
Logarithmic Space Verifiers on NP-complete
Frank Vega
Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia
vega.frank@gmail.com

Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? A precise statement
of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin.
Since that date, all efforts to find a proof for this problem have failed. NP is the complexity class
of languages defined by polynomial time verifiers M such that when the input is an element of
the language with its certificate, then M outputs a string which belongs to a single language in P.
Another major complexity classes are L and NL. The certificate-based definition of NL is based on
logarithmic space Turing machine with an additional special read-once input tape: This is called
a logarithmic space verifier. NL is the complexity class of languages defined by logarithmic space
verifiers M such that when the input is an element of the language with its certificate, then M
outputs 1. To attack the P versus NP problem, the NP-completeness is a useful concept. We
demonstrate there is an NP-complete language defined by a logarithmic space verifier M such that
when the input is an element of the language with its certificate, then M outputs a string which
belongs to a single language in L. In this way, we obtain if L is not equal to NL, then P = NP. In
addition, we show that L is not equal to NL. Hence, we prove the complexity class P is equal to NP.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases complexity classes, completeness, verifier, reduction, polynomial time, logar-
ithmic space

1 Introduction

In previous years there has been great interest in the verification or checking of computations
[15]. Interactive proofs introduced by Goldwasser, Micali and Rackoff and Babi can be viewed
as a model of the verification process [15]. Dwork and Stockmeyer and Condon have studied
interactive proofs where the verifier is a space bounded computation instead of the original
model where the verifer is a time bounded computation [15]. In addition, Blum and Kannan
has studied another model where the goal is to check a computation based solely on the
final answer [15]. More about probabilistic logarithmic space verifiers have been shown on a
technique of Lipton [15]. In this work, we show some results about the logarithmic space
verifiers applied to the class NP which solve one of the most important open problems in
computer science, that is P versus NP .

The P versus NP problem is a major unsolved problem in computer science [5]. This
is considered by many to be the most important open problem in the field [5]. It is one of
the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a
US$1,000,000 prize for the first correct solution [5]. It was essentially mentioned in 1955 from
a letter written by John Nash to the United States National Security Agency [1]. However,
the precise statement of the P = NP problem was introduced in 1971 by Stephen Cook in
a seminal paper [5]. In 2012, a poll of 151 researchers showed that 126 (83%) believed the
answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may be
independent of the currently accepted axioms and therefore impossible to prove or disprove,
8 (5%) said either do not know or do not care or don’t want the answer to be yes nor the
problem to be resolved [10]. It is fully expected that P 6= NP [19]. Indeed, if P = NP then

https://orcid.org/0000-0001-8210-4126
mailto:vega.frank@gmail.com

2 Logarithmic Space Verifiers on NP-complete

there are stunning practical consequences [19]. For that reason, P = NP is considered as
a very unlikely event [19]. Certainly, P versus NP is one of the greatest open problems in
science and a correct solution for this incognita will have a great impact not only in computer
science, but for many other fields as well [1]. Whether P = NP or not is still a controversial
and unsolved problem [1]. We show some results that prove this outstanding problem with
the unexpected solution of P = NP .

2 Theory and Methods

2.1 Preliminaries
In 1936, Turing developed his theoretical computational model [22]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [22]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [22]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [22].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite
strings over Σ [3]. A Turing machine M has an associated input alphabet Σ [3]. For each
string w in Σ∗ there is a computation associated with M on input w [3]. We say that M
accepts w if this computation terminates in the accepting state, that is M(w) = 1 (when
M outputs 1 on the input w) [3]. Note that M fails to accept w either if this computation
ends in the rejecting state, that is M(w) = 0, or if the computation fails to terminate, or
the computation ends in the halting state with some output, that is M(w) = y (when M
outputs the string y on the input w) [3].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [6].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [6]. The language accepted by a Turing
machine M , denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = 1}.

