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Abstract
Over the past two decades, pattern mining techniques have become an integral part of many bioinformatics solu-
tions. Frequent itemset mining is a popular group of pattern mining techniques designed to identify elements that
frequently co-occur. An archetypical example is the identification of products that often end up together in the
same shopping basket in supermarket transactions. A number of algorithms have been developed to address vari-
ations of this computationally non-trivial problem. Frequent itemsetmining techniques are able to efficiently capture
the characteristics of (complex) data and succinctly summarize it.Owing to these and other interesting properties,
these techniques have proven their value in biological data analysis. Nevertheless, information about the bioinfor-
matics applications of these techniques remains scattered. In this primer, we introduce frequent itemset mining
and their derived association rules for life scientists.We give an overview of various algorithms, and illustrate how
they can be used in several real-life bioinformatics application domains.We end with a discussion of the future poten-
tial and open challenges for frequent itemset mining in the life sciences.
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INTRODUCTION
High-throughput molecular analysis techniques

nowadays yield datasets with a size and complexity

at which they are no longer directly interpretable by

humans. In recent years, pattern mining methods

have become indispensable for life scientists to

narrow down the search for relevant new knowledge

instead of getting lost in the wealth of information.

The term ‘pattern mining’ covers a wide variety of

techniques that are all designed to transform complex

datasets into something more manageable. In this

introductory article, we focus on a group of tech-

niques referred to as ‘frequent itemset mining’.

Frequent itemset mining methods were developed

to identify elements that often co-occur in a dataset.

The archetypical usage case is the market basket

problem [1], in which frequent itemset mining tech-

niques are applied to discover which items are often

bought together by customers (referred to as ‘pat-

terns’). An example of an interesting pattern could

be that beer and chips frequently co-occur in the

same supermarket basket (also termed a ‘transaction’).
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This type of information can be of great interest

for shopkeepers. For example, they could decide

to place these items further apart, so the customer

will follow a longer route through the store.

Additionally, the pattern mining results may reveal

other items that may be of use for the target popu-

lation, which could then be suggestively placed in

between the two co-occurring items to increase

overall sales. Despite the seeming simplicity of the

problem, the number of possible frequent itemsets

rapidly explodes with larger datasets, making a

brute-force search intractable. Nevertheless, more ef-

ficient algorithms have been developed to tackle this

computationally demanding problem.

The application of frequent itemset mining is not

restricted to market basket analysis. These techniques

have proven their value in a wide range of know-

ledge extraction problems. In bioinformatics, typical

applications include the interpretation of gene ex-

pression data [2], annotations [3], protein interaction

networks [4] and biomolecular localization predic-

tion [5]. Frequent itemset mining is typically used

in bioinformatics to identify biologically relevant pat-

terns that can be interpreted in a biological context.

The algorithms that have been developed for

market basket type problems can often be readily

applied to bioinformatics problems, as long as the

biological problem is properly translated into the

transactional input that the algorithms can accept.

Equivalent to finding items that are often purchased

together, a biological question may be to identify fre-

quently co-occurring protein domains in a set of pro-

teins. In this example, each protein represents a single

transaction, equivalent to the market basket, with the

domains being the items, equivalent to the products.

The same class of algorithms can be applied to both of

these analogous problems. In other cases, the conver-

sion of biological data can be more challenging, due

to for example the complex structure of many biolo-

gical datasets, their often stochastic nature, the pres-

ence of missing values and scaling issues.

Methods to extract relevant frequent itemsets

from transactional data have been extensively stu-

died, and many efficient algorithms are available.

They offer several advantages over other pattern

detection methods, including the computational ef-

ficiency of the search and the intuitive interpretabil-

ity of the extracted patterns. Frequent itemsets can

furthermore be converted into rules that can be used

in various downstream applications. A key factor that

often hampers their application in bioinformatics lies

not in the extraction of patterns itself, but rather in

how they are subsequently ranked and filtered. For

example, the most commonly used algorithm

(Apriori [6]) is notorious for the redundancy in the

itemsets it generates, and the number of patterns it

finds rapidly explodes unless parameters are strin-

gently controlled. Various metrics that define the

interestingness of a pattern (support, lift, maximal

entropy, etc) for subsequent ranking and filtering

of retrieved patterns have been studied at theoretical

and experimental level. Nevertheless, biological

questions often require the definition of special

task-specific interestingness metrics, in which (biolo-

gical) domain knowledge is formalized.

