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ABSTRACT 
For plant-pollinator interactions to occur, the flowering of plants and the flying 
period of pollinators (i.e. their phenologies) have to overlap. Yet, few models make 
use of this principle to predict interactions and fewer still are able to compare 
interaction networks of different sizes. Here, we tackled both challenges using 
Bayesian Structural Equation Models (SEM), incorporating the effect of 
phenological overlap in six plant-hoverfly networks. Insect and plant abundances 
were strong determinants of the number of visits, while phenology overlap alone 
was not sufficient, but significantly improved model fit. Phenology overlap was a 
stronger determinant of plant-pollinator interactions in sites where the average 
overlap was longer and network compartmentalization was weaker, i.e. at higher 
latitudes. Our approach highlights the advantages of using Bayesian SEMs to 
compare interaction networks of different sizes along environmental gradients and 
articulates the various steps needed to do so. 
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Introduction 

Understanding how phenology determines species interactions is a central question in 

the case of mutualistic networks. In plant-pollinator networks, phenology shapes their 

temporal and spatial limits, thus defining the area and the period along the season in 

which interactions preferably occur (Olesen et al. 2011; Ogilvie & Forrest 2017). Since 

plant and pollinator phenologies are not equally affected by changes in environmental 

cues, partial or total phenological mismatches can occur as a result of environmental 

changes such as climate change (Parmesan 2007; Rafferty 2017). Phenological 

advances indeed increase at higher latitudes, as a response to the acceleration of 

warming temperature along the same gradient (Post et al. 2018), increase 

phenological mismatch, and have the potential to threaten the synchrony needed for 

effective pollination (Hutchings et al. 2018). Such environmental changes can thus 

drastically alter pollinator interactions through modified temporal overlap between 

pollinators and their floral resources leading, in extreme cases, to local extinctions 

(Memmott et al. 2007) and the ensuing absence of the partner species at the location 

and/or time at which the interaction should have taken place (Willmer 2012; Miller-

Struttmann et al. 2015; Rafferty et al. 2015; Hutchings et al. 2018). 

 

Because phenological match is crucial to plant-pollinator interactions, and thus 

ultimately to pollinators’ fitness, pollinators have to adapt to phenological shifts either 

through interaction with other plant species (Rafferty et al. 2015) or through changes 

of their own phenology (Bartomeus et al. 2011). Phenology can then influence 

dynamical network properties, such as the stability and the coexistence of species, 

through changes in network topology (Encinas-Viso et al. 2012). Moreover, phenology 

predictably affects network compartmentalization as different phenophases likely 

correspond to different compartments when networks are considered on an annual 

scale (Martín González et al. 2012). 

 

Despite considerable theoretical advances, there are few models available to 

predict the probability of interaction in plant-pollinator networks (Staniczenko et al. 

2017; Cirtwill et al. 2019) and fewer still able to make comparisons between networks. 

Due to their complexity and variation among years (Chacoff et al. 2017), most studies 

of mutualistic networks have focused on predicting and comparing classic network 

metrics (nestedness, connectance, modularity, etc.) which are all influenced by 

network size, i.e. the number of plant and insect species (Fortuna et al. 2010; 

Staniczenko et al. 2013; Poisot & Gravel 2014; Astegiano et al. 2015). Moreover, few 

studies have compared interaction networks along environmental gradients (Devoto 

et al. 2005; Schleuning et al. 2012; Sebastián-González et al. 2015; Pellissier et al. 
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2017). In order to compare networks of different sizes, a better alternative is to switch 

from network-derived metrics to the comparison of the probability of interaction given 

by regression models, which can consider multiple factors and latent variables and 

assume that the sampled data are just part of a larger unobserved dataset (Grace et 

al. 2010). 

 

Calcareous grasslands are characterized by highly diverse plant communities with 

a high proportion of entomophilous species (Baude et al. 2016), thus they are a 

convenient model for such studies. Most plant-insect pollinator networks involve bee 

species (Anthophila), but recent studies have also pointed out the importance of 

hoverflies (Diptera: Syrphidae), which pollinate a large spectrum of wild flowering 

species (Klecka et al. 2018a) and crops (Jauker & Wolters 2008; Rader et al. 2011). They 

usually behave opportunistically, i.e. from being pollen generalists to specialists, only 

limited by morphological constraints (Iler et al. 2013; Klecka et al. 2018a; Lucas et al. 

2018). Indeed, their generalist behaviour, at the species level, could be the result of 

individually specialized diets, since most pollen retrieved on hoverfly individuals 

usually comes from a single plant taxon (Lucas et al. 2018) and depends on flower 

availability and phenology (Cowgill et al. 1993; Colley & Luna 2000; Lucas et al. 2018). 

Moreover, some hoverflies have preferences regarding plant colour, morphology and 

inflorescence height (Branquart & Hemptinne 2000; Colley & Luna 2000; Lunau 2014; 

Klecka et al. 2018b, a). 

 

Here we study the consequences of environmental gradients on plant-pollinator 

interactions, focusing on how phenology overlap affects interactions between plants 

and insects in six calcareous grassland sites distributed along a latitudinal gradient. We 

obtained plant and insect phenologies, abundances, and interactions in all sites from 

April to October 2016. We modelled plant-pollinator interaction networks following a 

Bayesian Structural Equation Modelling approach (SEM) using latent variables, i.e. 

unobserved variables (Grace et al. 2010). SEM is a multivariate technique used to test 

several hypotheses in ecological studies. SEM analysis involves cause-effect equations 

to evaluate multiple causal relationship (Grace 2006; Eisenhauer et al. 2015) using 

observed and latent variables to explain some other observed variables (Grace 2006). 

SEM can be used to choose among competing models (Grace & Bollen 2008). Thus, 

SEM are well suited for studying the complexity of ecological networks. To test 

whether phenology affects network compartmentalization, we looked for species 

subgroups using a latent block model (LBM) which is among the best clustering 

methods for weighted networks (Leger et al. 2015). 

 

The comparison of 16 SEMs and the analysis of LBMs of sampled networks evinced 

that phenology overlap is an important determinant of plant-pollinator interactions, 
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but is less informative than species abundances and performs heterogeneously among 

sites. Our results suggest that the use of SEMs to compare networks of different sizes 

along an environmental gradient is an innovative approach which can help understand 

the structure of plant-pollinator networks. 

Methods 

Study sites 

We sampled plant and hoverfly species in six areas (Fig. S1) of 1 hectare each in 

different French regions: two sites in Hauts-de-France (Les Larris de Grouches-Luchuel, 

thereafter noted LAR, 50°11'22.5"N 2°22'02.9"E and Regional natural reserve Riez de 

Noeux les Auxi, noted R, 50°14’51.85”N 2°12’05.56”E, in départements Pas-de-Calais 

and Somme), two sites in Normandie (Château Gaillard – le Bois Dumont, noted CG, 

49°14'7.782"N 1°24'16.445"E and les Falaises d’Orival, noted FAL, 49°04'40.08"N 

1°33'07.254"E, départements: Eure and Seine Maritime) and two sites in Occitanie 

(Fourches, noted F, 43°56'07.00"N 3°30'46.1"E and Bois de Fontaret, noted BF, 

43°55'17.71"N 3°30'06.06"E, départment: Gard). The six sites are included in the 

European NATURA 2000 network, a network of preserved areas designated to protect 

a number of habitats and species representative of European biodiversity. The four 

sites in Hauts-de-France and Normandie are managed by the Conservatoire d’espaces 

naturels of Normandie, Picardie and Nord – Pas-de-Calais and the sites in Occitanie by 

the CPIE Causses méridionaux. We sampled each site once a month from April to 

October 2016, except for the site of Riez that was sampled from May to October. 

 

Plant-hoverfly observations and sampling 

To collect information at the community level, in each site and at each session we 

realized: (i) a botanic inventory of the flowering species, recorded their abundances 

and the total flower covering in the area and (ii) a pollinator sampling using a hand net 

along a variable transect walk. 

 

Flowering plants were identified at the species level. We recorded the abundances 

of all flowering species. At first, we estimated the total percentage of surface covered 

by all flowering species in the selected area. We then estimated the relative abundance 

of each flowering species. We used Braun-Blanquet coefficients of abundance-

dominance, ranked from i to 5 (most abundant coefficient class) (van der Maarel 1975, 

1979; Mucina et al. 2000), to rank flowering species. We converted the coefficients to 

percentage intervals and then in mean values of percentage cover classes (Table S1): 

coefficient 5 = 75-100%, coeff 4 = 50-75%, coeff 3=25-50%, coeff 2 = 10-25%, coeff 1 = 
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1-10%, coeff + = few individuals less than < 1%, coeff i = 1 individual. All inventories 

were realized by the same surveyors to avoid biases. 

 

Pollinator observations were performed by the same team of 3-5 persons each day. 

The surveyors walked slowly around any potential attractive resource patch included 

in the selected 1-hectare area for 4h each day. We split the sampling period into 2 

hours in the morning (about 10-12h) and 2 hours in the afternoon (about 14-16h) to 

cover the daily variability of both pollinator (bees and hoverflies, which are more active 

in the morning than in the afternoon; D’Amen et al. 2013) and flower communities. 

Sampling took place when we had suitable weather conditions for pollinators 

(following Westphal et al. 2008). We sampled all flower-visiting insects and we 

recorded observed interactions. All sampled insects were immediately put individually 

in a killing vial with ethyl acetate and were later prepared and pinned in the laboratory 

and identified at the species level by expert taxonomists. Even if we collected both 

bees and hoverflies, in this study we focus on hoverflies only (since at the moment of 

the study bees were not identified at the species level yet). Overall, we sampled for 41 

days, equivalent to about 164 hours in the field (all the surveyors collected at the same 

time). For all analyses described here, we only used the list of visited herbaceous plant 

species and hoverflies which were found visiting a plant. Despite their rarity and even 

if hoverflies are known to prefer open flowers (Branquart & Hemptinne 2000), we also 

considered the interactions between hoverflies and plant species of the Fabaceae 

family because we observed in the field that they visited Fabaceae species that were 

already opened by other insects, e.g. by large bee species, such as Eucera sp. (de 

Manincor, personal observation). 

 

Plant – hoverfly networks 

For each site, we constructed an interaction network consisting of all pairs of 

interacting plant and insect species, pooling data from all months. A pair of species (i,j) 

was connected with intensity vij when we recorded vij visits of insect species i on plant 

species j in the site. We calculated the network specialization index, H2' (Blüthgen et 

al. 2006) using the H2fun function implemented in the bipartite package 

(Dormann et al. 2009; R Core Team 2018). We obtained the d-value (Kullback-Leibler 

divergence between the interactions of the focal species and the interactions 

predicted by the weight of potential partner species in the overall network) and the 

dmax-value (maximum d-value theoretically possible given the observed number of 

interactions in the network) using the dfun function in the bipartite package 

(Dormann et al. 2009). We did not use the d' values provided by this package as they 

sometimes yielded spurious results based on the computation of the minimal d value 

(e.g. reporting low d’ for species with only one partner in the network).We then 
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manually calculated the standardized specialization index d' (Blüthgen et al. 2006) for 

each plant and insect species as the ratio of the d-value to its corresponding dmax-

value. 

 

We calculated the modularity of the network and the associated partition of species 

into modules using the cluster_leading_eigen method for modularity 

optimization implemented in the igraph package (Csardi & Nepusz 2006; Newman 

2006). Modularity optimization can help identify strong, simple divisions of a network 

into relatively independent sub-networks by looking for highly interconnected sub-

networks. However, modules are not meant to inform about more subtle groupings 

among the species, e.g. particular avoidance of interactions between insects of group 

A and plants of group 1. In order to detect such groups, we implemented latent block 

models (LBM) using the BM_poisson method for Poisson probability distribution 

implemented in the blockmodels package (Leger et al. 2015). Blocks are calculated 

separately for the two groups (insect and plant) based on the number of visits (i.e. a 

weighted network). The algorithm finds the best divisions of insects and plants through 

fitting one Poisson parameter in each block of the visit matrix, thus essentially 

maximizing the ICL (Integrated Completed Likelihood; Biernacki et al. 2000; Daudin et 

al. 2008). The LBM script is given in Supplementary Information (Appendix S3). All 

analyses were performed in R version 3.3.3 (R Core Team 2018). 

