Combined Atomic, Microwave and Electron Microscope: A tool for Hybrid Characterization of Nanomaterials

Petr Polovodov¹, Didier Theron², Gilles Dambrine¹, Kamel Haddadi¹ ¹University of Lille, CNRS / IEMN, ²CNRS / IEMN

RF measurements at the nanoscale : why?

- Electrical properties investigation at the microwave of:
 - Carbon NanoTubes, Graphene, Self-Assembled Monolayers,
 - Liquids, Biological samples
 - Etc...
- 3 main difficulties:
 - Nanoobjects present very high impedances at microwave frequency and conventional vector network analysers are optimized for 50 Ω.
 - Contacting nanodevices and supplying microwave signal to nanodevices and nanoobjects is a problem => AFM is a possible approach.
 - Quantitative measurements require calibration samples. CO, CC, 50 Ω are far from high impedances. There is no dedicated calibration for high impedances

Generic principle for a solution

Generic principle for a solution

Solution KeysightTM : Scanning Microwave Microscope (2008 -)

Atomic force microscope (AFM) interfaced with a vector network analyzer

Point on a Smith chart

Impedance matching: Interferometric set-up

Rev. Sci. Instrum. 84, 12 (2013) 123705

2 close impedances can be distinguished on the Smith chart

Issues to address nm resolution

Nanotechnology 25 , 40 (2014) 405703

Scanning Microwave Microscopy in Scanning Electron Microscope

Issues and solutions:

- Water meniscus => vacuum + heating
- Wavelength => probe and waveguide design
- Probe life => Scanning Electron Microscopy images

The validation of new set-up requires several experiments:

- The impact of the drift of SmarAct positioners
- Impact of thermomechanical noise is the precision enough?
- Quality of feedback adjustment

Scanning Microwave Microscopy in Scanning Electron Microscope

LabVIEW for control and data acquisition

SmarAct measurements

Interface for the acquisition of RF scans

Proposed 1-110 GHz probe (resolution vs wavelength issue)

SmarAct positioners drift measurement

- 4Q diode position stable within a 100 nm range for 16 hours => much lower than the spot size (~ a few µm) and position on the cantilever.
- Deflection signal stability of 1 mV <=> 10 nm fluctuation.

Thermomechanical noise. Precision

From the integral of spectral density the amplitude is 15 pm

Feedback adjustment

Deflection error

$$e(t) = D(t) - D_{setpoint}$$

PI controller output:

$$u(t) = Pe(t) + \frac{P}{T_i} \int_0^t e(\tau) d\tau$$

From the regulation

 $T_i \approx 100 \ \mu s$ is set to piezo scanner cut-off time. $P \approx 10 \ nm/mV$ from the approach-retract curve

AFM Keysight and IEMN comparison

2D and 3D topography representations.

Fig. Deflection signal image. The Deflection is measured simultaneously with topography. There is change in deflection while passing the edges of μ -plots and the SiO₂ steps.

AFM Keysight deflection error

AFM IEMN deflection error

The profile from the deflection image. The relative change of deflection is \pm 6%.

The deflection errors are comparable. The PI controller mode is functional

AFM calibration

After addressing AFM technical issues the piezo scanner calibration is performed:

Conclusion: AFM is functional

The advantage of using SEM

SMM data for calibration

AFM topographic image of capacitors

Amplitude and phase of the microwave reflection coefficient (S parameter)

Dependence of the S parameter with the capacitance value => possible calibration of the microwave signal for further impedance measurement.

Calibration data

The measured S parameter values could be used for the calibration

=> calibration is possible

Conclusions

SMM in SEM is implemented

AFM:

• The preliminary tests are performed. The home-made AFM is operational.

SMM measurements:

 The calibration SMM experiments could be performed in the new SMM/SEM with the frequency ^{10⁻} of 7,59 GHz

SEM images are possible

Thank you for your attention

European Union European Regional Development Fund

ANR-11-EQPX-0015_EXCELSIOR

European Commission

Horizon 2020. Grant agreement No 761036.