The goal of this primer is to first explain the central

concepts of frequent itemset mining and association

rule generation. We then introduce a number of rep-

resentative and popular algorithms and software

frameworks. To conclude, we give an overview of

successful bioinformatics applications and highlight

the future challenges and opportunities in the use

of these techniques for biological data interpretation.

DEFINITIONS
Some key terms used in frequent itemset mining

have already been mentioned in the introduction.

In this section, we explain and formalize these ex-

pressions to introduce the basic concepts of frequent

itemset mining. A more in-depth introduction can

be found in [7] and [8].

Frequent itemsets
Let I be the set of all possible items. A subset

X¼ {i1, . . ., ik} � I is called an itemset, or a k-itemset
if it contains k items.

A transaction over I is a pairT¼ (tid, I), where tid is

the transaction identifier and I is an itemset.

A set of transactions over I can be termed as a

transaction database D over I . We omit I whenever it

is clear from the context.

The support of an itemset X is the number of trans-

actions that contain the itemset X:

supportðX,DÞ ¼ tidjðtid,IÞ 2 D,X � I
� ��� ��

An itemset is called frequent if its support is no

less than a given minimal support threshold s, with

0�s� jDj. The collection of frequent itemsets in

D with respect to s is denoted by:

FðD,sÞ ¼ X � IjsupportðX,DÞ � s
� �
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Frequent itemset mining is concerned with find-

ing the set of itemsets F . Note that items can be any

kind of attribute–value pairs; thus, they can also rep-

resent the absence of an item i2 in presence of an-

other item i1 (negative occurrences) [9].

Association rules
Additionally, we can perform association rule mining.

An associationrule is an expression of the form X)Y,

where X and Y are itemsets, and X\Y¼Ø. Such a

rule expresses the association that if a transaction con-

tains all items in X, then that transaction also contains

all items in Y. X is called the body or antecedent, andY is

called the head or consequent of the rule.

The support of an association rule X)Y, is the

support of X [ Y:

supportðX ) Y,DÞ ¼ supportðX [ Y,DÞ

The confidence of an association rule X)Y is the

conditional probability of having Y contained in a

transaction, given that X is contained in that

transaction:

confidenceðX ) Y,DÞ ¼
supportðX [ Y,DÞ
supportðX,DÞ

The rule is called confident if its confidence exceeds

a given minimal confidence threshold g, with 0� g� 1.

The collection of frequent and confident association

rules in D with respect to s and g is denoted by:

RðD,s,gÞ ¼

X ) YjX,Y � I ,X \ Y ¼ fg,

X [ Y 2 FðD,sÞ,

confidenceðX ) Y,DÞ � g

8><
>:

9>=
>;

Association rule mining is concerned with finding

the set of association rules R. Note that itemset

mining is actually a special case of association rule

mining. Every frequent itemset represents the trivial

rule X) {}, which has the same support as the sup-

port of X and holds with 100% confidence.

Association rule mining is typically the step con-

ducted after the actual itemset mining, as the rules

can be derived from the itemsets.

This notion of association rules is very general, and

much research has been invested into constraint-

association rule mining, which can efficiently limit

the search to rules that satisfy constraints, such as

rules having a negative consequent [10].

Interestingness measures
Some examples of interestingness measures have al-

ready been introduced, in particular the support and

confidence measures. Additionally, several other

interestingness measures have been proposed [11],

with some potentially being better suited to handle

large biological databases (e.g. [12]). However, sup-

port and confidence remain the two most widely

used constraints.

Support is an important measure because a rule

that has low support may occur simply by chance.

