(P(t),tmp_sFlux(1),S1max); 
    flux_perc(t) = PERC(kp,tmp_sFlux(1),S1max,delta_t); 
    flux_qs(t)   = QS(ks,tmp_sFlux(2)); 

 

% Calculate the fluxes 
    flux_qse(t) = QSE(P(t),tmp_sFlux(1),uzmax); 
    flux_e(t)   = E(tmp_sFlux(1),uzmax,Ep(t),delta_t); 
    flux_qp(t)  = QP(prate,tmp_sFlux(1),delta_t); 
    flux_qc(t)  = QC(crate,tmp_sFlux(1),uzmax,tmp_sFlux(2),delta_t); 
    flux_qlz(t) = QLZ(klz,tmp_sFlux(2)); 
    flux_qf(t)  = QF(1-alpha,flux_qlz(t)); 
    flux_qg(t)  = QG(alpha,flux_qlz(t)); 
    flux_qs(t)  = QS(kg,tmp_sFlux(3)); 

Figure 23: Update the time series of flux values. First copy the flux equations, then change the temporary variables 'S1', 'S2' 
'S..' to use the new storage values in variable ‘tmp_sNew’. Change the references to other fluxes (e.g. QLZ(klz,S2) in QF(1-
alpha,QLZ(..))) to use the updated flux values. Top: template model. Bottom: example model 

4.2.22 Inside the time loop, update the “Model stores” section 
In this part of the code, the time series of model storages are updated (Figure 24). These equations 

are a numerical approximation of the ODEs (eq. 10, 11, 12) at time = t. Therefore, flux values must be 

multiplied by the user-specified time step size Δt. 

    % Update the stores 
    store_S1(t) = S1old + (P(t) + flux_cap(t) - flux_ea(t) - ... 
                            flux_qo(t) - flux_perc(t)) * delta_t; 
    store_S2(t) = S2old + (flux_perc(t) - flux_qs(t) - ... 
                            flux_cap(t)) * delta_t; 

 

    % Update the stores 
    store_S1(t) = S1old + (P(t)       + flux_qc(t) - flux_e(t) - ... 
                            flux_qse(t) - flux_qp(t)) * delta_t; 
    store_S2(t) = S2old + (flux_qp(t) - flux_qc(t) - ... 
                            flux_qlz(t)) * delta_t;   
    store_S3(t) = S3old + (flux_qg(t) - flux_qs(t)) * delta_t; 

Figure 24: Update the time series of model storage values. Top: template model. Bottom: example model 

4.2.23 Inside the time loop, update the “Routing” section if applicable 
If a routing scheme is used, this section needs to be updated. Use the model schematic to find out 

which flows combine and enter the routing scheme. In the example model, surface runoff Qse, fast 

flow Qf and slow flow Qs are combined and routed together (Figure 25). The flux that represents lagged 

flow is called Qt in the example model, so no further changes to the routing code are necessary.  
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Note: the template and example model files contain more detailed comments that explain how the 

routing code works.  

Note: time step size is accounted for during generation of the Unit Hydrograph (ensure that the UH 

has the correct length; section 4.2.8) and during output generation (ensure that the fluxes are properly 

converted to [mm/Δt]; section 4.2.24).  

% Routing -----------------------------------------------------------------     
    % Total runoff Qt = Qo + Qs. Apply a triangular routing scheme with 
    % time base 'delay' (parameter 5) 
    tmp_Qt_cur    = (flux_qo(t) + flux_qs(t)).*uh_full;                      
    tmp_Qt_old    = tmp_Qt_old + tmp_Qt_cur;                                 
    flux_qt(t)    = tmp_Qt_old(1);                                           
    tmp_Qt_old = circshift(tmp_Qt_old,-1);                                   
    tmp_Qt_old(end) = 0;       

 

% Routing -----------------------------------------------------------------     
    % Total runoff Q = Qse + Qf + Qs. Apply a pre-determined (line 82) 
    % traingular Unit Hydrograph routing scheme to find lagged flow Qt. 
    tmp_Qt_cur      = (flux_qse(t) + flux_qf(t) + flux_qs(t)).*uh_full;      
    tmp_Qt_old      = tmp_Qt_old + tmp_Qt_cur;                               
    flux_qt(t)      = tmp_Qt_old(1);                                         
    tmp_Qt_old      = circshift(tmp_Qt_old,-1);                              
    tmp_Qt_old(end) = 0;  