 

Plant and hoverfly abundances and phenology overlap 

We calculated plant abundance using information about the abundance-dominance 

recorded in the field following the methodology of Braun-Blanquet presented above. 

We transformed the coefficients of abundance in percentages (Table S1): we used the 

mean of the percentage corresponding to each class. We then calculated the relative 

abundance (AP) of each flowering plant species as the ratio of the focal species 

cumulated abundance to total flower abundance during its flowering season. For 

hoverflies, we used the recorded number of visiting individuals (total abundance) and 

their presence (recorded months) along the season to calculate their average 

abundance during months when they were present (AH). 

 

We refer to plant phenology as their flowering period and insect phenology as the 

flying period. We considered only flowering plants which had been visited by 

pollinators. For the pollinators, we considered only hoverflies which were found in 

interaction. To build the species phenology tables for both plants and hoverflies, we 

merged the information provided by two sources of data (field data and the literature): 

we used the observed phenology of both plants and insects during the field session as 

the only source of information for plants (plants visited by insects and plants found in 
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the botanic inventory in the site at that date), and we complemented the hoverfly 

phenology with information provided by the Syrph the Net Database (Speight et al. 

2016). We then built the phenology overlap (PO) matrix based on the species 

phenology tables by calculating the number of phenologically active months that are 

shared by each pair of insect and plant species along the season. 

 

Bayesian Structural Equation Modelling (SEM) 

SEM is a confirmatory technique that involves cause-effect equations to evaluate 

multivariate hypotheses in ecological networks (Grace 2006). The primary interest of 

SEM analyses lies in its ability to compare different causal models between the same 

sets of explanatory and explained variables. Another important feature of SEM is that 

they can relate data through latent variables, i.e. variables which are not measured in 

the model  and which represent underlying causes or effects, coupled with observed 

variables (Grace 2006; Grace et al. 2010). SEM can now be assessed using Bayesian 

approaches and parameters estimated using MCMC (Markov Chain Monte 

Carlo)(Grace et al. 2010; Fan et al. 2016). 

 

In our study, we modelled hoverfly-plant interaction networks using a SEM 

approach (Fig. 1) with latent variables linking the number of visits per plant-pollinator 

species pair to abundance and phenology overlap (PO) data through a first latent table 

representing probabilities of interactions, another latent table representing the 

possible interactions between plant and pollinators (as a realization of the 

aforementioned interaction probability matrix), and a third latent table yielding the 

expected number of visits per plant-pollinator species pair (i.e. the intensity of 

interactions). We used the term latent tables to describe latent variables organized as 

insect x plant tables, such as the expected number of visit matrix.
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Figure 1. Summary diagram of the SEM model. We estimated 4 effects: the effect of plant 

abundance (AP  λij, coefficient λP), the effect of insect (hoverflies) abundance on the 

intensity of visits (AH  λij, λH), the effect of phenology overlap on the intensity of visits (PO 

 λij, λPO) and the effect of phenology overlap on the probability of interaction (PO  Iij, 

µPO). The phenology overlap (PO) is the number of phenologically active months that are 

shared by each pair of insect and plant species along the season. The intensity of visits (λij) 

and the probability of interaction are latent variables in the model. Effect-i and effect-p are 

random effects calculated by the model which represent the insect and plant species 

identities. The Iij (Possible interactions) is a binary variable and the Vij (visits observed) follow 

a Poisson distribution with an expected value given when the probability of interaction is 

predicted as “true”. Rectangles represent observed variables while ovals represent 

unobserved influences. 
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In this model, we considered that PO had an effect on possible interactions (Iij) and 

the number of visits (λij) – a longer overlap is intuitively expected to drive a higher 

probability of interaction and a larger number of visits. Interaction probabilities were 

also assumed to depend on two random effects (plant and insect species identities, E
i 

and E
j
), to represent heterogeneity of species degrees (i.e. the number of links) in the 

network. We modelled the possibility of interaction Iij between insect species i and 

plant species j (i.e. Iij = 1 when species i and j can interact) as a Bernoulli random 

variable of probability µij given by: 

logit(𝜇𝑖𝑗) =  𝜇0 + 𝜇𝑃𝑂𝑃𝑂𝑖𝑗 + 𝐸𝑖 + 𝐸𝑗 

where logit is the usual logistic transformation (log(x/(1-x)), µ0 is the intercept of this 

relation, µPO is the coefficient measuring the effect of PO, and E
i and E

j
 are the random 

effects associated with insect species i and plant species j respectively. 

 

The number of visits Vij was assumed to depend on plant and hoverfly abundances, 

as more abundant species are expected to be more often sampled (and thus more 

often recorded “in interaction”). Please note that we only linked abundances to the 

number of visits, Vij, and not to the possibility of interaction Iij, because the aim of the 

latter latent table is to capture “forbidden links”, while detectability and sampling 

effects are supposed to be captured by the statistical model of the number of 

interactions. We integrated species abundances as predictor variables in order to 

assess the effect of PO on the number of visits on top of a “null model” that already 

includes sensible drivers of the numbers of visits, such as species abundances. Vij was 

modelled as a Poisson random variable to allow for sampling variability, with a 

conditional mean λij (the intensity of visits that can occur) given by: 

log (𝜆𝑖𝑗) =  𝜆0 + 𝜆𝐻𝐴𝐻,𝑖 + 𝜆𝑃𝐴𝑃,𝑗 + 𝜆𝑃𝑂log(1 + 𝑃𝑂𝑖𝑗) 

where λ0 is the intercept of this relation, λH is the coefficient measuring the effect of 

hoverfly abundance AH, λP is that of plant abundance AP, and λPO is the coefficient of 

the effect of PO. 

 

Possible interactions (Iij) and the intensity of visits (λij) are multiplied to obtain the 

unconditional mean number of recorded visits, i.e. Vij is then obtained as a Poisson 

draw of mean Iij λij. 

 

Overall we estimated four main parameters: the effect of phenology overlap on the 

probability of interaction (PO  Iij, µPO), the effect of phenology overlap on the 

intensity of interactions (PO  λij, λPO), the effect of plant abundance on the intensity 

of interactions (AP  λij, coefficient λP) and the effect of insect (hoverflies) abundance 

on the intensity of interactions (AH  λij, λH). 
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We used the jags function (R2jags package), which provides an interface from R to 

the JAGS library for Bayesian data analysis, to estimate model parameters. JAGS 

(Plummer 2003) uses a Markov Chain Monte Carlo algorithm to generate samples from 

the posterior distribution of the parameters. We ran two Markov chains with 106 

iterations per chain to check for model convergence. The code of the model is given in 

Supplementary Material (Appendix S1 and S2). 

 

Model and parameter comparison 

We estimated the 16 models that included all combinations of 0 and 4 of the above-

mentioned effects to understand which effects were more likely to play a role in the 

structuring of the network. The goodness-of-fit of these models were compared using 

the leave-one-out cross-validation criterion (LOO) calculated using the R package loo 

using Pareto smoothed importance sampling for regularizing importance weights 

(Vehtari et al. 2017). The LOO criterion is a fully Bayesian method to compare models 

of different complexities and to estimate prediction accuracy using the log-likelihood 

evaluated at the posterior simulations of the parameter values (Vehtari et al. 2017). 

Models can thus be ranked according to their LOO scores, with the best model being 

the one with the lowest LOO value. The LOO criterion is analogous to the classic Akaike 

and Bayesian Information Criteria, which are used to compare frequentist models, but 

can instead be applied to Bayesian models, without suffering the instability issues of 

the Deviance Information Criterion which used to be the main information criterion 

for Bayesian models(Vehtari et al. 2017). To rank the models, we then calculated the 

ΔLOO (noted Δᵢ) as Δᵢ = LOOᵢ− LOOmin (following Burnham & Anderson 2004), where 

LOOmin is the minimum of the LOOᵢ values among the 16 models. We used Δᵢ to obtain 

model weights ωᵢ, following the Akaike weight methodology (Burnham & Anderson 

2002): 

ωᵢ =
e−Δᵢ/2

∑ e−Δᵢ/2
 

 

We then summed weights (wH) over all models that incorporated a given focal 

parameter to ascertain the plausibility of the effect associated to this parameter. We 

used this sum to evaluate the null hypothesis (H0) that a given factor has no effect on 

the plant-pollinator interactions by comparing the sum of weights to null expectations, 

based on the fact that each tested effect is incorporated in exactly half of the tested 

models. The effect is considered plausible when wH > 0.5, implausible otherwise, likely 

when wH > 0.73, and unlikely when it corresponds to a value of 0.27 or lower, following 

Massol et al. (2007). 
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Predictive power analysis 

We tested the predictive power of the models we built by making predictions for the 

Iij table and checking their validity using a binarized version of the visit table Vij. 

Predictions were obtained by defining a threshold on interaction probability µij: values 

found above the threshold were predicted as occurring interactions, values below the 

threshold as no interaction. The threshold probability value was found by maximizing 

the sum of model specificity and sensitivity. We computed accuracy statistics 

(sensitivity, specificity, omission rate, area under the ROC curve [AUC]) in two 

situations: (i) when predicting data for the site that was used to build the model (self-

validation; e.g. predicting interaction data in the site of Riez based on the model 

developed for this site) and (ii) when predicting data for the other site from the same 

region (cross-validation; e.g. predicting data for the LAR site based on the model for 

the R site). We performed theses analyses using the SDMTools package in R. We only 

used the set of best models (LOO < 4) found for each site to predict the interactions in 

the other site through a multimodel averaging approach. We obtained the threshold 

probability using optim.tresh function with option 

max.sensitivity+specificity. 

Results 

Plant-hoverfly networks and phenology overlap 

At the end of the field campaign we had collected 1584 hoverflies and recorded 1668 

interactions between 76 hoverfly species and 115 plant species overall (Table 1, Table 

S2). The number of sampled hoverfly and plant species varied between sites and 

among regions. In Normandie we generally sampled a higher number of hoverflies 

than in the other two regions (Table 1) and the maximum number of visits recorded in 

the site of FAL was 47 (between Helophilus pendulus and Scabiosa columbaria, Fig. S2) 

and in the site of CG was 22 (between Eristalis tenax and S. columbaria and between 

Sphaerophoria scripta and Leontodon hispidus, Fig. 2). We observed the highest 

diversity of both plants and hoverflies in Occitanie and the lowest diversity of 

hoverflies in Hauts-de-France. Despite the high species diversity in Occitanie, the total 

number of interactions recorded in these sites (BF and F) is not the highest recorded 

in the field (Table 1): the maximum number of visits in the site of BF was 10 (between 

Spherophoria scripta and Helichrysum stoechas, Fig. S3) and 12 in the site of F 

(between Syrphus ribesii and Bellis perennis, Fig. 3). In the two southern sites we also 

recorded the lowest connectance values (BF: 0.07 and F: 0.08) of all six sites, with the 

highest connectance observed in the site of R (R 0.16; LAR 0.13; CG 0.13; FAL 0.12). 

The maximum number of visits recorded in the site of LAR was 12 (between Syrphus 
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ribesii and L. hispidus, Fig. S4) and in the site of R was 17 (between Syritta pipiens and 

Asperula cynanchica, Fig. S5). 