Confidence, on the other hand, measures the reli-

ability of the inference made by a rule.

Other frequently used measures include lift and

coverage. The lift of an association rule X)Y is

the ratio of the observed support for this association

rule, to the expected support if X and Y were

independent:

liftðX ) Y,DÞ ¼
confidenceðX ) Y,DÞ
confidenceðfg ) Y,DÞ

The coverage of an association rule X)Y measures

how often the rule is applicable in the transaction

database:

coverageðX ) Y,DÞ ¼ supportðX,DÞ

We can illustrate these definitions with a represen-

tative toy example. Figure 1 shows how association

rules are generated out of transactions. The transac-

tions are shown in circular boxes on the left. These

transactions each support some (frequent) itemsets.

The frequent itemsets with respect to a minimal sup-

port threshold of 2 are shown in squared boxes

(itemsets with a lower support are omitted). Equiva-

lently, association rules can be generated out of the

frequent itemsets. The frequent and confident asso-

ciation rules with a support threshold of 2 and a

confidence threshold of 50% are shown in octagonal

boxes. Edges between the frequent itemsets and the

association rules indicate which itemsets have been

used to generate the association rules. Additionally,

Table 1 presents an overview of interestingness

measures for these association rules.

ALGORITHMSAND
IMPLEMENTATIONS
Problem statement
A brute-force approach for association rule mining is

to compute the support and confidence for every

possible rule. This method is prohibitively expensive

because the search space is exponential to the

number of items occurring in the database. More

specifically, for a set of items I , 2 Ij j itemsets and
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3 Ij j association rules can be generated [6]. Therefore,

a common strategy is to divide the problem into two

subtasks. First, all frequent itemsets are generated,

after which all frequent and confident association

rules are generated. Figure 1 illustrates these two

subtasks intuitively. In the next section, we further

elaborate on the algorithmic approaches to tackle

both subtasks.

Algorithms for itemset and association
rule mining
In the first subtask, all frequent itemsets are gener-

ated. Most algorithms for general itemset mining can

be characterized based on two properties: their tra-

versal of the search space, and their computation of

support. In general, all itemset mining algorithms

repeatedly generate relatively small collections of

candidate frequent itemsets, count their supports

and remove all itemsets that turn out to be infre-

quent. The most important property, also called the
Apriori Property, is that all supersets of an infrequent

itemset must also be infrequent. Hence, many item-

sets can be pruned from the search space when one

of their subsets is known to be infrequent.

Essentially, the search space traversal will be either

a depth-first traversal of all candidate itemsets or a

breadth-first traversal. In a breadth-first traversal, all

itemsets of size k are iteratively generated, starting

with k¼ 1. In a depth-first traversal, a recursive

divide and conquer principle is followed. More spe-

cifically, for a selected item i, first, all frequent item-

sets containing i are generated, after which all

frequent itemsets not containing i are generated.

The chosen traversal strategy is typically closely

connected to the size of the database and the com-

putation of the support of all candidate itemsets. If

the data do not fit in main (fast) memory, the sup-

ports are counted by considering all transactions one

by one, testing for every candidate itemset whether it

is contained in that transaction. Here, a breadth-first

approach is typically used, such as in the standard

Figure 1: Toy example to demonstrate how frequent itemsets and association rules can be derived from a series of
transactions.Transactions are indicated by circular boxes, and are labeled as (tid, I), where tid is the transaction iden-
tifier and I¼ {i1, . . . , ik} is an itemset containing the items i1 to ik. Frequent itemsets are represented as a squared
box, and association rules are shown as an octagonal box.

Table 1: Measures related to the itemsets and associ-
ation rules presented in Figure 1

Rule Support Confidence Lift Coverage

{a}) {b} 2 100% 33% 2
{b}) {a} 2 66% 33% 3
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Apriori [6] algorithm. However, many optimizations

already exist for this algorithm, partitioning or sam-

pling the data in such a way that they do fit in

memory. In that case, a depth-first search is typically

used. The support of an itemset is then computed by

simply storing for each item the ids of transactions it

is contained in, counting the size of the intersection

of these sets for each item in the itemset. For

example, this strategy is used in Eclat [13].