Figure 25: Update the routing code, if applicable. The red fluxes are the total incoming amount of water on this time step that 
needs to be routed using Unit Hydrograph "uh_full". The dotted vector represents the lagged flow after routing has been 
applied and might need to be renamed if this flux is named differently in the model description. Top: template model. Bottom: 
example model 

4.2.24 Update the “Generate outputs” section 
Update this section so that all time series (fluxes and stores) are included in one of the output 

structures. Combine different elements together if necessary (e.g. fluxOutput.Ea = flux_bareSoilEvap 

+ flux_transpiration;” if the model has two different evaporation components). In this case it is good 

practice to include the individual fluxes in the “fluxInternal”-structure as well.  
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% --- Fluxes leaving the model --- 
    % 'Ea' and 'Q' are used outside the function and should NOT be renamed 
    fluxOutput.Ea     = flux_ea * delta_t; 
    fluxOutput.Q      = flux_qt * delta_t; 

     
    % --- Fluxes internal to the model --- 
    fluxInternal.cap  = flux_cap  * delta_t; 
    fluxInternal.perc = flux_perc * delta_t; 
    fluxInternal.Qo   = flux_qo   * delta_t; 
    fluxInternal.Qs   = flux_qs   * delta_t; 

  
    % --- Stores --- 
    storeInternal.S1  = store_S1; 
    storeInternal.S2  = store_S2; 

 

% --- Fluxes leaving the model --- 
    % 'Ea' and 'Q' are used outside the  
    % funcion and should NOT be renamed 
    fluxOutput.Ea     = flux_e  * delta_t; 
    fluxOutput.Q      = flux_qt * delta_t; 

     
    % --- Fluxes internal to the model --- 
    fluxInternal.qse  = flux_qse * delta_t; 
    fluxInternal.qp   = flux_qp  * delta_t; 
    fluxInternal.qc   = flux_qc  * delta_t; 
    fluxInternal.qlz  = flux_qlz * delta_t; 
    fluxInternal.qf   = flux_qf  * delta_t; 
    fluxInternal.qg   = flux_qg  * delta_t; 
    fluxInternal.qs   = flux_qs  * delta_t; 

  
    % --- Stores --- 
    storeInternal.S1  = store_S1; 
    storeInternal.S2  = store_S2; 
    storeInternal.S3  = store_S3; 

Figure 26: update the output generation section. Left: template model. Right: example model 

4.2.25 Optional: update the “Check water balance” section 
Change the variable “tmp_Qt_old” to 0 if no routing scheme is used (Figure 27). 

The function “checkWaterBalance(..)” can only handle a fairly basic model layout. The expected 

elements are incoming precipitation, outgoing evaporation and streamflow and storages that track 

how much water is currently held inside the model. An optional argument tracks water that is still held 

in the routing vector if applicable. The “checkWaterBalance(..)” function currently has no functionality 

to deal with model stores that track a moisture deficit instead of the presence of moisture, and it has 

no way to deal with additional fluxes that leave the model (e.g. subsurface leakage or between-

catchment water exchange). Disable this function and use the commented code to the water balance 

manually if either a deficit store  or sink flows are present in the model.  

MARRMoT model 07 (GR4J) shows an example of a manual water balance that accounts for a 

groundwater exchange flow (lines 293-312). MARRMoT model 05 (IHACRES) gives an example of a 

deficit store (store 1, lines 139-141) and a manual water balance that accounts for this deficit store 

(lines 219-236). 
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% Check water balance 
if nargout == 4 
    waterBalance = ... 
     checkWaterBalance(... 
      P,...              % Incoming precipitation 
      fluxOutput,...     % Fluxes Q and Ea leaving the model 
      storeInternal,...  % Time series of storages ... 
      storeInitial,...   % And initial store values to calculate delta S 
      tmp_Qt_old);       % Whether the model uses a routing scheme that 
                         % still contains water. Use '0' for no routing 
end 

Figure 27: This function checks the water balance. If a routing scheme is used and part of the flow is not yet fully routed at 
the end of the time series, the remaining flow is stored in variable "tmp_Qt_old". If no routing scheme is used, change 
"tmp_Qt_old" to 

4.3 Create the parameter range file 
The final step is creating a parameter range file which contains ranges for the model parameters. 

4.3.1 Copy and rename the template parameter range file file 
Navigate to the folder “./MARRMoT/Models/Parameter ranges” and copy the file 

“m_00_template_5p_2s_parameter_ranges.m”. Paste this file in the same directory and rename it 

(Figure 28). The new name should follow the same structure as the current parameter range files: 

“[model file name]_parameter_ranges.m” 

The example parameter range file created in this manual can be found in the folder “./MARRMoT/User 

manual”. 