 

In spite of differences in diversity and the number of interactions, the overall level 

of specialization (H2 index) did not show a high variation among the 6 networks (range: 

0.32 – 0.37). However, we found that the sites in Occitanie (BF and F) had a higher 

average degree of specialization (d') for both insect (BF 0.63 and F 0.57) and plant 

species (BF 0.58 and F 0.48). The sites in Occitanie also had a higher modularity (BF 

0.51 and F 0.48) than the ones in Normandie (CG 0.34 and FAL 0.23) and Hauts-de-

France (LAR 0.37 and R 0.34; Table 1). Given that these statistics only compare 6 sites, 

none of these assessments can be properly statistically tested, but the importance of 

the differences among sites is highly suggestive of a difference in average 

specialization and modularity. We found that plant phenology is generally shorter in 

all sites than that of hoverflies (Table 1). The phenology overlap was shorter in 

Occitanie (BF and F) than in the other sites (Table 1). 

 

Illustrations of the block clustering provided by the LBM analysis (Latent Block 

Model) are shown in Fig. 2 and 3 in the main text and in Fig. S2 to S5 in Supplementary 

Information. We found different numbers of blocks in plants and hoverflies among 

sites: the BF site had 2 insect blocks and 2 plant blocks (Fig. S3); the F site had 4 of both 

(Fig. 3); the CG and R sites had 3 blocks for the plants and 4 blocks for the insects in 

(Fig. 2 and S5); the FAL site had 4 plant blocks and 3 insect blocks (Fig. S2); the LAR site 

had 3 blocks for the plants and 2 for the insects (Fig. S4). 
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Table 1. Summary table of results obtained in each site (Bois de Fontaret [BF] and Fourches [F] in Occitanie, Château Gaillard [CG] and Falaises 
[FAL] in Normandie, Larris [LAR] and Riez [R] in Hauts-de-France). H2' and d’ indices refer to specialization indices described by Blüthgen et al. 
(2006) and implemented in the R package bipartite (Dormann et al. 2009). The modularity score was obtained using the leading-
eigenvector method described by Newman (2006) and implemented in the igraph package (Csardi & Nepusz 2006). LBM refers to latent 
block modelling as implemented in the R package blockmodels (Leger et al. 2015). 

 

Site Region 

Collected data Specialization index Species phenology 
Modularity 

analysis 
LBM 

Sampled 
insects 

Insect 
species 

Plant 
species 

Recorded 
Interactions 

H2' 
index 

d' Insects 
(average + 

sd) 

d' Plants 
(average + 

sd) 

Insect 
(average + 

sd) 

Plant   
(average + 

sd) 

Phenology 
overlap (PO) 

(average + sd) 

modularity 
score 

blocks I blocks P 

BF Occitanie 197 40 43 198 0.37 0.63 ± 0.17 0.58 ± 0.17 5.25 ± 1.51 2.14 ± 1.04 1.77 ± 1.03 0.53 2 2 
F Occitanie 223 36 49 286 0.33 0.57 ± 0.18 0.48 ± 0.19 5.61 ± 1.54 2.08 ± 1.13 1.78 ± 1.14 0.48 4 4 
CG Normandie 295 32 25 297 0.34 0.40 ± 0.21 0.47 ± 0.18 6.03 ± 1.00 3.28 ± 1.24 3.02 ± 1.17 0.34 4 3 
FAL Normandie 363 34 30 374 0.32 0.40 ± 0.18 0.41 ± 0.18 6.06 ± 1.13 3.57 ± 1.59 3.23 ± 1.51 0.23 3 4 

LAR 
Hauts-de-
France 

220 24 33 220 0.36 0.48 ± 0.19 0.45 ± 0.15 6.38 ± 0.82 3.18 ± 1.38 2.99 ± 1.36 0.37 2 3 

R 
Hauts-de-
France 

286 22 29 293 0.32 0.39 ± 0.16 0.40 ± 0.16 5.55 0.74 3.38 ± 1.47 3.11 ± 1.45 0.34 4 3 

 Total 1584 76 117 1668       
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Figure 2. Block clustering provided by LBM in the site of Chateau Gaillard (CG, Normandie) 
overlaid on a heatmap of species phenology overlap. The LBM algorithm finds the best division 
for the group of insects and plants independently through fitting Poisson parameters in each 
block maximizing the likelihood (ICL). Insect species are displayed in rows and plant species in 
columns, following their degree (number of partners). The blocks of insects and the blocks of 
plants are separated by solid black lines. Colours correspond to the number of months that 
are shared by each pair of plant and insect species (PO, phenology overlap), with higher PO 
corresponding to darker colours. Numbers are the number of visits observed in the field for a 
given plant-insect pair. Complete species names are reported in Table S2. 
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Figure 3. Block clustering provided by LBM in the site of Fourches (F, Occitanie), overlaid on a 
heatmap of species phenology overlap. Insect species are displayed in rows and plant species 
in columns, following their degree (number of partners). The blocks of insects and the blocks 
of plants are separated by solid black lines. Colours correspond to the number of months that 
are shared by each pair of plant and insect species (PO, phenology overlap), with higher PO 
corresponding to darker colours. Numbers are the number of visits observed in the field for a 
given plant-insect pair. Complete species names are reported in Table S2. 
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Model ranking and comparison of parameters in each site 

For each site we compared the 16 models using the LOO criterion (Table 2, ΔLOO 

values). We found that models 1, 2 and 4 had consistently better goodness-of-fit than 

the others. The model incorporating all effects except the effect of phenological 

overlap on the probability of interaction (Model 4: λ
ij
 ~ AH + AP + PO, Table 2) was the 

best model in the sites of CG, FAL and LAR. In the two southern sites (BF and F), we 

found that the model incorporating all effects except that of phenological overlap on 

the intensity of visits (Model 1: λ
ij
 ~ AH + AP / Iij ~ PO, Table 2), was the best one. The 

model incorporating all effects (Model 0: λ
ij
 ~ AH + AP + PO / Iij ~ PO, Table 2) was found 

as the best one only in the site of R, but was a suitable model (ΔLOO <4) in all the other 

sites (Table 2). We also compared the sum of model weights of the four parameters 

among sites (Table 2, Effects weight). We found that the effect of insect abundance on 

the intensity of interaction (AH  λ
ij
) is always likely (i.e. the sum of their weights is 

always higher than 0.73, Table 2) and of large effect size in all sites (standardised 

coefficient higher than 1, Fig. 4). Likewise, we found that the effect of plant abundance 

on the intensity of interaction (AP  λ
ij
) was always likely and had large effect size in 

most part of sites, except in the site of F (wH = 0.59, Table 2; standardised coefficient 

= 0.67, Fig. 4). The effects of phenological overlap on the probability of interaction (PO 

 Iij) and the intensity of visits (PO  λ
ij
), however, had variable plausibility among 

sites. The effect of phenological overlap on the probability of interaction was likely only 

in half of the sites (Table 2 and Fig. 4). The effect of phenological overlap on the 

intensity of visits was not plausible only in the two southern sites (BF and F) and 

plausible in the other four sites (LAR, R CG and FAL, Table 2 and Fig. 4). In all sites, the 

standardised coefficients of PO effects were always less than 1, thus showing a low 

effect size of phenology on interaction probability and intensity (Fig. 4).
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Table 2. (i) Comparison of SEM models using the leave-one-out cross-validation criterion 
(LOO); (ii) evidence ratios (ER) of model effects in each site. (i) Models are ranked depending 
on the number of parameters used (from 0 to 4). The best models are the ones with ΔLOO=0 
(underlined and bold values). The other suitable models are the ones with ΔLOO <4 
(underlined and italic values). λij is the intensity of visits, Iij is the probability of interaction, AH 
is the insect abundance, AP is the plant abundance and PO is the phenology overlap. (ii) We 
compared 4 model effects: PO  Iij, effect of the phenology overlap on the probability of 
interaction; PO  λij effect of the phenology overlap on the intensity of visits; AH → λij and AP 

→ λij effects of the hoverflies and plant abundances on the intensity of interaction. The wH 
limits for unlikelihood is 0.27, plausibility 0.5 and likelihood 0.73. Underlined and bold values 
represent the likely hypothesis only. 

 

   Sites 

      BF F CG FAL LAR R 

Model 
Nb of 

parameters 
ΔLOO values 

0 λij ~ AH + AP + PO / Iij ~ PO 4 2.98 2.04 3.54 2.54 2.86 0.00 

1 λij ~ AH + AP / Iij ~ PO 3 0.00 0.00 36.75 64.04 10.37 2.90 

2 λij ~ AP + PO / Iij ~ PO 3 8.66 78.23 106.46 184.02 44.60 17.00 

3 λij ~ AH + PO / Iij ~ PO 3 6.63 1.71 8.09 73.62 11.24 11.42 

4 λij ~ AH + AP + PO 3 2.86 8.06 0.00 0.00 0.00 2.24 

5 λij ~ PO / Iij ~ PO 2 14.69 73.20 109.85 223.86 55.67 23.09 

6 λij ~ AH / Iij ~ PO 2 1.45 1.31 33.53 119.04 27.23 19.76 

7 λij ~ AP / Iij ~ PO 2 9.84 72.16 156.61 256.04 47.99 21.53 

8 λij ~ AH + PO 2 11.49 8.18 5.25 71.97 10.28 13.80 

9 λij ~ AP + PO 2 10.71 88.67 103.46 182.14 44.36 17.94 

10 λij ~ AH + AP 2 24.36 14.04 36.10 66.82 10.51 4.26 

11 Iij ~ PO 1 11.78 68.52 154.26 272.98 64.12 32.39 

12 λij ~ PO 1 19.99 86.20 108.46 219.66 54.64 25.73 

13 λij ~ AH 1 25.58 14.41 36.12 123.30 28.27 22.78 

14 λij ~ AP 1 32.99 87.70 157.74 256.39 48.82 22.87 

15 - 0 34.39 83.89 155.68 274.80 64.78 33.52 

  
Model effects 

 
Effects weight (wH) 

 PO → Iij  0.88 0.98 0.15 0.22 0.20 0.74 

 PO → λij  0.26 0.35 1.00 1.00 0.99 0.79 

 AH → λij  0.99 1.00 1.00 1.00 1.00 1.00 

 AP → λij  0.74 0.59 0.93 1.00 0.99 1.00 
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Figure 4. Summary diagram of the best models in all sites. The thickness of the arrows is scaled to Akaike weights (thin ER < 0.73; thick ER > 0.73, 

cf. Table 2). Standardised coefficients of the model average (computed based on the Akaike weighted model average) are reported next to the 

arrows. PO is the phenology overlap, Iij is the probability of interaction, λij is the intensity of visits, AH and AP are the hoverflies and plant abundances 

respectively. 
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When assessing the predictive power of the best models, we observed that the 

sensitivity and specificity values, both for the self-validation and the cross-validation, 

were higher than 0.5 (Table S3), which means that the interactions predicted by the 

models are better than predicted by chance. While area under the curve (AUC) values 

were all higher than 0.75 for self-validation, cross-validation tests yielded intermediate 

values (AUC between 0.62 and 0.73), reflecting the fact that abundances and 

phenology are certainly not sufficient to make accurate predictions on the occurrence 

of plant-pollinator interactions. 

 

Discussion 

Latitude affects the seasonality, with advancing species phenologies at higher 

latitudes, and thus, can be a limiting factor for the phenological coupling of interacting 

species (Post et al. 2018). In this study we explored the effect of phenology overlap on 

a large network of species interactions in calcareous grasslands and how this effect 

could vary along a latitudinal gradient in France using empirical data on six plant-

hoverfly networks. We identified plants and insects at the species level to build 

detailed interaction networks and hence avoid spurious generalisation levels. In order 

to better understand the determinants of variation in species interactions in space and 

time, we used the latitudinal gradient to consider variations linked to environmental 

cues and the entire flowering period to allow for seasonal variation (Valverde et al. 