Again, a plethora of optimizations and variations

exist, of which frequent pattern (FP)-growth [14] is

one of the most common. It combines a depth-first

search with a compressed memory-resident database.

After the generation of all frequent itemsets, the

second subtask consists of the computation of all fre-

quent and confident association rules. Essentially,

each frequent itemset is divided into two parts, an

antecedent and a consequent, for every possible

combination, and the corresponding confidences

are then computed.

Software for frequent itemset mining
A detailed discussion of each itemset mining algo-

rithm is beyond the scope of this review. However,

Table 2 presents, summarizes and compares some

important characteristics of commonly used methods

and provides a reference to software implementations

when available.

Several implementations presented in Table 2 can

be run as stand-alone software. Additionally, data

mining frameworks that allow frequent itemset

mining exist for practical use, often with a graphical

user interface and interactivity features. Table 3

shows a number of popular software frameworks,

including their license and their corresponding

references (when available).

BIOINFORMATICSAPPLICATIONS
Frequent itemset mining can be used to tackle a

broad range of bioinformatics problems. For the pur-

pose of providing a representative overview of

potential applications, we discuss six bioinformatics

subdomains in which these techniques have been

successfully used.

Frequent annotation mining
Annotations of a molecular entity (such as a gene)

describe certain properties (e.g. function or localiza-

tion) by means of terms of a controlled vocabulary.

They are crucial in many bioinformatics workflows.

A useful application of frequent itemset mining is the

prediction of novel annotations. Patterns of fre-

quently co-occurring annotations derived with fre-

quent itemset mining techniques can play an essential

role in that task. Co-occurrence of annotations can

be defined strictly, with each biomolecule corres-

ponding to a transaction and each annotation term

as an item. However, it can also be defined in terms

of neighborhood, e.g. by considering which annota-

tions frequently co-occur over pairs of biomolecules

that undergo a physicochemical interaction (e.g. pro-

tein interactions). Figure 2 shows such an example

of how frequent itemset mining can be used to

extract co-occurring annotations from a network of

annotated and interacting biomolecules. Derived

associations could then be used to improve the

unsupervised annotation of biomolecules [15].

Frequent itemset mining can also be used to iden-

tify relationships between various existing ontolo-

gies. For example, cross-ontology association rule

mining can connect the biological process, cellular

compartment and protein function subtrees within

the Gene Ontology [3].

There are, however, some specific challenges in

frequent annotation mining. Annotations will only

frequently co-occur if the items are frequent, regard-

less of the hierarchical structure of the ontology.

Inconsistencies in the level of specificity of the an-

notations of individual biomolecules can result in an

apparently lower frequency in individual annotation

terms, potentially leaving interesting patterns un-

detected. A solution for this problem is the explicit

integration of the annotation structure into associ-

ation networks [16].

Structural motif discovery
Structural patterns or motifs are frequently occurring

combinations of structural properties in biomolecules

(such as molecular sequences). Although these fea-

tures are omnipresent and extremely diverse, the

underlying conservation typically points to a func-

tionally important role. As a consequence, motif dis-

covery is an important and widely explored topic in

bioinformatics. When structural features are trans-

formed into transactions, frequent itemset mining

can be used to discover combinations of structural

features that occur more frequently than expected.

Examples of frequent itemset mining-based motif dis-

covery include transcription factor binding motifs [17,

18], splicing patterns [19], combinatorial patterns

involved in histone modification [20] and even spatial
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motifs [21, 22]. Additional constraints can be used to

mine for specific patterns, such as the spacing between

the motifs in a sequence [23], the spatial proximity of

amino acids in a 3D structure [24] and peptide binding

to the major histocompatibility complex [25].