We denote by tM (w) the number of steps in the computation of M on input w [3]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [3]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [3]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [6]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w : M(w, c) = 1 for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [3]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L1. This information
is called certificate. NP is the complexity class of languages defined by polynomial time
verifiers [19].

F. Vega 3

I Lemma 1. Given a language L1 ∈ P , a language L2 is in NP if there is a deterministic
Turing machine M , where:

L2 = {w : M(w, c) = y for some string c such that y ∈ L1}

and M runs in polynomial time in the length of w. In this way, NP is the complexity class
of languages defined by polynomial time verifiers M such that when the input is an element
of the language with its certificate, then M outputs a string which belongs to a single language
in P .

Proof. If L1 can be decided by the Turing machine M ′ in polynomial time, then the determ-
inistic Turing machine M ′′(w, c) = M ′(M(w, c)) will output 1 when w ∈ L2. Consequently,
M ′′ is a polynomial time verifier of L2 and thus, L2 is in NP . J

2.2 Hypothesis
A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[22]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗
is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [9]. A language L1 ⊆ {0, 1}∗ is NP–complete
if:

L1 ∈ NP , and
L′ ≤p L1 for every L′ ∈ NP .

If L1 is a language such that L′ ≤p L1 for some L′ ∈ NP–complete, then L1 is NP–hard
[6]. Moreover, if L1 ∈ NP , then L1 ∈ NP–complete [6]. A principal NP–complete problem is
SAT [9]. An instance of SAT is a Boolean formula φ which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ. A
satisfying truth assignment is a truth assignment that causes φ to be evaluated as true. A
formula with a satisfying truth assignment is a satisfiable formula. The problem SAT asks
whether a given Boolean formula is satisfiable [9]. We define a CNF Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [6]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [6]. A Boolean formula is in 3-conjunctive normal
form or 3CNF , if each clause has exactly three distinct literals [6].

For example, the Boolean formula:

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

4 Logarithmic Space Verifiers on NP-complete

is in 3CNF . The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains the three
literals x1, ⇁ x1, and ⇁ x2. Another relevant NP–complete language is 3CNF satisfiability,
or 3SAT [6]. In 3SAT , it is asked whether a given Boolean formula φ in 3CNF is satisfiable.

A logarithmic space Turing machine has a read-only input tape, a write-only output
tape, and read/write work tapes [22]. The work tapes may contain at most O(logn) symbols
[22]. In computational complexity theory, L is the complexity class containing those decision
problems that can be decided by a deterministic logarithmic space Turing machine [19].
NL is the complexity class containing the decision problems that can be decided by a
nondeterministic logarithmic space Turing machine [19].

A logarithmic space transducer is a Turing machine with a read-only input tape, a
write-only output tape, and read/write work tapes [22]. The work tapes must contain at most
O(logn) symbols [22]. A logarithmic space transducer M computes a function f : Σ∗ → Σ∗,
where f(w) is the string remaining on the output tape after M halts when it is started with
w on its input tape [22]. We call f a logarithmic space computable function [22]. We say that
a language L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written
L1 ≤l L2, if there exists a logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such
that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic space reduction is frequently used for L and NL [19]. A Boolean formula is
in 2-conjunctive normal form, or 2CNF , if it is in CNF and each clause has exactly two
distinct literals. There is a problem called 2SAT , where we asked whether a given Boolean
formula φ in 2CNF is satisfiable. 2SAT is complete for NL [19]. Another special case is
the class of problems where each clause contains XOR (i.e. exclusive or) rather than (plain)
OR operators. This is in P , since an XOR SAT formula can also be viewed as a system of
linear equations mod 2, and can be solved in cubic time by Gaussian elimination [17]. We
denote the XOR function as ⊕. The XOR 2SAT problem will be equivalent to XOR SAT,
but the clauses in the formula have exactly two distinct literals. XOR 2SAT is in L [2], [20].