 

Figure 28: Create a dedicated parameter range file file. Left: template mode parameter file. Right: example model parameter 
file 

4.3.2 Open the file and change the function name 
Open the renamed parameter range file file and change the function’s name to match the file name. 

Optional: change the comments to reflect the model’s name and provide a reference (Figure 29). 

function [ theta ] = m_00_template_5p_2s_parameter_ranges( ) 
%m_00_template_5p_2s_parameter_ranges Provides parameter ranges for 

calibration of the 2-store test model, created by W. Knoben in 02-2018. 

 

function [ theta ] = m_nn_example_7p_3s_parameter_ranges( ) 
%m_nn_example_7p_3s_parameter_ranges Provides parameter ranges for 

calibration of the 3-store example model, created by W. Knoben in 09-2018. 

Figure 29: Change the function name to match the file name. Update the description in the comments for clarity. Top: 
template mode parameter file. Bottom: example model parameter file 

4.3.3 Change the parameter ranges and follow the ordering in the model file 
Define parameter ranges for each parameter used by the model file. Ensure that the order of 

parameters in this file is the same as the order in the model file. MARRMoT attempts to provide 

consistent parameter ranges across all models to facilitate model comparison studies. Use Table S3 

(Supporting Materials S5) to determine appropriate parameter ranges for the new model if the new 

model is intended to be consistent with the other MARRMoT models. 
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theta = [1   , 40;   % Smax [mm] 
         0   , 2 ;   % kc, capillary rise [mm/d] 
         0   , 3 ;   % kp, percolation rate [mm/d] 
         0.5 , 1;    % ks, base flow time parameter [d-1] 
         1   , 5];   % time delay of routing scheme [d] 

 

theta = [ 0,    4;   % crate, Maximum capillary rise rate [mm/d] 
          1, 2000;   % uzamx, Maximum upper zone storage [mm] 
          0,   20;   % prate, Maximum percolation rate [mm/d] 
          0,    1;   % klz, Lower zone runoff coefficient [d-1] 
          0,    1;   % alpha, Fraction lower zone runoff to groundwater [-] 
          0,    1;   % kg, Groundwater runoff coefficient [d-1] 
          1,  120];  % d, Routing delay [d] 

Figure 30: choose parameter ranges that are as consistent as possible between different models and follow the parameter 
order specified in the model file. Top: template mode parameter file. Bottom: example model parameter file 

4.4 Recommended quality control tests 
Users are strongly encouraged to perform several quality control tests after creating a new model. 

This section describes two tests that have been valuable during MARRMoT development. Both tests 

are implemented in the file “workflow_crashTest.m”. 

4.4.1 Parameter extremes crash test 
Ensure that the model functions properly at all combinations of minimum and maximum parameter 

values. Provided that flux functions are continuous between the parameter extremes, if the model 

can simulate runoff with extreme parameter values it should work with intermediate parameter 

values too. This check ensures that the model can at least simulate a full time series without crashing. 

4.4.2 Random parameter value water balance check 
Ensure that no mistakes occurred when creating the model file. An easy way to check this is by running 

the model with several random parameter sets and investigating the model’s water balance. If e.g. 

any fluxes have been forgotten, counted double, added to or subtracted from the wrong stores, the 

water balance will show a discrepancy. During development, water balance errors were generally in 

the order of 1E-12 or smaller.  
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5 Create a new flux function 
This section gives several examples that show how to create flux functions. See section 4 for guidance 

about using flux functions inside model files.  

5.1 General approach 
Creating a new flux function requires several steps: 

1. Define the function that should be used  

2. Specify any constraints that should be used  

3. Apply a smoothing scheme if the function is discontinuous 

Note: smoothing schemes exist for both threshold discontinuities and angle discontinuities. However, 

smoothing an equation means a fundamental change to the flux equation. Threshold discontinuities 

are smoothed in MARRMoT because this improves the accuracy of store estimates. Matlab solvers are 

able to function with angle discontinuities however, and these are not smoothed in MARRMoT to keep 

the original flux equations intact wherever possible. 

In MARRMoT, flux equations are created in separate files from the model files. The flux is defined as 

an anonymous function, and the handle to this anonymous function is the output of each flux function. 