A simplified example of structural mining is the

discovery of motifs in sequences surrounding a spe-

cific site, e.g. for a class of known post-translational

modifications, as demonstrated in Figure 3. Biologi-

cal sequences with the site of interest can be retrieved

from public repositories and aligned with the

common site as the central anchor point. All sur-

rounding residues can then be given indexes to cap-

ture positional information relative to the site of

interest. Each of these short sequence stretches can

be considered as a transaction and the whole as a

transaction database that can be mined for patterns.

The resulting patterns indicate a degree of conserva-

tion and may be used to discriminate between classes.

Frequent itemset mining has also been applied to

aid in the alignment of 3D structures. For example,

the Sequence Order Independent aLignment (SOIL)

algorithm [26] uses frequent itemset mining to find

subsets of amino acids that often spatially co-occur.

Using frequent itemset mining in this case speeds up

the protein structure alignment. This top-K itemset-

based approach was competitive with other align-

ment methods and allowed for a more restrictive

similarity measurement.

Pattern detection in quantitative ‘omics’
profiles
Association rule mining has been extensively used

for the analysis of quantitative molecular profiles.

A popular application is biclustering, which is the

discovery of sets of submatrices within a larger

matrix. The stereotypical use case of biclustering in

bioinformatics is the analysis of co-expressed genes

(with measured expression values) from a dataset

under a (sub)set of conditions. High-throughput

techniques for genome-wide expression profiling

have resulted in the availability of many gene expres-

sion matrices [27]. However, the analysis thereof is

confounded by the size of the data. Studying gene

co-expression often requires a condition selection

strategy, as even genes under influence of a

common regulator are not necessarily co-regulated

under all conditions. The dimensionality of this

problem rapidly limits the applicability of standard

clustering approaches. An elegant solution is frequent

itemset mining. The problem is then translated into

the discovery of associations between the expression

values of genes and (optionally) additional data

sources [28]. While biclustering is not exclusively a

frequent itemset mining problem, frequent itemset

mining-based algorithms have been shown to per-

form equally or superior to various other methods

[29]. For example, they have proven their value in

the elucidation of disease mode-of-actions such as for

HIV-1 [30] and exploration of protein complexes in

cell lysates with blue native gel electrophoresis [31].

Before frequent itemset mining-based biclustering,

continuous values are typically discretized [28], e.g.

to a binary (up and down) or ternary (up, down and

unchanged) format. Frequent itemset mining is

applied to this converted dataset, so that each con-

dition can be considered as a transaction containing

all measured genes and their regulation direction.

The problem is thus reduced to finding frequently

occurring sets of genes with a specific regulation

pattern [28]. A toy example is shown in Figure 4.

For more than a decade, association rule mining

has been used to identify relationships in gene ex-

pression data [32, 33]. However, algorithms such as

Table 3: Overview of software frameworks for frequent itemset mining

Application
name

Description License Publication Available from

Arules FIM toolbox in R GNU GPL-2 84 http://cran.r-project.org/web/packages/arules/index.html
ARtool FIM toolbox for binary databases GNU GPL 97 http://www.cs.umb.edu/�laur/ARtool/
KNIME Desktop Data analytics platform GNU GPL 98 http://www.knime.org/
MIME Interactive FIM toolbox Research only 99 http://adrem.ua.ac.be/mime
Orange Data analytics platform GNU GPL-3 100 http://orange.biolab.si/
PyFIM Python library GNU LPL 94 http://www.borgelt.net/pyfim.html
Rapidminer Data analytics platform AGPL-3 101 http://rapid-i.com/
SPMF FIM toolbox GNU GPL-3 / http://www.philippe-fournier-viger.com/spmf/index.php
Weka Machine learning library GNU GPL 102 http://www.cs.waikato.ac.nz/ml/weka/
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Apriori [6] have limitations: they tend to detect a