We can give a certificate-based definition for NL [3]. The certificate-based definition of
NL assumes that a logarithmic space Turing machine has another separated read-only tape
[3]. On each step of the machine the machine’s head on that tape can either stay in place or
move to the right [3]. In particular, it cannot reread any bit to the left of where the head
currently is [3]. For that reason this kind of special tape is called “read-once” [3].

I Definition 2. A language L1 is in NL if there exists a deterministic logarithmic space
Turing machine M with an additional special read-once input tape polynomial p : N → N
such that for every x ∈ {0, 1}∗,

x ∈ L1 ⇔ ∃u ∈ {0, 1}p(|x|) such that M(x, u) = 1

where by M(x, u) we denote the computation of M where x is placed on its input tape and u
is placed on its special read-once tape, and M uses at most O(log |x|) space on its read/write
tapes for every input x where | . . . | is the bit-length function [3]. M is called a logarithmic
space verifier [3].

We state the following Hypothesis:

B Hypothesis 3. Given a language L1 ∈ L, there is a language L2 in NP–complete with a
deterministic Turing machine M , where:

L2 = {w : M(w, u) = y for some string u such that y ∈ L1}

F. Vega 5

when M runs in logarithmic space in the length of w, u is placed on the special read-once
tape of M , and u is polynomially bounded by w. In this way, there is an NP–complete
language defined by a logarithmic space verifier M such that when the input is an element of
the language with its certificate, then M outputs a string which belongs to a single language
in L.

2.3 Consequences
From the early days of automata and complexity theory, two different models of Turing
machines are considered, the offline and online machines [14]. Each model has a read-only
input tape and some work tapes [14]. The offline machines may read their input two-way
while the online machines are not allowed to move the input head to the left [14]. In the
terminology of the (generalized) Turing machine models are called two-way and one-way
Turing machines, respectively [14].

Hartmanis and Mahaney have investigated the classes 1L and 1NL of languages recogniz-
able by deterministic one-way logarithmic space Turing machine and nondeterministic one-way
logarithmic space Turing machine, respectively [11]. They have shown that 1L 6= 1NL (by
looking at a uniform variant of the string non-equality problem from communication com-
plexity theory) and have defined a natural complete problem for 1NL under deterministic
one-way logarithmic space reductions [11]. Furthermore, they have proven that 1NL ⊆ L if
and only if L = NL [11].

I Theorem 4. If the Hypothesis 3 is true, therefore if L 6= NL, then P = NP .

Proof. We can simulate the computation M(w, u) = y in the Hypothesis 3 by a nondetermin-
istic logarithmic space Turing machineN , such thatN(w) = y since we can read the certificate
string u within the read-once tape by a work tape in a nondeterministic logarithmic space
generation of symbols contained in u [19]. Certainly, we can simulate the reading of one
symbol from the string u into the read-once tape just nondeterministically generating the
same symbol in the work tapes using a logarithmic space [19].

If we suppose that L ⊂ 1NL, then we can accept the elements of the language L1 ∈ L by
a nondeterministic one-way logarithmic space Turing machine M ′. In this way, there is a
nondeterministic logarithmic space Turing machine M ′′(w) = M ′(N(w)) which will output 1
when w ∈ L2. Consequently, M ′′ is a nondeterministic logarithmic space Turing machine
which decides the language L2. The reason is because we can simulate the output string of
N(w) within a read-once tape and thus, we can compute in a nondeterministic logarithmic
space the logarithmic space composition using the same techniques of the logarithmic space
composition reduction, but without any reset of the computation [19]. Certainly, we do not
need to reset the computation of N(w) for the reading at once of a symbol in the output string
of N(w) by the nondeterministic one-way logarithmic space Turing machine M ′. Therefore,
L2 is in NL and thus, L2 ∈ P due to NL ⊆ P [19]. If any single NP–complete problem can
be solved in polynomial time, then P = NP [6]. Since L2 ∈ P and L2 ∈ NP–complete, then
we obtain the complexity class P is equal to NP under the assumption that L ⊂ 1NL.