2016; Pellissier et al. 2017). One of the main problems of comparing networks along 

gradients is the dependence of network metrics on network size (Staniczenko et al. 

2013; Astegiano et al. 2015; Tylianakis & Morris 2017). In this study, to avoid the 

problem of comparing networks with different dimensions, we decided to focus on the 

determinants of the probability of interaction and the number of visits, rather than the 

overall structure. We employed Bayesian Structural Equation Models (SEM) which is 

an emergent approach increasingly used to investigate complex networks of 

relationship in ecological studies (Grace et al. 2010; Eisenhauer et al. 2015; Fan et al. 

2016; Theodorou et al. 2017). In our study we used SEM to link the numbers of visits 

to phenology overlap (PO) and species abundance through latent probabilities of 

species interaction and expected numbers of visits per plant-pollinator species pair. 

We tested different models with variable numbers of effects and compared them in 

each site. In our models, we used species abundances to construct a sensible null 

model to test whether phenology overlap could help explain the probability and 

intensity of interactions when the effects of species abundances are already taken into 

account. In all sites, we found that models that included both PO and abundances had 

always better goodness-of-fit than models that included only abundances. 
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Abundances indeed provided a sensible null model since the goodness-of-fit of models 

that did not include abundances were always quite worse than the ones which did. 

 

We also found that in all sites the most important factor affecting pollinator visits 

was insect abundance (Table 2). Likewise, we found that plant abundance was also a 

very important effect in most sites, except in the site of F (Table 2). Since insect 

abundances are given by visitation data, it is not surprising that the intensity of 

interactions positively depends on these abundances. Species abundance often 

explain the linkage level in pollination network studies (Olesen et al. 2008; Bartomeus 

et al. 2016; Chacoff et al. 2017; Pellissier et al. 2017) but it is often associated with the 

length of the phenology to better assess the general properties of the interaction 

network (Vázquez et al. 2009; Olito & Fox 2015). In accordance with this verbal 

prediction, we indeed found that the best models incorporated the effect of PO on 

either the probability or the intensity of interactions (Table 2), and the model that only 

considered species abundance (model 5 in Table 2) was not the best one in any site. 

Phenology overlap generally cannot predict the probability of interaction on its own 

(Encinas-Viso et al. 2012; CaraDonna et al. 2017). Our findings do agree with this 

general predicament since no site favoured a model that only incorporated PO effects 

and because these effects always display lower effect sizes than the other variables. 

However, our objective was not to compare the effect of phenology overlap to that of 

species abundance – for such an endeavour, one would need estimates of species 

abundances independent of visitation data. Because models which consider the effect 

of PO on the intensity and/or probability of interactions are the best models for all 

sites, this evinces a clear effect of PO. In our model, the effect of PO on the probability 

of interaction and the expected number of visits also vary along the latitudinal gradient 

(Fig. 4).In general, we observed that southern sites (BF and F) showed shorter plant 

phenology and phenology overlap (PO) than the other four sites (Table 1). In these 

sites, plant species richness is higher and fewer visits were sampled, probably because 

the presence of specialist species with short phenophases may increase the number 

of forbidden or undetected links (Olesen et al. 2011; Martín González et al. 2012). 

Conversely, in sites where plant phenology is longer, PO is longer too, as observed in 

Normandie and Hauts-de-France (CG, FAL, LAR and R, Table 1). Moreover, when plant 

richness and specialization are lower, a higher number of visits can be observed (Table 

1) because generalist species could interact without constraints. Indeed, in Normandie 

and Hauts-de-France we found that the effect of phenology overlap on the intensity of 

visits was always likely (PO  λij, Table 2) and we observed higher numbers of 

interactions in the first two/three blocks of insects and plants which also corresponded 

to blocks with longer PO (Fig. 2, S2, S4 and S5). A higher phenological overlap is 

expected to drive a higher probability of interactions and a larger number of visits 

(Olesen et al. 2011). In Occitanie, we did not find any effect of PO on the number of 
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visits because the more densely visited blocks do not correspond to those with longer 

phenology overlap. Plant phenology can therefore drive the probability and the 

intensity of interactions in networks in which plant phenology is shorter, thus 

suggesting that hoverflies may undergo selection for behavioural flexibility in order to 

maintain synchrony with their foraging resources (Iler et al. 2013; Ogilvie & Forrest 

2017). 

 

We also found that modularity decreased along the latitudinal gradient, with richer 

sites (BF and F) displaying higher modularity (as in Sebastián-González et al. 2015) but 

also the lower connectance. In the two southern sites, higher modularity could be 

related to shorter phenologies and higher proportions of non-overlapping sets of 

species, which induce some form of temporal short-term specialisation (Lucas et al. 

2018). However, modularity also seems to be influenced by species abundances and 

degrees (Schleuning et al. 2014), and is expected to increase with link specificity 

(Morente-López et al. 2018). Indeed, in these sites, species blocks match species 

degrees (Fig. 3 and S3), with generalist and specialist species forming separate blocks 

among both plants and insects (Martín González et al. 2012). With lower modularity 

and more generalist species, we expect a stronger relationship between phenology 

and the intensity of interactions because interactions are less influenced by insect 

preferences and more by seasonal rhythm and flower availability (Dormann et al. 

2017). Thus, different phenophases might correspond to different compartments 

(Martín González et al. 2012; Morente-López et al. 2018), as observed in CG, FAL, LAR 

and R where higher overlap corresponded to higher numbers of observed visits. 

Although phenology improved model fit (Table 2), its effect size was modest (Fig. 4), 

which suggests that other types of data such as traits and phylogenies might help 

predict specific interactions. In our study, we did not consider competition among 

studied insect species or with other group of insects, such as bees which were present 

in all sites. Different types of pollinators with different abundances could have context-

dependent effects on network topology (Valverde et al. 2016). Moreover, in our study 

we only considered as “true absence” of the interaction the lack of phenological 

coupling between species (i.e. plant and hoverfly species which are not present at the 

same moment along the season cannot interact). We did not consider “false 

absences”, i.e. missing links, since not all the potential links among species are 

recorded in the field (Olesen et al. 2011) which may introduce bias in the estimation 

of the probability of interactions (Bartomeus et al. 2016; Cirtwill et al. 2019). 

 

To conclude, plant phenology here drives the duration of the phenology overlap 

between plant and hoverflies, which in turn influences either the probability of 

interaction or the expected number of visits, as well as network compartmentalization. 

Longer phenologies correspond to less constrained interactions (lower modularity), 
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shorter phenologies to more constrained interactions (higher modularity), which in 

turn restrict the number of visits. Phenology overlap alone was not sufficient to explain 

interactions, as suggested elsewhere (CaraDonna et al. 2017). Plant and insect 

abundances played a substantial role to explain the number of visits (as in Chacoff et 

al. 2017) since abundances may affect partner choice (Trøjelsgaard et al. 2015). Our 

results, and the ability of the method used here to compare different effects on 

interaction patterns, suggest that the use of Bayesian SEM to compare networks of 

different sizes is a valuable tool which can help understand plant-pollinator networks 

(Eisenhauer et al. 2015). The use of latent variables can help predict the probability of 

interaction and the expected number of visits while avoiding circularity – the 

introduction of plant and insect specific random effects played the role of an implicit 

“degree” effect. Our results demonstrate the importance of considering differences in 

plant and insect phenologies to better predict their interactions in pollination 

networks at different latitudes. The use of morphological traits (e.g. tongue length, 

inter-tegular distance, …) together with species richness and phylogenies, on top of 

variables already used, might improve the modelling of interactions and could help 

better understand some forbidden or missing links in richer communities or 

considering other pollinators (e.g. wild bees). 
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The following Supporting Information is available for this article: 

Figure S1. Sites location in France. 

Figure S2. Block clustering provided by LBM in the site of Bois de Fontaret (BF, 

Occitanie), overlaid on a heatmap of species phenology overlap. 

Figure S3. Block clustering provided by LBM in the site of Falaises (FAL, Normandie), 

overlaid on a heatmap of species phenology overlap. 

Figure S4. Block clustering provided by LBM in the site of Larris (LAR, Hauts-de-France), 

overlaid on a heatmap of species phenology overlap. 

Figure S5. Block clustering provided by LBM in the site of Riez (R, Hauts-de-France), 

overlaid on a heatmap of species phenology overlap. 

Table S1. Table of transformed plant abundances. 

Table S2. Table of hoverfly and plant species names and abbreviations used in the LBM 

Figures. 

Table S3. Table of model accuracy. 

Appendix S1. Model code. 

Appendix S2. Model script for the 16 models. 

Appendix S3. Script modularity and latent block model analysis (LBM).
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Figure S1. Site location in France: in blue the French départements Pas-de-Calais and Somme 
(Hauts-de-France region), in green the départements Eure and Seine Maritime (Normandie 
region), in orange the départment Gard (Occitanie region). The six sites correspond to the red 
dots (with the sites of Fourches and Bois de Fontaret represented by the same dot due to their 
closeness).
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Figure S2. Block clustering provided by LBM in the site of Falaises (FAL, Normandie), overlaid 
on a heatmap of species phenology overlap. Insect species are displayed in rows and plant 
species in columns, following their degree (number of partners). The blocks of insects and the 
blocks of plants are separated by solid black lines. Colours correspond to the number of 
months that are shared by each pair of plant and insect species (PO, phenology overlap), with 
higher PO corresponding to darker colours. Numbers are the number of visits observed in the 
field for a given plant-insect pair. Complete species names are reported in Table S2. 
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Figure S3. Block clustering provided by LBM in the site of Bois de Fontaret (BF, Occitanie), 
overlaid on a heatmap of species phenology overlap. Insect species are displayed in rows and 
plant species in columns, following their degree (number of partners). The blocks of insects 
and the blocks of plants are separated by solid black lines. Colours correspond to the number 
of months that are shared by each pair of plant and insect species (PO, phenology overlap), 
with higher PO corresponding to darker colours. Numbers are the number of visits observed 
in the field for a given plant-insect pair. Complete species names are reported in Table S2. 
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Figure S4. Block clustering provided by LBM in the site of Larris (LAR, Hauts-de-France), 
overlaid on a heatmap of species phenology overlap. Insect species are displayed in rows and 
plant species in columns, following their degree (number of partners). The blocks of insects 
and the blocks of plants are separated by solid black lines. Colours correspond to the number 
of months that are shared by each pair of plant and insect species (PO, phenology overlap), 
with higher PO corresponding to darker colours. Numbers are the number of visits observed 
in the field for a given plant-insect pair. Complete species names are reported in Table S2. 
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Figure S5. Block clustering provided by LBM in the site of Riez (R, Hauts-de-France), overlaid 
on a heatmap of species phenology overlap. Insect species are displayed in rows and plant 
species in columns, following their degree (number of partners). The blocks of insects and the 
blocks of plants are separated by solid black lines. Colours correspond to the number of 
months that are shared by each pair of plant and insect species (PO, phenology overlap), with 
higher PO corresponding to darker colours. Numbers are the number of visits observed in the 
field for a given plant-insect pair. Complete species names are reported in Table S2. 
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Table S1. Table of transformed plant abundances. The first column shows the Braun-Blanquet 
coefficients of, the second column, their percentages, and the third column, the transformed 
abundances used as the plant abundances in the model. 

 

Coefficient Braun-
Blanquet 

Abundance percentage 
interval 

Abundance 
percentage 

i 1 individual 0.1% 

+ < 1 % 0.5% 

1 1-10 % 5% 

2 10-25 % 15% 

3 25-50 % 35% 

4 50-75 % 65% 

5 75-100 % 85% 

 

Table S2. Table of hoverfly and plant species names and abbreviations used in the LBM 
Figures. 