These handles are used inside the model files to calculate flux sizes based on a variety of parameters, 

storage values and climate inputs. 

5.2 The linear reservoir – using one parameter and one store 
The equation for a linear reservoir is: 

𝑞 = 𝑘𝑆 

where q is the store’s outflow, k a runoff coefficient and S the current storage. No constraints are 

needed, because q relates directly to S (provided k < 1). If S = 0, q = 0, regardless of k. The flux file 

looks as follows: 

function [func] = baseflow_1(~) 
%baseflow_1  
% 
% Anonymous function 
% ------------------ 
% Description:  Outflow from a linear reservoir 
% Constraints:  - 
% @(Inputs):    p1   - time scale parameter [d-1] 
%               S    - current storage [mm] 
% 
% WK, 05/10/2018 

  
func = @(p1,S) p1.*S; 

  
end 

 

p1 represents parameter k and S is the current storage. func is the function handle passed as the flux 

file’s output. This flux function might be used in a model file as follows: 
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% Baseflow from groundwater 
QB = baseflow_1; 

  
... 

     
% Update baseflow flux 
QB_vector(t) = QB(parameter_k,storage_value); 

 

Where QB is a temporary function handle used in the model file. The construction QB = baseflow_1, 

with the flux equation specified in flux file “baseflow_1” is functionally identical to typing: QB = 

@(p1,S) p1.*S; in the model file. 

5.3 The non-linear reservoir - using multiple parameters 
The equation for a non-linear reservoir is: 

𝑞 = 𝑘𝑆𝑎 

where q is the store’s outflow, k a runoff coefficient, a the non-linearity coefficient and S the current 

storage. No lower constraint is needed, because q = 0, if S = 0, regardless of k and a. However, for 

large values of k and a, it is possible to generate values q > S. This is logically impossible so a constraint 

of the form q < S/Δt is needed. Thus the flux equation has two parameters, 1 store value and 1 

constraint: 

function [func] = baseflow_7(~) 
%baseflow_7  
% 
% Anonymous function 
% ------------------ 
% Description:  Non-linear outflow from a reservoir 
% Constraints:  f <= S/dt 
% @(Inputs):    p1   - time coefficient [d-1] 
%               p2   - exponential scaling parameter [-] 
%               S    - current storage [mm] 
%               dt   - time step size [d] 
% 
% WK, 05/10/2018 

  
func = @(p1,p2,S,dt) min(S/dt,p1.*S.^p2); 

  
end 

 

An additional complication arises from very small numerical inaccuracies, that can result in stores 

having very slightly negative values for some time steps. These errors are generally in the order of -

1E-5 or smaller. However, in a non-linear equation this can result in mathematically correct, but 

physically meaningless complex estimates of fluxes (e.g. (-1E-5)^0.1 = 0.3008 + 0.0977i). An additional 

constraint is introduced to avoid this which ensures S > 0: 
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function [func] = baseflow_7(~) 
%baseflow_7  
% 
% Anonymous function 
% ------------------ 
% Description:  Non-linear outflow from a reservoir 
% Constraints:  f <= S/dt 

%        S >= 0 

% @(Inputs):    p1   - time coefficient [d-1] 
%               p2   - exponential scaling parameter [-] 
%               S    - current storage [mm] 
%               dt   - time step size [d] 
% 
% WK, 05/10/2018 

  
func = @(p1,p2,S,dt) min(S/dt,p1.*max(0,S).^p2); 

  
end 

 

5.4 The capillary rise flux – using multiple parameters and stores 
It is straightforward to use multiple stores in a flux function. Imagine capillary rise from store S2 to 

store S1: 

𝑞𝑐 =  𝑐𝑟𝑎𝑡𝑒 (1 −
𝑆1

𝑆1𝑚𝑎𝑥
) 

where qc is the actual capillary rise, dependent on a maximum rate crate and the storage deficit in the 

receiving store S1 (S1/S1max being the relative storage in S1). A constraint needs to be added to ensure 

that the capillary rise does not over drain the supplying store S2: qc < S2. The flux file becomes: 

function [func] = capillary_1(~) 
%capillary_1  
% 
% Anonymous function 
% ------------------ 
% Description:  Capillary rise: based on deficit in higher reservoir 
% Constraints:  f <= S2/dt 
% @(Inputs):    p1   - maximum capillary rise rate  [mm/d] 
%               S1   - current storage in receiving store [mm] 
%               S1max- maximum storage in receiving store [mm] 
%               S2   - current storage in providing store [mm] 
%               dt   - time step size [d] 
% 
% WK, 05/10/2018 

  
func = @(p1,S1,S1max,S2,dt) min(p1.*(1-S1/S1max),S2/dt); 

  
end 

 