Hartmanis and Mahaney have also shown with their result that if 1NL ⊆ L or even
1NL ⊂ L, then L = NL, because they proved there is a complete problem for both 1NL
and NL at the same time [11]. If this way, if L 6= NL, then L ⊂ 1NL by contraposition [19].
Since we already obtained that P = NP under the assumption that L ⊂ 1NL, therefore if
L 6= NL, then P = NP . J

6 Logarithmic Space Verifiers on NP-complete

I Definition 5. The class LNL contains those languages that are decided by a nondetermin-
istic logarithmic space Turing machine N such that for every element x = yz of these
languages, there are a prefix and suffix substrings y and z where N moves strictly determin-
istically on y and strictly nondeterministically on z when strictly deterministically means
there is no a possible nondeterministic step and strictly nondeterministically means there is
at least one nondeterministic step on the computation.

Sauerhoff has investigated the class BNL of languages recognizable by nondeterministic
logarithmic space Turing machine, that only use nondeterministic moves before reading their
input (“nondeterminism at the beginning”) [21].

I Theorem 6. L 6= NL.

Proof. We have that NL ⊆ LNL, because the prefix substring y of an instance x = yz

could be the empty string. Certainly, all the languages in the class NL could be decided
by nondeterministic logarithmic space Turing machines such that they always do a single
nondeterministic step after the original acceptance state choosing nondeterministically the
same acceptance state within two equals choices from the original and modified deterministic
or nondeterministic logarithmic space Turing machines which decide these languages (this
is assuming the prefix substring y is the empty string in the elements x = yz). Moreover,
we have that LNL ⊆ NL, because the languages in LNL are decided by nondeterministic
logarithmic space Turing machines. Since NL ⊆ LNL and LNL ⊆ NL, then the complexity
class LNL is equal to NL. However, we can state that BNL 6= LNL, because there is
no possible way over the Definition 5 of LNL for an element x = yz in some languages
in BNL when the prefix substring y is the empty string, such that we could move strictly
nondeterministically on y (that would be a “nondeterminism at the beginning”) and move
strictly deterministically on the nonempty string z. Hence, we obtain that BNL 6= NL by
transitivity. Nevertheless, Sauerhoff has also shown that L ⊆ BNL ⊆ NL [21]. Consequently,
we prove the complexity class L is not equal to NL. J

I Theorem 7. If the Hypothesis 3 is true, then P = NP .

Proof. This is a direct consequence of Theorems 4 and 6. J

3 Results

We show a previous known NP–complete problem:

I Definition 8. NAE 3SAT
INSTANCE: A Boolean formula φ in 3CNF .
QUESTION: Is there a truth assignment for φ such that each clause has at least one true

literal and at least one false literal?
REMARKS: NAE 3SAT ∈ NP–complete [9].

We define a new problem:

I Definition 9. MINIMUM EXCLUSIVE-OR 2-SATISFIABILITY
INSTANCE: A positive integer K and a Boolean formula φ that is an instance of

XOR 2SAT.
QUESTION: Is there a truth assignment in φ such that at most K clauses are unsatis-

fiable?
REMARKS: We denote this problem as MIN ⊕ 2SAT .

F. Vega 7

I Theorem 10. MIN ⊕ 2SAT ∈ NP–complete.

Proof. It is trivial to see MIN ⊕ 2SAT ∈ NP [19]. Given a Boolean formula φ in 3CNF
with n variables and m clauses, we create three new variables aci

, bci
and dci

for each clause
ci = (x ∨ y ∨ z) in φ, where x, y and z are literals, in the following formula:

Pi = (aci
⊕ bci

) ∧ (bci
⊕ dci

) ∧ (aci
⊕ dci

) ∧ (x⊕ aci
) ∧ (y ⊕ bci

) ∧ (z ⊕ dci
).