 
Type Short name Scientific name Notes 

Syrphidae C.albitarsis.ranunculi 
Cheilosia albitarsis (Meigen), 1822 / 
Cheilosia ranunculi (Doczkal), 2000 

the identification is not 
possible, could be both 
species - in the analysis 
we used as one species 

Syrphidae C.pagana Cheilosia pagana (Meigen), 1822  

Syrphidae C.scutellata Cheilosia scutellata (Fallen), 1817  

Syrphidae C.soror Cheilosia soror (Zetterstedt), 1843  

Syrphidae C.urbana Cheilosia urbana (Meigen), 1822  

Syrphidae C.vernalis Cheilosia vernalis (Fallen), 1817  

Syrphidae C.bicinctum Chrysotoxum bicinctum (L.), 1758  

Syrphidae C.cautum Chrysotoxum cautum (Harris), 1776  

Syrphidae C.cisalpinum Chrysotoxum cisalpinum (Rondani), 1845  

Syrphidae C.elegans Chrysotoxum elegans (Loew), 1841  

Syrphidae C.octomaculatum Chrysotoxum octomaculatum (Curtis), 1837  

Syrphidae D.albostriatus Dasysyrphus albostriatus (Fallen), 1817  

Syrphidae E.balteatus Episyrphus balteatus (De Geer), 1776  

Syrphidae E.arbustorum Eristalis arbustorum (L.), 1758  

Syrphidae E.horticola Eristalis horticola (De Geer), 1776  

Syrphidae E.nemorum Eristalis nemorum (L.), 1758  

Syrphidae E.pertinax Eristalis pertinax (Scopoli), 1763  

Syrphidae E.similis Eristalis similis (Fallen), 1817  

Syrphidae E.tenax Eristalis tenax (L.), 1758  

Syrphidae E.clavatus Eumerus clavatus (Becker), 1923  
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Syrphidae Eumerus sp. Eumerus sp. 
the identification is not 
possible 

Syrphidae E.corollae Eupeodes corollae (Fabricius), 1794  

Syrphidae E.latifasciatus Eupeodes latifasciatus (Macquart), 1829  

Syrphidae E.luniger Eupeodes luniger (Meigen), 1822  

Syrphidae F.aurea Ferdinandea aurea (Rondani), 1844  

Syrphidae H.hybridus Helophilus hybridus (Loew), 1846  

Syrphidae H.pendulus Helophilus pendulus (L.), 1758  

Syrphidae H.trivittatus Helophilus trivittatus (Fabricius), 1805  

Syrphidae M.mellinum Melanostoma mellinum (L.), 1758  

Syrphidae M.scalare Melanostoma scalare (Fabricius), 1794  

Syrphidae Melanostoma sp. Melanostoma sp. 
the identification is not 
possible 

Syrphidae M.auricollis Meliscaeva auricollis (Meigen), 1822  

Syrphidae M.albifrons Merodon albifrons (Meigen), 1822  

Syrphidae M.avidus Merodon avidus (Rossi), 1790  

Syrphidae M.elegans Merodon elegans (Hurkmans), 1993  

Syrphidae M.equestris Merodon equestris (Fabricius), 1794  

Syrphidae M.geniculatus Merodon geniculatus Strobl, 1909  

Syrphidae M.moenium Merodon moenium (Wiedemann), 1822  

Syrphidae M.nigritarsis Merodon nigritarsis Rondani, 1845  

Syrphidae M.rufus Merodon rufus Meigen, 1838  

Syrphidae M.serratulus 
Merodon serrulatus Wiedemann in Meigen, 
1822 

 

Syrphidae M.analis Microdon analis (Macquart), 1842  

Syrphidae M.crabroniformis Milesia crabroniformis (Fabricius), 1775  

Syrphidae M.florea Myathropa florea (L.), 1758  

Syrphidae N.podagrica Neoascia podagrica (Fabricius), 1775  

Syrphidae P.haemorrhous Paragus haemorrhous Meigen, 1822  

Syrphidae P.tibialis Paragus tibialis (Fallen), 1817  

Syrphidae Paragus sp. Paragus sp. 
the identification is not 
possible 

Syrphidae P.pruinosomaculata Pelecocera pruinosomaculata Strobl, 1906  

Syrphidae P.tricincta Pelecocera tricincta Meigen, 1822  

Syrphidae P.austriaca Pipiza austriaca Meigen, 1822  

Syrphidae P.divicoi Pipizella divicoi (Goeldlin), 1974  

Syrphidae P.virens Pipizella virens (Fabricius), 1805  

Syrphidae P.zeneggenensis Pipizella zeneggenensis (Goeldlin), 1974  

Syrphidae Pipizella sp. Pipizella sp.  

Syrphidae P.albimanus Platycheirus albimanus (Fabricius), 1781  

Syrphidae P.albimanus.muelleri 
Platycheirus albimanus (Fabricius), 1782 / 
Platycheirus muelleri (Marcuzzi), 1941 

the identification is not 
possible, could be both 
species 

Syrphidae P.clypeatus Platycheirus clypeatus (Meigen), 1822  

Syrphidae P.Platycheirus Platycheirus sp. 
the identification is not 
possible 

Syrphidae R.campestris Rhingia campestris Meigen, 1822  

Syrphidae S.dignota Scaeva dignota (Rondani, 1857)  

Syrphidae S.pyrastri Scaeva pyrastri (L.), 1758  
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Syrphidae S.silentis Sericomyia silentis (Harris), 1776  

Syrphidae S.scripta Sphaerophoria scripta (L.), 1758  

Syrphidae S.taeniata Sphaerophoria taeniata (Meigen), 1822  

Syrphidae S.Sphaerophoria Sphaerophoria sp. 
the female identification 
is not possible 

Syrphidae S.pipiens Syritta pipiens (L.), 1758  

Syrphidae S.ribesii Syrphus ribesii (L.), 1758  

Syrphidae S.torvus Syrphus torvus (Osten-Sacken), 1875  

Syrphidae S.vitripennis Syrphus vitripennis (Meigen), 1822  

Syrphidae V.bombylans Volucella bombylans (L.), 1758  

Syrphidae V.inanis Volucella inanis (L.), 1758  

Syrphidae V.pellucens Volucella pellucens (L.), 1758  

Syrphidae V.zonaria Volucella zonaria (Poda), 1761  

Syrphidae X.citrofasciatum 
Xanthogramma citrofasciatum (De Geer), 
1776 

 

Syrphidae X.dives Xanthogramma dives (Rondani), 1857  

Plants A.millefolium Achillea millefolium  

Plants A.genevensis Ajuga genevensis  

Plants A.sphaerocephalon Allium sphaerocephalon  

Plants A.pyramidalis Anacamptis pyramidalis   

Plants A.ramosum Anthericum ramosum  

Plants A.montana Anthyllis montana  

Plants A.vulneraria Anthyllis vulneraria  

Plants A.monspeliensis Aphyllanthes monspeliensis   

Plants A.aggregata Arenaria aggregata  

Plants A.cynanchica Asperula cynanchica  

Plants A.linosyris Aster linosyris  

Plants B.perennis Bellis perennis  

Plants B.laevigata Biscutella laevigata  

Plants B.perfoliata Blackstonia perfoliata  

Plants B.repanda Brassica repanda  

Plants B.falcatum Bupleurum falcatum  

Plants C.patula Campanula patula  

Plants C.rapunculus Campanula rapunculus  

Plants C.rotundifolia Campanula rotundifolia  

Plants C.erythraea Centaurium erythraea  

Plants C.jacea Centaurea jacea  

Plants C.scabiosa Centaurea scabiosa  

Plants C.acaule Cirsium acaule  

Plants C.vulgare Clinopodium vulgare  

Plants C.cantabrica Convolvulus cantabrica  

Plants C.minima Coronilla minima  

Plants C.capillaris Crepis capillaris   

Plants C.foetida Crepis foetida  

Plants C.planiflora Cuscuta planiflora var. godronii  

Plants D.carota Daucus carota  

Plants D.pentaphyllum Dorycnium pentaphyllum   

Plants E.vulgare Echium vulgare  

Plants E.ritro Echinops ritro  
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Plants E.atrorubens Epipactis atrorubens  

Plants E.campestre Eryngium campestre  

Plants E.cyparissias Euphorbia cyparissias  

Plants E.esula Euphorbia esula  

Plants E.exigua Euphorbia exigua   

Plants E.nicaeensis Euphorbia nicaeensis  

Plants E.stricta Euphrasia stricta  

Plants F.ericoides Fumana ericoides  

Plants F.procumbens Fumana procumbens  

Plants G.corrudifolium Galium corrudifolium  

Plants G.mollugo Galium mollugo  

Plants G.pumilum Galium pumilum  

Plants G.amarella Gentianella amarella  

Plants G.vulgaris Globularia vulgaris   

Plants G.conopsea Gymnadenia conopsea  

Plants H.apenninum Helianthemum apenninum  

Plants H.nummularium Helianthemum nummularium  

Plants H.oelandicum Helianthemum oelandicum  

Plants H.stoechas Helichrysum stoechas  

Plants H.lachenalii Hieracium lachenalii  

Plants H.pilosella Hieracium pilosella (synonyms) 
Pilosella officinarum 
(accepted name) 

Plants H.comosa Hippocrepis comosa  

Plants H.perforatum Hypericum perforatum  

Plants I.montana Inula montana  

Plants K.arvensis Knautia arvensis  

Plants L.angustifolia Lavandula angustifolia  

Plants L.hispidus Leontodon hispidus  

Plants L.graminifolium Leucanthemum graminifolium  

Plants L.vulgare Leucanthemum vulgare  

Plants L.catharticum Linum catharticum  

Plants L.narbonense Linum narbonense  

Plants L.tenuifolium Linum tenuifolium   

Plants L.corniculatus Lotus corniculatus  

Plants L.delortii Lotus delortii  

Plants M.lupulina Medicago lupulina  

Plants M.minima Medicago minima  

Plants M.capillacea Minuartia capillacea  

Plants M.rostrata Minuartia rostrata  

Plants M.arvensis Myosotis arvensis  

Plants O.verna Odontites verna  

Plants O.supina Onobrychis supina  

Plants O.natrix Ononis natrix  

Plants O.repens Ononis repens  

Plants O.vulgare Origanum vulgare  

Plants O.angustifolium Ornithogalum angustifolium  

Plants P.orbiculare Phyteuma orbiculare  

Plants P.hieracioides Picris hieracioides  

Plants P.saxifraga Pimpinella saxifraga  
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Plants P.lanceolata Plantago lanceolata  

Plants P.media Plantago media  

Plants P.neumanniana Potentilla neumanniana  

Plants P.reptans Potentilla reptans  

Plants P.veris Primula veris  

Plants P.grandiflora Prunella grandiflora  

Plants R.bulbosus Ranunculus bulbosus  

Plants R.gramineus Ranunculus gramineus  

Plants R.lutea Reseda lutea  

Plants R.pumilus Rhinanthus pumilus  

Plants R.canina Rosa canina  

Plants S.minor Sanguisorba minor  

Plants S.columbaria Scabiosa columbaria  

Plants S.triandra Scabiosa triandra  

Plants S.autumnalis Scilla autumnalis  

Plants S.acre Sedum acre  

Plants S.album Sedum album subsp. micranthum   

Plants S.jacobaea Senecio jacobaea  

Plants S.libanotis Seseli libanotis  

Plants S.montanum Seseli montanum  

Plants S.spiralis Spiranthes spiralis  

Plants S.recta Stachys recta  

Plants Taraxacum sp. Taraxacum sp.  