large number of redundant patterns and suffer from

poor scaling. These limitations have been partially

addressed using post-processing methods [34] or by

the introduction of modified algorithms. For ex-

ample, the redundancy in itemsets can be decreased

by ignoring irrelevant rules [34] or by limiting the

search space to certain itemset classes, such as

maximal itemsets [35, 36] or the highest scoring

itemsets (top-K) [37]. Furthermore, the need for a

discretization step can be circumvented, e.g. by using

quantitative association rules based on half-spaces

[38]. In addition, various row-enumeration strategies

were found to be highly successful to find correl-

ations in micro-array data [39–43]. Each of these

methods has its advantages and issues, but makes

Figure 2: Mining for frequent co-occurrences in annotations. Annotations can be mapped to biological entities,
such as interactions between biological molecules. As such, each transaction is composed of the transaction identi-
fier (represents the interaction between both partners) and the items (the annotations corresponding to each of
the biomolecules). Frequent itemset miners can then be used to uncover patterns of often co-occurring annotations
and several interestingness measures can be computed (e.g. support). This information can then be interpreted by
the researcher or used to create weighted protein networks [16].
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distinct assumptions at the start. For example, some

methods search for closed itemsets [39, 40], whereas

others only consider the top-K results [43]. The

itemset type also affects the analysis of the signifi-

cance of the discovered patterns. For example, max-

imal itemset mining leads to a drastically reduced

number of patterns but also results in the loss of in-

formation on the relative importance of the itemset

subsets in relation to the dataset. As such, the support

of the maximal itemset can be very close to the min-

imal threshold, while the relations between various

items in this itemset are frequent. When in doubt,

less restrictive methods such as closed itemset mining

should also be explored.

The need to reduce the (often large) number of

patterns to those that actually matter has led to a new

generation of techniques that focus on biological im-

portance, instead of pure database characteristics.

Several methods take an integrative approach, in

which correlations between co-regulated genes and

external sources of information are considered. Most

common are the incorporation of gene or pathway

annotations [44, 45], regulatory network evidence,

expression data or combinations thereof [2, 46–49].

However, defining the biological interestingness is

still not trivial, and various derived measures have

been proposed [50].

Frequent itemset-based exploration of
single-nucleotide polymorphisms
Frequent itemset mining has also been used to iden-

tify strong associations between allelic combinations

associated with diseases. An FP-based method was

found to be suitable for the detection of strong inter-

active effects [51]. More recently, a scalable Apriori-

based approach to identify discriminative patterns

between high-order single-nucleotide polymorph-

isms (SNPs) and disease phenotypes was proposed

[52]. Another method based on Apriori separates

the search within the set attributes from the search

Figure 3: Visualization of structural pattern mining. Here the biological sequence of a domain on a biomolecule is
processed with frequent itemset mining algorithms to identify conserved motifs. These motifs incorporate the
underlying dependencies between the items in the form of the support value or other quality measures.
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between the set attributes, resulting in rules that were

shown to be consistent with literature [53].

Millions of SNPs exist, with many of these showing

correlated genotypes. This has led to the search for so-

called tag SNPs that are subsets sufficient to infer the

other SNPs from. Common methods suffer from vari-

ous problems with larger chromosomes, thus becom-

ing very memory-intensive and time-consuming [54].

FastTagger [54] incorporated frequent itemset mining

to overcome several of these problems.

Subgraph mining in molecular networks
Network analysis is highly relevant for biological re-

search. By understanding the functional interactions

between processes and molecules ongoing in living

organisms, a much deeper understanding of the

Figure 4: From expression matrix to bicluster. Gene expression data are converted into a matrix and discretized
into a regulation category. In this figure, there are three groups: up, down or unchanged.This matrix can then be for-
matted into a suitable format for frequent itemset miners (transactional layout) to generate biclusters or rules.
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organismal response can be obtained. It is nowadays a

popular task in systems biology to identify bio-

logically relevant subgraphs in these networks, e.g.

to reveal underlying regulatory principles.

Finding structures in networks has been a long-

standing question in data mining and has inspired the

creation of several subgraph mining algorithms, some

of which are based on frequent itemset mining.