We can see Pi has at most one unsatisfiable clause for some truth assignment if and only if
at least one member of {x, y, z} is true and at least one member of {x, y, z} is false for the
same truth assignment. Hence, we can create the Boolean formula ψ as the conjunction of
the Pi formulas for every clause ci in φ, such that ψ = P1 ∧ . . .∧Pm. Finally, we obtain that

φ ∈ NAE 3SAT if and only if (ψ,m) ∈MIN ⊕ 2SAT.

Consequently, we prove NAE 3SAT ≤p MIN ⊕ 2SAT where we already know the language
NAE 3SAT ∈ NP–complete [9]. To sum up, we show MIN ⊕ 2SAT ∈ NP–hard and
MIN ⊕ 2SAT ∈ NP and thus, MIN ⊕ 2SAT ∈ NP–complete. J

I Theorem 11. There is a deterministic Turing machine M , where:

MIN ⊕ 2SAT = {w : M(w, u) = y for some string u such that y ∈ XOR 2SAT}

when M runs in logarithmic space in the length of w, u is placed on the special read-once
tape of M , and u is polynomially bounded by w.

Proof. Given a valid instance (ψ,K) for MIN ⊕ 2SAT when ψ has m clauses, we can create
a certificate array A which contains K different natural numbers in ascending order which
represents the indexes of the clauses in ψ that we are going to remove from the instance. We
read at once the elements of the array A and we reject whether this is not a valid certificate:
That is when the numbers are not sorted in ascending order, or the array A does not contain
exactly K elements, or the array A contains a number that is not between 1 and m. While
we read the elements of the array A, we remove the clauses from the instance (ψ,K) for
MIN ⊕ 2SAT just creating another instance φ for XOR 2SAT where the Boolean formula
φ does not contain the K different indexed clauses ψ represented by the numbers in A.
Therefore, we obtain the array A should be valid according to the Theorem 11 when:

(ψ,K) ∈MIN ⊕ 2SAT if and only if φ ∈ XOR 2SAT.

Furthermore, we can make this verification in logarithmic space such that the array A is
placed on the special read-once tape, because we read at once the elements in the array A
and we assume the clauses in the input ψ are indexed from left to right. Hence, we only need
to iterate from the elements of the array A to verify whether the array is a valid certificate
and also remove the K different clauses from the Boolean formula ψ when we write the
final clauses to the output. This logarithmic space verification will be the Algorithm 1. We
assume whether a value does not exist in the array A into the cell of some position i when
A[i] = undefined. In addition, we reject immediately when the following comparisons

A[i] ≤ max ∨A[i] < 1 ∨A[i] > m

hold at least into one single binary digit. Note, in the loop j from min to max− 1, we do
not output any clause when max− 1 < min.

J

8 Logarithmic Space Verifiers on NP-complete

Algorithm 1 Logarithmic space verifier
1: /*A valid instance for MIN ⊕ 2SAT with its certificate*/
2: procedure VERIFIER((ψ,K), A)
3: /*Initialize minimum and maximum values*/
4: min← 1
5: max← 0
6: /*Iterate for the elements of the certificate array A*/
7: for i ← 1 to K + 1 do
8: if i = K + 1 then
9: /*There exists a K + 1 element in the array*/
10: if A[i] 6= undefined then
11: /*Reject the certificate*/
12: return 0
13: end if
14: /*m is the number of clauses in ψ*/
15: max← m+ 1
16: else if A[i] = undefined ∨A[i] ≤ max ∨A[i] < 1 ∨A[i] > m then
17: /*Reject the certificate*/
18: return 0
19: else
20: max← A[i]
21: end if
22: /*Iterate for the clauses of the Boolean formula ψ*/
23: for j ← min to max− 1 do
24: /*Output the indexed j clause in ψ*/
25: output “ ∧ cj”
26: end for
27: min← max+ 1
28: end for
29: end procedure

F. Vega 9

I Theorem 12. The Hypothesis 3 is true.