Plants T.montanum Teucrium montanum   

Plants T.humifusum Thesium humifusum  

Plants T.dolomiticus Thymus dolomiticus  

Plants T.praecox Thymus praecox  

Plants T.vulgaris Thymus vulgaris  

Plants T.pratensis Tragopogon pratensis  

Plants T.pratense Trifolium pratense  

Plants T.glauca Trinia glauca  

Plants V.persica Veronica persica  

Plants V.tetrasperma Vicia tetrasperma  

Plants V.hirundinaria Vincetoxicum hirundinaria  
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Table S3. Table of model accuracy. The upper part of the table shows the results of the self-validation: in the region Occitanie the self-validation 
was tested for the site Bois de Fontaret (BF ~ BF) and the site of Fourches (F ~ F); in the region Normandie for the site of Château Gaillard (CG ~ 
CG) and the sites of Falaises (FAL ~ FAL) ; and in the region Hauts-de-France for the site of Larris (LAR ~ LAR) and for the site of Riez (R ~ R). The 
lower part of the table shows the results of the cross-validation only between each site of the same region: in the region Occitanie between Bois 
de Fontaret et Fourches (BF ~ F and vice versa F ~ BF); in the region Normandie between the site of Château Gaillard and Falaises (CG ~ FAL and 
vice versa FAL ~ CG); and in the region Hauts-de-France between the site of Larris and Riez (LAR ~ R and vice versa R ~ LAR). 

 

Model type Region Sites Threshold AUC 
Omission 

rate 
Sensitivity Specificity 

Prop 
correct 

Kappa 

Self-validation Occitanie BF ~ BF 0.15 0.78 0.20 0.80 0.75 0.75 0.22 
 Occitanie F ~ F 0.16 0.78 0.19 0.81 0.74 0.75 0.25 
 Normandie CG ~ CG 0.44 0.75 0.29 0.71 0.79 0.78 0.34 
 Normandie FAL ~ FAL 0.37 0.76 0.16 0.84 0.67 0.69 0.27 
 Hauts-de-France LAR ~ LAR 0.29 0.75 0.16 0.84 0.66 0.69 0.27 

  Hauts-de-France R ~ R 0.27 0.81 0.23 0.77 0.86 0.84 0.53 

Cross-validation Occitanie BF ~ F 0.15 0.73 0.14 0.86 0.59 0.63 0.20 
 Occitanie F ~ BF 0.16 0.67 0.30 0.70 0.64 0.65 0.17 
 Normandie CG ~ FAL 0.44 0.62 0.45 0.55 0.70 0.67 0.21 
 Normandie FAL ~ CG 0.37 0.68 0.24 0.76 0.60 0.63 0.25 
 Hauts-de-France LAR ~ R 0.29 0.63 0.35 0.65 0.61 0.61 0.17 

 Hauts-de-France R ~ LAR 0.27 0.65 0.42 
0.58 0.72 

0.69 0.22 
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Appendix S1: Model Code 

The model code (in JAGS language) given in this supplementary material refers to the “model 

Z0” which considers all four parameters (model effects, Table 2 in the main text). Overall, we 

estimated 16 models that included between 0 and 4 of the above-mentioned effects. To create 

the code for these other models, parameters should be removed following the order in the 

Tab. 2. The four parameters tested in the model are: (i) alpha: effect of the phenology overlap 

(cooc) on the probability of interaction; (ii) epsilon: effect of the phenology overlap on the 

intensity of visits; (iii) gamma: effect of the insect abundances (ab_I) on the intensity of visits; 

and (iv) delta: effect of the plant abundances (ab_P) on the intensity of visits. 

 

model 

{ 

   for( i in 1 : dim1 ) { 

      for( p in 1 : dim2 ) { 

        inter[i , p] ~ dbern(mu[i , p]) 

 logit(mu[i , p]) <- beta + alpha*cooc[i , p] + effet_I[i] + effet_P[p] 

 lambda[i,p] <- exp(theta[i,p]) 

 theta[i,p] <- theta0 + gamma*ab_I[i] + delta*ab_P[p] + epsilon*log(1+cooc[i,p]) 

 visit[i,p] ~ dpois( inter[i,p]*lambda[i,p] ) 

 loglik[i,p] <- log(ifelse(visit[i,p]==0,1-mu[i,p]+mu[i , p]*dpois(visit[i,p],lambda[i,p]),mu[i , 

p]*dpois(visit[i,p],lambda[i,p]))) 

      } 

   } 

     

   for( i in 1 : dim1 ) { 

      effet_I[i] ~ dnorm( 0.0,tau_I) 

   } 

 

   for( p in 1 : dim2 ) { 

      effet_P[p] ~ dnorm( 0.0,tau_P) 

   } 

 

 tau_I ~ dexp( 10) 

 tau_P ~ dexp( 10) 

 alpha ~ dnorm(0,0.01) 

 beta ~  dnorm(0,0.01) 

 theta0 ~ dnorm(0,0.01) 

 gamma ~ dnorm(0,0.01) 

 delta ~ dnorm(0,0.01) 

 epsilon ~ dnorm(0,0.01) 

} 

 

Appendix 2: Model script for the 16 models – LOO values 
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The following generic script was applied to all the study sites using all 16 models. The script is 

separated in three blocks which communicate among them: the script options, the model 

definitions and the execution (model inference). We defined three options to set (i) the name 

of the directory (-d), (ii) the site (-s) and (iii) the type of model (-m). 

We used, as an example, the information for the site of Bois de Fontaret (BF). 

Exemple: Rscript (name) “script-SEMLOO_generique.R” “-d o-BFs-2016” “-s BFs” 

In order to calculate the standardised coefficients for each parameters used, at the end of the 

third block, we added the functions to get the parameter values for each site and each model. 

 

####BLOCK 1 – SCRIPT OPTION #### 

library(optparse) 

option_list = list( 

        make_option(c("-d", "--dir"), type="character", default=NULL, help="directory", 

metavar="character"), 

        make_option(c("-s", "--site"), type="character", default=NULL, help="site name", 

metavar="character"), 

 make_option(c("-m", "--modele"), type="character", default="all", help="modele name", 

metavar="character")) 

opt_parser = OptionParser(option_list=option_list); 

opt = parse_args(opt_parser); 

site<-opt$site 

dossier<-opt$dir 

 

########### Librairies ######### 

library(bipartite) 

library(vegan) 

library(igraph) 

library(magrittr) 

library(dummies) 

library(MuMIn) 

library(rjags) 

library(boot) 

library(R2jags) 

library(coda) 

library(lattice) 

library(ggplot2) 

library(loo) 

library(matrixStats) 

 

#########Function to record the LOO values ####### 

write_values<-function(x, f, app) 

{ 

 write.table(x, append=app, file=f, sep="\t", row.names=T, col.names=T, quote=F) 

} 

####BLOCK 2 – MODEL FUNCTIONS ##### 



 

PEER COMMUNITY IN ECOLOGY 41 

#Model function and model initialization: one function for each model from model Z15, with 0 

parameters, to Z00 with all the parameters# 

### MODEL Z015 

mZ015<-function(){ 

 init.funZ015 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "theta0" = 

rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 

 } 

 mod.Z015<<-jags(inits=init.funZ015,model.file = "modelZ015_code.txt",data = 

list("visit","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","beta","theta0", "loglik"),n.chains = 1, n.iter=1000000, 

n.burnin = 250000, n.thin = 250) 

 mod.Z015.mcmc<-as.mcmc(mod.Z015) 

 mZ015<-mod.Z015$BUGSoutput$sims.list 

 mZ015.deviance<-mZ015$deviance 

 mZ015.loglik<-mZ015$loglik 

 dimSEM<-dim(mZ015.loglik)[1] 

 list.mZ015<-sapply(1:dimSEM,function(x) matrix(mZ015.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ015<-(t(list.mZ015)) 

 mZ015.loo<-loo(list.tmZ015) 

 loo_file<-paste(dossier, "/", site, "_Z015_loo.txt", sep="") 

 write_values("mZ015", app=F, loo_file) 

 mZ015_loo_pointwise<-mZ015.loo$pointwise 

 mZ015_loo_pareto_k<-mZ015.loo$pareto_k 

 mZ015.loo$pareto_k<-NULL 

 mZ015.loo$pointwise<-NULL 

 write_values(as.matrix(mZ015.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z015.RData", sep="")) 

} 

### MODEL Z014 

mZ014<-function(){ 

 init.funZ014 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "delta" = rnorm(1,0,1), 

"theta0" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 

 } 

 mod.Z014<<-jags(inits=init.funZ014,model.file = "modelZ014_code.txt",data = 

list("visit","ab_P","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","delta","beta","theta0","loglik"),n.chains = 1, 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z014.mcmc<-as.mcmc(mod.Z014) 

 mZ014<-mod.Z014$BUGSoutput$sims.list 

 mZ014.deviance<-mZ014$deviance 

 mZ014.loglik<-mZ014$loglik 

 dimSEM<-dim(mZ014.loglik)[1] 

 list.mZ014<-sapply(1:dimSEM,function(x) matrix(mZ014.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ014<-(t(list.mZ014)) 
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 mZ014.loo<-loo(list.tmZ014) 

 mZ014.loo 

 loo_file<-paste(dossier, "/", site, "_Z014_loo.txt", sep="") 

 write_values("mZ014", app=T, loo_file) 

 mZ014_loo_pointwise<-mZ014.loo$pointwise 

 mZ014_loo_pareto_k<-mZ014.loo$pareto_k 

 mZ014.loo$pareto_k<-NULL 

 mZ014.loo$pointwise<-NULL 

 write_values(as.matrix(mZ014.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z014.RData", sep="")) 

} 

### MODEL Z013 

mZ013<-function(){ 

 init.funZ013 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "gamma" = 

rnorm(1,0,1), "theta0" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), 

"inter"=inter0) 

 } 

 mod.Z013<<-jags(inits=init.funZ013,model.file = "modelZ013_code.txt",data = 

list("visit","ab_I","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","gamma","beta","theta0","loglik"),n.chains = 1, 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z013.mcmc<-as.mcmc(mod.Z013) 

 mZ013<-mod.Z013$BUGSoutput$sims.list 

 mZ013.deviance<-mZ013$deviance 

 mZ013.loglik<-mZ013$loglik 

 dimSEM<-dim(mZ013.loglik)[1] 

 list.mZ013<-sapply(1:dimSEM,function(x) matrix(mZ013.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ013<-(t(list.mZ013)) 

 mZ013.loo<-loo(list.tmZ013) 

 mZ013.loo 

 loo_file<-paste(dossier, "/", site, "_Z013_loo.txt", sep="") 

 write_values("mZ013", app=T, loo_file) 

 mZ013_loo_pointwise<-mZ013.loo$pointwise 

 mZ013_loo_pareto_k<-mZ013.loo$pareto_k 

 mZ013.loo$pareto_k<-NULL 

 mZ013.loo$pointwise<-NULL 

 write_values(as.matrix(mZ013.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z013.RData", sep="")) 

} 

### MODEL Z012 

mZ012<-function(){ 

 init.funZ012 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "theta0" = 

rnorm(1,0,1), "epsilon" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), 

"inter"=inter0) 
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 } 

 mod.Z012<<-jags(inits=init.funZ012,model.file = "modelZ012_code.txt",data = 

list("cooc","visit","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","beta","theta0","epsilon","loglik"),n.chains = 1, 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z012.mcmc<-as.mcmc(mod.Z012) 

 mZ012<-mod.Z012$BUGSoutput$sims.list 

 mZ012.deviance<-mZ012$deviance 

 mZ012.loglik<-mZ012$loglik 

 dimSEM<-dim(mZ012.loglik)[1] 

 list.mZ012<-sapply(1:dimSEM,function(x) matrix(mZ012.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ012<-(t(list.mZ012)) 

 mZ012.loo<-loo(list.tmZ012) 

 mZ012.loo 

 loo_file<-paste(dossier, "/", site, "_Z012_loo.txt", sep="") 

 write_values("mZ012", app=T, loo_file) 

 mZ012_loo_pointwise<-mZ012.loo$pointwise 

 mZ012_loo_pareto_k<-mZ012.loo$pareto_k 

 mZ012.loo$pareto_k<-NULL 

 mZ012.loo$pointwise<-NULL 

 write_values(as.matrix(mZ012.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z012.RData", sep="")) 