A major distinction between different approaches

can be made according to whether subgraphs are

searched in a single graph or in multiple graphs

(Figure 5). Although algorithms to query a single

biological network for its frequent subgraphs exist

[55, 56], the most common and straightforward

applications deal with multiple graphs. Traditional

methods started as Apriori-based frequent substruc-

ture miners [57, 58]. These methods search for fre-

quent subgraphs across multiple graphs instead in a

way equivalent to searching frequent itemsets in a

dataset of transactions. Although the core algorithm

remains the same, the interestingness measures need

to be retooled to the graph field. For example, sup-

port can be redefined as the number of graphs in

the dataset containing a given subgraph. Non-

Apriori-derived methods are often based on pattern

growth. They iteratively attempt to add edges in

every direction to frequent subgraphs, simulating a

‘grow out’ process [59–61].

The aforementioned methods are all capable of

identifying substructures in a dataset, but biological

networks pose additional challenges for conventional

network mining approaches. Memory limitations are

for example a typical issue [4]. The massive size of

biological networks requires the use of heuristics to

reduce the possible pattern space without information

loss. Common approaches include the collapse of the

different graphs to be analyzed into one or more sum-

mary graphs [62], which can then be mined for co-

herent dense subgraphs. Another approach is the

reduction of each graph individually by collapsing

nodes with identical labels into a single node [4].

Both methods can reduce noise and increase func-

tional coherence of the patterns. To further reduce

false patterns due to noise, weights can be added to

the edges based on the reliability of the relation (e.g.

based on experimental reproducibility) [63], or com-

plementary types of experimental evidence (e.g. ex-

pression profiles, subcellular localization and sequence

information) can be integrated [64].

Molecular interactions can also be represented as a

transactional database for use with regular frequent

itemset mining tools, where each edge is considered

a transaction. For example, a protein-protein inter-

action (PPI) network can be converted into a set of

transactions to detect rules that provide novel insights

into the functional annotation of the network [65].

In a related analysis [66], additional features (e.g.

subcellular localization information, motifs, various

annotation types) were added to the items present

in the transactions before rule mining.

Frequent itemsets for classification
Patterns and, in particular, association rules can be

used as a foundation to construct a classifier.

Several popular implementations exist [67–69].

They all rely on the philosophy that if attributes fre-

quently appear together, there must be an underlying

Figure 5: Gene interaction networks in mouse,
human and rat as derived from String [12]. Frequent
edges among these interaction networks can be
extracted and presented as a frequent subgraph.
Conserved subgraphs can have universal functional
importance within the studied species.
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relation between them and this relation can be used

for classification.

Machine learning techniques such as support vector

machines (SVM) [70] largely function as a black box.

The underlying models are often not interpretable in

regard to the predictions they make. Association rule-

based classifiers overcome this problem. They are

more transparent about the reasoning behind their

predictions, as they provide knowledge-based expla-

native rules and thus serve as a ‘white-box’ model [71].

Association rule-based classifiers have achieved accura-

cies equivalent to traditional SVM methods for

common biological problems [71]. This transparency

has enabled a range of studies that used frequent item-

set mining to generate rules for classification [72–74].

Generating rules for classification is not a trivial

task. Normally, a transactional database layout is

used for mining and rules for classification are of

the form X)Ci, with X being an itemset of observ-

ables and Ci being the class label. Thus, the data need

to be transformed, so that each item represents a pair

of attribute and value, together with a class label (e.g.

P53, downregulated) cancer). A common example

is the classification of sample types (e.g. tumor and

healthy) with gene expression data [37, 72, 73]. For

this purpose, expression values are discretized, and

association rules are generated from maximal itemsets

[72]. Furthermore, any other discrete or discretizable

feature can be used, from cell properties [74] to pro-

tein–protein interactions [75]. Typically, only the

rules that exceed a defined minimal support and con-

fidence will be used for classification.

The combination of association rule mining with

other classification methods, such as SVMs, can

significantly increase their accuracy [76].

Association rule-based methods are also still being

improved, e.g. by incorporation of a phylogenetic

co-occurrence graph [77] or by speeding up rule

detection with an ANT-based optimization [78].