Proof. This is a consequence of Theorems 10 and 11. J

I Theorem 13. P = NP .

Proof. This is a direct consequence of Theorems 7 and 12. J

3.1 Codes
This work is implemented into a Project programmed in Scala [23]. In this Project, we
use the Assertion on the properties of the instances of each problem and the Unit Test for
checking the correctness of every reduction [23]. We need to install JDK 8 in order to test
the Scala Project [18]. In addition, we need to install SBT to run the unit test (we could run
the unit test with the sbt test command) [18].

4 Conclusions

No one has been able to find a polynomial time algorithm for any of more than 300
important known NP–complete problems [9]. A proof of P = NP will have stunning
practical consequences, because it leads to efficient methods for solving some of the important
problems in NP [5]. The consequences, both positive and negative, arise since various
NP–complete problems are fundamental in many fields [5]. All the following consequences
are assuming that we have a practical solution for the NP–complete problems where such
existence was proven with our result:

Cryptography, for example, relies on certain problems being difficult. A constructive
and efficient solution to an NP–complete problem such as 3SAT will break most existing
cryptosystems including: Public-key cryptography [12], symmetric ciphers [16] and one-way
functions used in cryptographic hashing [7]. These would need to be modified or replaced by
information-theoretically secure solutions not inherently based on P–NP equivalence.

There are enormous positive consequences that will follow from rendering tractable many
currently mathematically intractable problems. For instance, many problems in operations
research are NP–complete, such as some types of integer programming and the traveling
salesman problem [9]. Efficient solutions to these problems have enormous implications for
logistics [5]. Many other important problems, such as some problems in protein structure
prediction, are also NP–complete, so this will spur considerable advances in biology [4].

Since all the NP–complete optimization problems become easy, everything will be much
more efficient [8]. Transportation of all forms will be scheduled optimally to move people
and goods around quicker and cheaper [8]. Manufacturers can improve their production to
increase speed and create less waste [8].

Learning becomes easy by using the principle of Occam’s razor: We simply find the
smallest program consistent with the data [8]. Near perfect vision recognition, language
comprehension and translation and all other learning tasks become trivial [8]. We will also
have much better predictions of weather and earthquakes and other natural phenomenon [8].

There would be disruption, including maybe displacing programmers [13]. The practice
of programming itself would be more about gathering training data and less about writing
code [13]. Google would have the resources to excel in such a world [13].

But such changes may pale in significance compared to the revolution an efficient method
for solving NP–complete problems will cause in mathematics itself. Research mathematicians
spend their careers trying to prove theorems, and some proofs have taken decades or even

10 Logarithmic Space Verifiers on NP-complete

centuries to find after problems have been stated. For instance, Fermat’s Last Theorem
took over three centuries to prove. A method that is guaranteed to find proofs to theorems,
should one exist of a “reasonable” size, would essentially end this struggle [5].

References

1 Scott Aaronson. P ? NP. Electronic Colloquium on Computational Complexity, Report No. 4,
2017.

2 Carme Álvarez and Raymond Greenlaw. A Compendium of Problems Complete for Symmetric
Logarithmic Space. Computational Complexity, 9(2):123–145, 2000. doi:10.1007/PL00001603.

3 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

4 Bonnie Berger and Tom Leighton. Protein Folding in the Hydrophobic-Hydrophilic (HP)
Model is NP-complete. Journal of Computational Biology, 5(1):27–40, 1998. doi:10.1145/
279069.279080.

5 Stephen A. Cook. The P versus NP Problem, April 2000. In Clay Mathematics Institute at
http://www.claymath.org/sites/default/files/pvsnp.pdf.

6 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

7 Debapratim De, Abishek Kumarasubramanian, and Ramarathnam Venkatesan. Inversion
Attacks on Secure Hash Functions Using SAT Solvers. In International Conference on
Theory and Applications of Satisfiability Testing, pages 377–382. Springer, 2007. doi:10.1007/
978-3-540-72788-0_36.