5.5 The store overflow – using logistic smoothing of equations 
A logistic smoothing function (Kavetski and Kuczera, 2007) can be used to modify equations with 

threshold discontinuities to be continuous over their domain. An example of a threshold equation is 

effective rainfall after an interception store is filled: 

𝑃𝑒𝑓𝑓 = {
𝑃(𝑡), 𝑖𝑓 𝑆 =  𝑆𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Where the effective flow Peff is zero until the store reaches maximum capacity, after which all inflow 

to the store P(t) becomes Peff. A smoothing function makes this transition more gradual (Figure 31). 

The equation becomes: 

𝑃𝑒𝑓𝑓 = 𝑃(𝑡)[1 − 𝜙(𝑆, 𝑆𝑚𝑎𝑥)] 

where ϕ(S,Smax) is the smoothing function (Kavetski and Kuczera, 2007). The flux function is as 

follows: 

function [func] = interception_1(~) 
%interception_1 Creates function for store overflow: uses logistic smoother. 
% 
% Anonymous function 
% ------------------ 
% Description:  Interception excess when maximum capacity is reached 
% Constraints:  - 
% @(Inputs):    In   - incoming flux [mm/d] 
%               S    - current storage [mm] 
%               Smax - maximum storage [mm] 
% 
% WK, 07/10/2018 

  
func = @(In,S,Smax) In.*(1-smoothThreshold_storage_logistic(S,Smax)); 

 
end 

 

 

Figure 31: Example of equation smoothing 

5.6 The store overflow 2.0 – using optional parameters 
The smoothing functions in MARRMoT use two smoothing parameters, r and e, with default values 

0.01 and 5.00 respectively (Clark et al., 2008): 

𝜙(𝑆, 𝑆𝑚𝑎𝑥) =
1

1 + 𝑒𝑥𝑝 [
𝑆 − 𝑆𝑚𝑎𝑥 + 𝑟 ∗ 𝑒 ∗ 𝑆𝑚𝑎𝑥

𝑟 ∗ 𝑆𝑚𝑎𝑥
]
 

However, users might prefer different values and the flux function must allow this. The 

“interception_1” function thus needs to allow optional parameters and revert to default smoothing 

parameters if the user does not specify any values:  
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function [func] = interception_1(varargin) 
%interception_1 Creates function for store overflow: uses logistic 

smoother. 
% varargin(1): value of smoothing variable r (default 0.01) 
% varargin(2): value of smoothing variable e (default 5.00) 
% 
% Copyright (C) 2018 W. Knoben 
% This program is free software (GNU GPL v3) and distributed WITHOUT ANY 
% WARRANTY. See <https://www.gnu.org/licenses/> for details. 
% 
% Anonymous function 
% ------------------ 
% Description:  Interception excess when maximum capacity is reached 
% Constraints:  - 
% @(Inputs):    In   - incoming flux [mm/d] 
%               S    - current storage [mm] 
%               Smax - maximum storage [mm] 
% 
% WK, 07/10/2018 

  
if size(varargin,2) == 0 
    func = @(In,S,Smax) In.*(1-smoothThreshold_storage_logistic(S,Smax)); 
elseif size(varargin,2) == 1 
    func = @(In,S,Smax) In.*(1-

smoothThreshold_storage_logistic(S,Smax,varargin(1))); 
elseif size(varargin,2) == 2 
    func = @(In,S,Smax) In.*(1-

smoothThreshold_storage_logistic(S,Smax,varargin(1),varargin(2)));     
end 

  
end 
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6 Matlab root-finding optimization 
Several small modifications can be made to Matlab’s fzero, fsolve and lsqnonlin for several small speed 

gains. Due to licensing, modified files cannot be provided as part of MARRMoT. 

6.1 Fzero modifications 
This file is part of Matlab’s optimization toolbox and can be found in the default directory: 

./MATLAB/<version>/toolbox/matlab/optimfun/fzero.m 

Fzero generates an output message on line 553. In certain versions (tested with R2013) generation of 

this message can take a long time. This line can be disabled: 

msg = 

sprintf(getString(message('MATLAB:optimfun:fzero:ZeroFoundInInterval',sprin

tf('%g',savea),sprintf('%g',saveb)))); 

 

6.2 Fsolve modifications 
This file is part of Matlab’s optimization toolbox and can be found in the default directory: 

./MATLAB/<version>/toolbox/optim /optim/fsolve.m 

Fsolve internally generates options for the solver in lines 151-152. Within MARRMoT, this means that 

these options are generated anew on every time step where fsolve is called. The generated options 

are the same however, and this line can be safely taken outside fsolve. fsolve then needs to be 

modified to accept the optionFeedback structure as input: 

% Model file 
... 