FUTUREDIRECTIONS
Frequent itemset mining techniques can be powerful

and elegant tools to extract meaningful patterns from

biological data. Nevertheless, we would like to high-

light some remaining challenges. Addressing these

challenges would benefit further adoption of fre-

quent itemset mining approaches by the bioinfor-

matics community.

First, the definition of interestingness is very de-

pendent on the biological problem at hand, and

there are no simple guidelines to develop an appro-

priate interestingness metric for a new problem.

Existing measures such as support, lift, coverage, oc-

cupancy [79] and entropy [80] give information

about the dataset, but are not guaranteed to identify

biologically relevant patterns. Another measure is the

minimum improvement constraint [81], which only

retains associations that have stronger correlations

than their generalizations. This method rejects

many unproductive and redundant rules [82]. In

addition, support-based measures prioritize patterns

that occur more often, but these patterns can be bio-

logically trivial. For example, the detection of a fre-

quent co-occurrence of the ATP-binding domain

and a kinase domain while mining kinase structures

offers little novel insight, whereas more interesting

co-occurring domains will receive a much lower

score. There is a clear need for measures that quantify

biological interestingness.

A second challenge lies in the definition of

a threshold that patterns need to exceed before

they are considered frequent. If set too low, the

number of patterns explodes, making proper inter-

pretation impossible. If the threshold is too high,

interesting less-frequent patterns might be missed.

Methods such as Top-K mining avoid the problem

of defining the lower threshold entirely [82].

A third problem is related to the heuristics used by

the algorithms. Calculating all possible itemsets or

association rules is not computationally efficient for

large datasets and rarely useful for life sciences.

Furthermore, generating all possible patterns often

results in lists mostly comprising redundant patterns.

Various heuristics have been proposed to more effi-

ciently traverse the solution space and better capture

the characteristics of the dataset in the shape of

informative patterns. For example, Krimp [83] tries

to find the best compression for a dataset and

top-K mining identifies the top K scoring

itemsets. Nevertheless, these theoretically elegant

heuristics do not necessarily reflect biological

foundations.

Another aspect that is relevant for the bioinfor-

matics community, but has not yet been fully

explored, is the visualization of patterns. In general,

table-based, matrix-based and graph-based visualiza-

tion methods exist. Commonly known examples are

arulesviz [84], FPViz [85] and WiFIsViz [86], which

are all available as R packages. Although these visu-

alizations allow deeper understanding of the data,

there is room for future work.
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Last but not least, pattern mining and association

rule discovery is vulnerable to false discoveries, as it

searches the entire sample space for frequent co-

occurrences. Owing to the massive scale, it is

prone to find relations that are true in the sample

set, but do not necessarily hold any relation to the

actual underlying process in the dataset and may

identify uninteresting rules, with many type I

errors [82]. Several solutions to these problems

have been proposed, of which the most popular

can be attributed to two families: family-wise error

rate, such as the Bonferroni correction, and false dis-

covery rate [87]. Owing to the difficulties inherent

to family-wise error rate, control of the false discov-

ery rate has become increasingly popular. Some ex-

amples of false discovery rate methods are the

Benjamini–Liu [88] and Benjamini–Hochberg [89]

procedures. Various permutation-based and holdout

approaches also exist [90]. Shrinkage estimates and

Bayesian smoothing have also been proposed to

limit overestimation of measures, such as support,

and to reduce type I errors [82].

Key Points

� Frequent itemsetmining (and derived association rulemining) is
a group of pattern mining techniques designed to identify elem-
ents that frequently co-occur, like sets of products that often
end up together in the supermarket basket.

� Owing to the straightforward interpretability of the resulting
patterns, frequent itemset mining techniques are powerful
tools to extract relevant knowledge from complex biological
data.

� The flexibility of frequent itemset mining techniques is demon-
strated by the diverse range of bioinformatics problems they
have been applied to, including annotation mining, structural
motif discovery, subgraph detection, SNP analysis and bicluster-
ing of expression profiles. Furthermore, they can be used as
input to construct classifiers.
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