} 

### MODEL Z011 

mZ011<-function(){ 

 init.funZ011 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "theta0" 

= rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 

 } 

 mod.Z011<<-jags(inits=init.funZ011,model.file = "modelZ011_code.txt",data = 

list("cooc","visit","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","beta","theta0","loglik"),n.chains = 1, 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z011.mcmc<-as.mcmc(mod.Z011) 

 mZ011<-mod.Z011$BUGSoutput$sims.list 

 mZ011.deviance<-mZ011$deviance 

 mZ011.loglik<-mZ011$loglik 

 dimSEM<-dim(mZ011.loglik)[1] 

 list.mZ011<-sapply(1:dimSEM,function(x) matrix(mZ011.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ011<-(t(list.mZ011)) 

 mZ011.loo<-loo(list.tmZ011) 

 mZ011.loo 

 loo_file<-paste(dossier, "/", site, "_Z011_loo.txt", sep="") 

 write_values("mZ011", app=T, loo_file) 

 mZ011_loo_pointwise<-mZ011.loo$pointwise 

 mZ011_loo_pareto_k<-mZ011.loo$pareto_k 
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 mZ011.loo$pareto_k<-NULL 

 mZ011.loo$pointwise<-NULL 

 write_values(as.matrix(mZ011.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z011.RData", sep="")) 

} 

### MODEL Z010 

mZ010<-function(){ 

 init.funZ010 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "gamma" = 

rnorm(1,0,1), "delta" = rnorm(1,0,1), "theta0" = rnorm(1,0,1), 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 

 } 

 mod.Z010<<-jags(inits=init.funZ010,model.file = "modelZ010_code.txt",data = 

list("visit","ab_I","ab_P","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","gamma","delta","beta","theta0","loglik"),n.chains = 1, 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z010.mcmc<-as.mcmc(mod.Z010) 

 mZ010<-mod.Z010$BUGSoutput$sims.list 

 mZ010.deviance<-mZ010$deviance 

 mZ010.loglik<-mZ010$loglik 

 dimSEM<-dim(mZ010.loglik)[1] 

 list.mZ010<-sapply(1:dimSEM,function(x) matrix(mZ010.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ010<-(t(list.mZ010)) 

 mZ010.loo<-loo(list.tmZ010) 

 mZ010.loo 

 loo_file<-paste(dossier, "/", site, "_Z010_loo.txt", sep="") 

 write_values("mZ010", app=T, loo_file) 

 mZ010_loo_pointwise<-mZ010.loo$pointwise 

 mZ010_loo_pareto_k<-mZ010.loo$pareto_k 

 mZ010.loo$pareto_k<-NULL 

 mZ010.loo$pointwise<-NULL 

 write_values(as.matrix(mZ010.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z010.RData", sep="")) 

} 

### MODEL Z09 

mZ09<-function(){ 

 init.funZ09 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "delta" = rnorm(1,0,1), 

"theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1), 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 

 } 

 mod.Z09<<-jags(inits=init.funZ09,model.file = "modelZ09_code.txt",data = 

list("cooc","visit","ab_P","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","delta","beta","theta0","epsilon","loglik"),n.chains = 1, 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z09.mcmc<-as.mcmc(mod.Z09) 
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 mZ09<-mod.Z09$BUGSoutput$sims.list 

 mZ09.deviance<-mZ09$deviance 

 mZ09.loglik<-mZ09$loglik 

 dimSEM<-dim(mZ09.loglik)[1] 

 list.mZ09<-sapply(1:dimSEM,function(x) matrix(mZ09.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ09<-(t(list.mZ09)) 

 mZ09.loo<-loo(list.tmZ09) 

 mZ09.loo 

 loo_file<-paste(dossier, "/", site, "_Z09_loo.txt", sep="") 

 write_values("mZ09", app=T, loo_file) 

 mZ09_loo_pointwise<-mZ09.loo$pointwise 

 mZ09_loo_pareto_k<-mZ09.loo$pareto_k 

 mZ09.loo$pareto_k<-NULL 

 mZ09.loo$pointwise<-NULL 

 write_values(as.matrix(mZ09.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z09.RData", sep="")) 

} 

### MODEL Z08 

mZ08<-function(){ 

 init.funZ08 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "gamma" = 

rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1), 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 

 } 

 mod.Z08<<-jags(inits=init.funZ08,model.file = "modelZ08_code.txt",data = 

list("cooc","visit","ab_I","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","gamma","beta","theta0","epsilon","loglik"),n.chains = 1, 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z08.mcmc<-as.mcmc(mod.Z08) 

 mZ08<-mod.Z08$BUGSoutput$sims.list 

 mZ08.deviance<-mZ08$deviance 

 mZ08.loglik<-mZ08$loglik 

 dimSEM<-dim(mZ08.loglik)[1] 

 list.mZ08<-sapply(1:dimSEM,function(x) matrix(mZ08.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ08<-(t(list.mZ08)) 

 mZ08.loo<-loo(list.tmZ08) 

 mZ08.loo  

 loo_file<-paste(dossier, "/", site, "_Z08_loo.txt", sep="") 

 write_values("mZ08", app=T, loo_file) 

 mZ08_loo_pointwise<-mZ08.loo$pointwise 

 mZ08_loo_pareto_k<-mZ08.loo$pareto_k 

 mZ08.loo$pareto_k<-NULL 

 mZ08.loo$pointwise<-NULL 

 write_values(as.matrix(mZ08.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z08.RData", sep="")) 

} 
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### MODEL Z07 

mZ07<-function(){ 

 init.funZ07 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "delta" = 

rnorm(1,0,1), "theta0" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), 

"inter"=inter0) 

 } 

 mod.Z07<<-jags(inits=init.funZ07,model.file = "modelZ07_code.txt",data = 

list("cooc","visit","ab_P","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","delta","beta","theta0","loglik"),n.chains = 1, 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z07.mcmc<-as.mcmc(mod.Z07) 

 mZ07<-mod.Z07$BUGSoutput$sims.list 

 mZ07.deviance<-mZ07$deviance 

 mZ07.loglik<-mZ07$loglik 

 dimSEM<-dim(mZ07.loglik)[1] 

 list.mZ07<-sapply(1:dimSEM,function(x) matrix(mZ07.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ07<-(t(list.mZ07)) 

 mZ07.loo<-loo(list.tmZ07) 

 mZ07.loo 

 loo_file<-paste(dossier, "/", site, "_Z07_loo.txt", sep="") 

 write_values("mZ07", app=T, loo_file) 

 mZ07_loo_pointwise<-mZ07.loo$pointwise 

 mZ07_loo_pareto_k<-mZ07.loo$pareto_k 

 mZ07.loo$pareto_k<-NULL 

 mZ07.loo$pointwise<-NULL 

 write_values(as.matrix(mZ07.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z07.RData", sep="")) 

} 

### MODEL Z06 

mZ06<-function(){ 

 init.funZ06 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "gamma" 

= rnorm(1,0,1), "theta0" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), 

"inter"=inter0) 

 } 

 mod.Z06<<-jags(inits=init.funZ06,model.file = "modelZ06_code.txt",data = 

list("cooc","visit","ab_I","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","gamma","beta","theta0","loglik"),n.chains = 1, 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z06.mcmc<-as.mcmc(mod.Z06) 

 mZ06<-mod.Z06$BUGSoutput$sims.list 

 mZ06.deviance<-mZ06$deviance 

 mZ06.loglik<-mZ06$loglik 

 dimSEM<-dim(mZ06.loglik)[1] 

 list.mZ06<-sapply(1:dimSEM,function(x) matrix(mZ06.loglik[x,,],nrow=dim1*dim2)) 
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 list.tmZ06<-(t(list.mZ06)) 

 mZ06.loo<-loo(list.tmZ06) 

 mZ06.loo 

 loo_file<-paste(dossier, "/", site, "_Z06_loo.txt", sep="") 

 write_values("mZ06", app=T, loo_file) 

 mZ06_loo_pointwise<-mZ06.loo$pointwise 

 mZ06_loo_pareto_k<-mZ06.loo$pareto_k 

 mZ06.loo$pareto_k<-NULL 

 mZ06.loo$pointwise<-NULL 

 write_values(as.matrix(mZ06.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z06.RData", sep="")) 

} 

### MODEL Z05 

mZ05<-function(){ 

 init.funZ05 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "theta0" 

= rnorm(1,0,1), "epsilon" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), 

"inter"=inter0) 

 } 

 mod.Z05<<-jags(inits=init.funZ05,model.file = "modelZ05_code.txt",data = 

list("cooc","visit","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","beta","theta0","epsilon","loglik"),n.chains = 1, 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z05.mcmc<-as.mcmc(mod.Z05) 

 mZ05<-mod.Z05$BUGSoutput$sims.list 

 mZ05.deviance<-mZ05$deviance 

 mZ05.loglik<-mZ05$loglik 

 dimSEM<-dim(mZ05.loglik)[1] 

 list.mZ05<-sapply(1:dimSEM,function(x) matrix(mZ05.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ05<-(t(list.mZ05)) 

 mZ05.loo<-loo(list.tmZ05) 

 mZ05.loo 

 loo_file<-paste(dossier, "/", site, "_Z05_loo.txt", sep="") 

 write_values("mZ05", app=T, loo_file) 

 mZ05_loo_pointwise<-mZ05.loo$pointwise 

 mZ05_loo_pareto_k<-mZ05.loo$pareto_k 

 mZ05.loo$pareto_k<-NULL 

 mZ05.loo$pointwise<-NULL 

 write_values(as.matrix(mZ05.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z05.RData", sep="")) 

} 

### MODEL Z04 

mZ04<-function(){ 

 init.funZ04 <-function(){ 
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   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "gamma" = 

rnorm(1,0,1), "delta" = rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1), 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 

 } 

 mod.Z04<<-jags(inits=init.funZ04,model.file = "modelZ04_code.txt",data = 

list("cooc","visit","ab_I","ab_P","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","gamma","delta","beta","theta0","epsilon","loglik"),n.chai

ns = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z04.mcmc<-as.mcmc(mod.Z04) 

 mZ04<-mod.Z04$BUGSoutput$sims.list 

 mZ04.deviance<-mZ04$deviance 

 mZ04.loglik<-mZ04$loglik 

 dimSEM<-dim(mZ04.loglik)[1] 

 list.mZ04<-sapply(1:dimSEM,function(x) matrix(mZ04.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ04<-(t(list.mZ04)) 

 mZ04.loo<-loo(list.tmZ04) 

 mZ04.loo 

 loo_file<-paste(dossier, "/", site, "_Z04_loo.txt", sep="") 

 write_values("mZ04", app=T, loo_file) 

 mZ04_loo_pointwise<-mZ04.loo$pointwise 

 mZ04_loo_pareto_k<-mZ04.loo$pareto_k 

 mZ04.loo$pareto_k<-NULL 

 mZ04.loo$pointwise<-NULL 

 write_values(as.matrix(mZ04.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z04.RData", sep="")) 

} 

### MODEL Z03 

mZ03<-function(){ 

 init.funZ03 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "gamma" 

= rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1), 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 

 } 

 mod.Z03<<-jags(inits=init.funZ03,model.file = "modelZ03_code.txt",data = 

list("cooc","visit","ab_I","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","gamma","beta","theta0","epsilon","loglik"),n.cha

ins = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z03.mcmc<-as.mcmc(mod.Z03) 

 mZ03<-mod.Z03$BUGSoutput$sims.list 

 mZ03.deviance<-mZ03$deviance 

 mZ03.loglik<-mZ03$loglik 

 dimSEM<-dim(mZ03.loglik)[1] 

 list.mZ03<-sapply(1:dimSEM,function(x) matrix(mZ03.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ03<-(t(list.mZ03)) 

 mZ03.loo<-loo(list.tmZ03) 

 mZ03.loo 
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 loo_file<-paste(dossier, "/", site, "_Z03_loo.txt", sep="") 

 write_values("mZ03", app=T, loo_file) 

 mZ03_loo_pointwise<-mZ03.loo$pointwise 

 mZ03_loo_pareto_k<-mZ03.loo$pareto_k 

 mZ03.loo$pareto_k<-NULL 

 mZ03.loo$pointwise<-NULL 

 write_values(as.matrix(mZ03.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z03.RData", sep="")) 