 

% Root-finding options 
fsolve_options = optimoptions('fsolve','Display','none',...                  
                                'JacobPattern', [1,0; 
                                                 1,1]);                      

                              
% Prepare the options for the solver 
[fsolve_options,optionFeedback] = prepareOptionsForSolver(fsolve_options, 

'fsolve');  

 

% Some more code 

... 

 

% --- Determine store values at the end of the time step --- 
    [tmp_sNew,tmp_fval] = fsolve_MODIFIED(...                            

                           @(eq_sys) solve_fun(eq_sys(1),eq_sys(2)),...  
                         [S1old,S2old],...                            
                         fsolve_options,optionFeedback); 

      

fsolve’s inputs must be modified to allow this (modifications in red): 

function [x,FVAL,EXITFLAG,OUTPUT,JACOB] = ... 
                fsolve_noMSG(FUN,x,options,optionFeedback,varargin) 
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fsolve generates an output message on lines 403-413. In certain versions (tested with R2017) 

generation of this message can take up to 20% of fsolve’s total run time. This section can be safely 

disabled: 

if EXITFLAG > 0 % if we think we converged: 
    % Call createExitMsg with appended additional information on the 

closeness 
    % to a root. 
    if Resnorm > sqrtTolFunValue 
        msgData = internalFlagForExitMessage(algorithmflag == 

2,msgData,EXITFLAG); 
        EXITFLAG = -2; 
    end   
    OUTPUT.message = 

createExitMsg(msgData{:},Resnorm,optionFeedback.TolFunValue,sqrtTolFunValue

); 
else 
    OUTPUT.message = createExitMsg(msgData{:}); 
end 

 

6.3 Lsqnonlin modifications 
This file is part of Matlab’s optimization toolbox and can be found in the default directory: 

./MATLAB/<version>/toolbox/shared/optimlib/lsqncommon.m 

This is a shared file between various non-linear solvers. It generates an output message on line 181. 

This section can be disabled for speed gains: 

OUTPUT.message = createExitMsg(msgData{:}); 
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7 Running MARRMoT in Octave 
The Octave distribution of MARRMoT works the same as the Matlab distribution, with the exception 

that a certain function must be replaced and that a Jacobian matrix cannot be specified during model 

computation (see section 7.3 for both points). This means that Octave does not benefit from the speed 

ups that can be gained by specifying the Jacobian. The impact of this is untested. In the Matlab 

distribution, models with more stores benefit more from specifying the Jacobian matrix, and it is not 

unreasonable to expect that models with more stores are thus slower to run in Octave then they are 

in Matlab. 

This section provides a very short guide to set up MARRMoT in Octave. 

7.1 Set the path 
Navigate to the directory that contains “./MARRMoT”. Run the following command to add all 

MARRMoT files to Octave’s load path: 

addpath(genpath('MARRMoT')) 

7.2 Load the optimization package 
MARRMoT relies on certain functions that are not loaded by default. Load the optimization package 

with the following command: 

pkg load optim 

7.3 Caution 
Octave currently does not include an equivalent to Matlab’s function “optimoptions”. Additionally, 

Octave does not allow specification of the Jacobian matrix in the same way as Matlab allows.  

MARRMoT’s Octave distribution includes a custom placeholder function “optimoptions” in the folder 

./MARRMoT/Functions/Octave. This function only sets the maximum number of function evaluations 

and is thus not a replacement of Matlab’s optimoptions! It merely allows MARRMoT to be used in 

Octave without significant changes to each model’s code. 

7.4 Possible Octave errors thrown by workflow examples 
Testing has shown that certain older Octave distributions do not contain the function ‘repelem’. This 

results in errors during use. Please update to a more recent Octave version if this error occurs 

(MARRMoT was tested on Octave 4.4.1).  

Workflow example 4 (calibration of a model using custom Matlab function ‘fminsearchbnd’) does 

not work in Octave 4.4.1. Octave users will need to consider an alternative calibration algorithm 

and/or calibration approach. 
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