8 Lance Fortnow. The Status of the P Versus NP Problem. Commun. ACM, 52(9):78–86,
September 2009. doi:10.1145/1562164.1562186.

9 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

10 William I. Gasarch. Guest column: The second P ? NP poll. ACM SIGACT News, 43(2):53–77,
2012. doi:10.1145/2261417.2261434.

11 Juris Hartmanis and Stephen R. Mahaney. Languages Simultaneously Complete for One-
Way and Two-Way Log-Tape automata. SIAM Journal on Computing, 10(2):383–390, 1981.
doi:10.1137/0210027.

12 Satoshi Horie and Osamu Watanabe. Hard instance generation for SAT. Algorithms and
Computation, pages 22–31, 1997. doi:10.1007/3-540-63890-3_4.

13 Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of Structure
in Complexity Theory. Tenth Annual IEEE Conference, pages 134–147. IEEE, 1995. doi:
10.1109/SCT.1995.514853.

14 Martin Kutrib, Julien Provillard, György Vaszil, and Matthias Wendlandt. Deterministic
One-Way Turing Machines with Sublinear Space. Fundamenta Informaticae, 136(1-2):139–155,
2015. doi:10.3233/FI-2015-1147.

15 Richard J. Lipton. Efficient checking of computations. In STACS 90, pages 207–215. Springer
Berlin Heidelberg, 1990. doi:10.1007/3-540-52282-4_44.

16 Fabio Massacci and Laura Marraro. Logical Cryptanalysis as a SAT Problem. Journal of
Automated Reasoning, 24(1):165–203, 2000. doi:10.1023/A:1006326723002.

17 Cristopher Moore and Stephan Mertens. The Nature of Computation. Oxford University Press,
2011.

18 Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: Updated for Scala 2.12.
Artima Incorporation, USA, 3rd edition, 2016.

19 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
20 Omer Reingold. Undirected Connectivity in Log-space. J. ACM, 55(4):1–24, September 2008.

doi:10.1145/1391289.1391291.

http://dx.doi.org/10.1007/PL00001603
http://dx.doi.org/10.1145/279069.279080
http://dx.doi.org/10.1145/279069.279080
http://www.claymath.org/sites/default/files/pvsnp.pdf
http://dx.doi.org/10.1007/978-3-540-72788-0_36
http://dx.doi.org/10.1007/978-3-540-72788-0_36
http://dx.doi.org/10.1145/1562164.1562186
http://dx.doi.org/10.1145/2261417.2261434
http://dx.doi.org/10.1137/0210027
http://dx.doi.org/10.1007/3-540-63890-3_4
http://dx.doi.org/10.1109/SCT.1995.514853
http://dx.doi.org/10.1109/SCT.1995.514853
http://dx.doi.org/10.3233/FI-2015-1147
http://dx.doi.org/10.1007/3-540-52282-4_44
http://dx.doi.org/10.1023/A:1006326723002
http://dx.doi.org/10.1145/1391289.1391291

F. Vega 11

21 Martin Sauerhoff. Guess-and-verify versus unrestricted nondeterminism for OBDDs and
one-way Turing machines. Journal of Computer and System Sciences, 66(3):473 – 495, 2003.
doi:10.1016/S0022-0000(03)00037-0.

22 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course
Technology Boston, 2006.

23 Frank Vega. VerifyReduction, August 2019. In a GitHub repository at https://github.com/
frankvegadelgado/VerifyReduction.

http://dx.doi.org/10.1016/S0022-0000(03)00037-0
https://github.com/frankvegadelgado/VerifyReduction
https://github.com/frankvegadelgado/VerifyReduction

	Introduction
	Theory and Methods
	Preliminaries
	Hypothesis
	Consequences

	Results
	Codes

	Conclusions