} 

### MODEL Z02 

mZ02<-function(){ 

 init.funZ02 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1, "beta" = rnorm(1,0,1), "delta" = 

rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1), 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 

 } 

 mod.Z02<<-jags(inits=init.funZ02,model.file = "modelZ02_code.txt",data = 

list("cooc","visit","ab_P","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","delta","beta","theta0","epsilon","loglik"),n.chain

s = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z02.mcmc<-as.mcmc(mod.Z02) 

 mZ02<-mod.Z02$BUGSoutput$sims.list 

 mZ02.deviance<-mZ02$deviance 

 mZ02.loglik<-mZ02$loglik 

 dimSEM<-dim(mZ02.loglik)[1] 

 list.mZ02<-sapply(1:dimSEM,function(x) matrix(mZ02.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ02<-(t(list.mZ02)) 

 mZ02.loo<-loo(list.tmZ02) 

 mZ02.loo 

 loo_file<-paste(dossier, "/", site, "_Z02_loo.txt", sep="") 

 write_values("mZ02", app=T, loo_file) 

 mZ02_loo_pointwise<-mZ02.loo$pointwise 

 mZ02_loo_pareto_k<-mZ02.loo$pareto_k 

 mZ02.loo$pareto_k<-NULL 

 mZ02.loo$pointwise<-NULL 

 write_values(as.matrix(mZ02.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z02.RData", sep="")) 

} 

### MODEL Z01 

mZ01<-function(){ 

 init.funZ01 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "gamma" 

= rnorm(1,0,1), "delta" = rnorm(1,0,1), "theta0" = rnorm(1,0,1), 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 

 } 
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 mod.Z01<<-jags(inits=init.funZ01,model.file = "modelZ01_code.txt",data = 

list("cooc","visit","ab_I","ab_P", "dim1", "dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","gamma","delta","beta","theta0","loglik"),n.chain

s = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z01.mcmc<-as.mcmc(mod.Z01) 

 mZ01<-mod.Z01$BUGSoutput$sims.list 

 mZ01.deviance<-mZ01$deviance 

 mZ01.loglik<-mZ01$loglik 

 dimSEM<-dim(mZ01.loglik)[1] 

 list.mZ01<-sapply(1:dimSEM,function(x) matrix(mZ01.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ01<-(t(list.mZ01)) 

 mZ01.loo<-loo(list.tmZ01) 

 mZ01.loo 

 loo_file<-paste(dossier, "/", site, "_Z01_loo.txt", sep="") 

 write_values("mZ01", app=T, loo_file) 

 mZ01_loo_pointwise<-mZ01.loo$pointwise 

 mZ01_loo_pareto_k<-mZ01.loo$pareto_k 

 mZ01.loo$pareto_k<-NULL 

 mZ01.loo$pointwise<-NULL 

 write_values(as.matrix(mZ01.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z01.RData", sep="")) 

} 

### MODEL Z00 

mZ00<-function(){ 

 init.funZ00 <-function(){ 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "gamma" 

= rnorm(1,0,1), "delta" = rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1), 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 

 } 

 mod.Z00<<-jags(inits=init.funZ00,model.file = "modelZ00_code.txt",data = 

list("cooc","visit","ab_I","ab_P","dim1","dim2"),parameters.to.save = 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","gamma","delta","beta","theta0","epsilon","loglik

"),n.chains = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250) 

 mod.Z00.mcmc<-as.mcmc(mod.Z00) 

 mZ00<-mod.Z00$BUGSoutput$sims.list 

 mZ00.deviance<-mZ00$deviance 

 mZ00.loglik<-mZ00$loglik 

 dimSEM<-dim(mZ00.loglik)[1] 

 list.mZ00<-sapply(1:dimSEM,function(x) matrix(mZ00.loglik[x,,],nrow=dim1*dim2)) 

 list.tmZ00<-(t(list.mZ00)) 

 mZ00.loo<-loo(list.tmZ00) 

 mZ00.loo 

 loo_file<-paste(dossier, "/", site, "_Z00_loo.txt", sep="") 

 write_values("mZ00", app=T, loo_file) 

 mZ00_loo_pointwise<-mZ00.loo$pointwise 

 mZ00_loo_pareto_k<-mZ00.loo$pareto_k 
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 mZ00.loo$pareto_k<-NULL 

 mZ00.loo$pointwise<-NULL 

 write_values(as.matrix(mZ00.loo), app=T, loo_file) 

 save.image(paste(dossier, "/", site, "_Z00.RData", sep="")) 

} 

###### end model functions 

print("JOB DONE") 

################################################### 

### Network information (do not change) ### 

###BLOCK 3 – MODEL EXECUTION ### 

#launch_modele<-function(){ 

 ntw<-read.table(paste(dossier, "/", site, "_ntw.txt", sep=""), 

sep="\t",header=T,row.names=1) 

 dim1<-dim(ntw)[1] 

 dim2<-dim(ntw)[2] 

 web<-as.matrix(ntw,dim1,dim2) 

 inter0<-dget(paste(dossier, "/", site, "_web_i.txt", sep="")) 

 cooc<-dget(paste(dossier, "/", site, "_co.txt", sep="")) 

 visit<-read.table(paste(dossier, "/", site, "_ntw.txt", sep=""),sep="\t",header=T) 

 visit<-as.matrix(visit) 

 abundanceI<-read.table(paste(dossier, "/", site, "_abI.txt", sep=""), sep="\t", header=T) 

 ab_I <- log(abundanceI[,2]) 

 abundanceP<-read.table(paste(dossier, "/", site, "_abP.txt", sep=""), sep="\t", header=T) 

 ab_P <- log(abundanceP[,2]) 

 if(opt$modele == "all") 

 { 

  print("modele: all") 

  for(i in 0:15) 

  { 

   print(paste("COMPUTING MODELE ", i, "\n", sep="")) 

   mod<-eval(parse(text=paste("mZ0", i, sep=""))) 

   mod() 

    

  } 

 }else{ 

  print(paste("modele: ", opt$modele), sep="") 

  mod<-eval(parse(text=paste("m", opt$modele, sep=""))) #recupération de la 

fonction du modele 

  mod() 

 } 

#### end model execution 

#launch_modele() 

 

### PARAMETER VALUES ### 

library(optparse) 

option_list = list( 
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 make_option(c("-d", "--dir"), type="character", default=NULL, help="model directory", 

metavar="character"), 

 make_option(c("-s", "--site"), type="character", default=NULL, help="site name", 

metavar="character")) 

opt_parser = OptionParser(option_list=option_list); 

opt = parse_args(opt_parser); 

rdata<-list.files(opt$dir, pattern="*_Z015.RData") 

load(paste(opt$dir, "/", rdata, sep="")) #chargement du RData qui contient tous les modèles pour un 

site donné 

print(paste("RData ", rdata, " loaded", sep="")) 

for(mod in ls(pattern="mod.Z0*")) 

{ 

 print(paste("getting values from ", mod, sep="")) 

 model<-eval(parse(text=mod)) 

 if(is.null(model$BUGSoutput$mean$alpha)){model$BUGSoutput$mean$alpha<-NA} 

 if(is.null(model$BUGSoutput$mean$beta)){model$BUGSoutput$mean$beta<-NA} 

 if(is.null(model$BUGSoutput$mean$delta)){model$BUGSoutput$mean$delta<-NA} 

 if(is.null(model$BUGSoutput$mean$epsilon)){model$BUGSoutput$mean$epsilon<-NA} 

 if(is.null(model$BUGSoutput$mean$gamma)){model$BUGSoutput$mean$gamma<-NA} 

 val<-matrix(c(model$BUGSoutput$mean$alpha, model$BUGSoutput$mean$beta, 

model$BUGSoutput$mean$delta, model$BUGSoutput$mean$epsilon, 

model$BUGSoutput$mean$gamma), 1, 5, dimnames=list("values", c("alpha", "beta", "delta", 

"epsilon", "gamma"))) 

 write.table(val, file=paste(opt$dir, "/", opt$site, "_", mod, "_values.txt", sep=""), quote=F, 

sep="\t", row.names=F, col.names=T) 

} 

 

Appendix S3: Modularity and latent block model analysis 

We calculated the modularity of the network using the cluster_leading_eigen method for 

modularity optimization implemented in the igraph package (Csardi and Nepusz 2006, 

Newman 2006). We then performed latent block models (LBM) using the BM_poisson 

method for quantitative network data implemented in the blockmodels package (Leger et al. 

2015). Blocks are calculated separately for the two groups (insect and plant) based on the 

number of visits (i.e. a weighted network). The algorithm finds the best divisions of insects 

and plants through fitting one Poisson parameter in each block of the visit matrix, thus 

essentially maximizing the ICL (Integrated Completed Likelihood; Biernacki et al. 2000, 

Daudin et al. 2007). 

 

library(bipartite) 

library(vegan) 

library(igraph) 

library(dummies) 

library(blockmodels) 

library(ade4) 
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library(fields) 

 

#site data (ex: Bois de Fontaret, BFs)  

BFs<-read.table("ntwBFs.txt",header=T,sep="\t") 

webBFs <- as.matrix(BFs) 

 

###### Modularity analysis, binary data ################ 

BFs.graph.bin<-graph_from_incidence_matrix(webBFs,multiple=F) #binary 

BFs.bin.cle<-cluster_leading_eigen(BFs.graph.bin) 

BFs.bin.cle 

#get phenology overlap matrix 

coBF<-dget("coBFs.txt") 

 

########### LBM code: LBM analysis following Poisson ################ 

bmi_BFs<-BM_poisson('LBM', webBFs) 

bmi_BFs$estimate() 

numi_BFs<-which.max(bmi_BFs$ICL) 

densi_BFs<-sum(webBFs)/(nrow(webBFs)*ncol(webBFs)) 

probi_BFs<-bmi_BFs$model_parameters[[numi_BFs]]$lambda 

row.nb.gpi<-nrow(probi_BFs) 

col.nb.gpi<-ncol(probi_BFs) 

prob.rowi<-bmi_BFs$memberships[[numi_BFs]]$Z1 

hh.namei<-rownames(webBFs) 

mbrshp.hhi<-apply(prob.rowi,1,which.max) 

ls.freq.rowi<-rowSums(webBFs) 

res.hhi<-cbind.data.frame(hh.namei=hh.namei, mbrshp.hhi=mbrshp.hhi, freq.hhi=ls.freq.rowi) 

res.hh.ordi<-res.hhi[order(res.hhi$freq.hhi),] 

cpt=0 

for(k in 1: (nrow(res.hh.ordi)-1)) 

{ 

  if (res.hh.ordi$mbrshp.hhi[k] !=res.hh.ordi$mbrshp.hhi[k+1]) cpt=cpt+1 

} 

nb.diff.hhi=cpt-(length(levels(as.factor(res.hh.ordi$mbrshp.hhi)))-1) 

#write tables 

write.table(res.hh.ordi,sep="\t",row.names=FALSE) 

prob.coli<-bmi_BFs$memberships[[numi_BFs]]$Z2 

sp.namei<-colnames(webBFs) 

mbrshp.spi<-apply(prob.coli,1,which.max) 

ls.freq.coli<-colSums(webBFs) 

res.spi<-cbind.data.frame(sp.namei=sp.namei, mbrshp.spi=mbrshp.spi, freq.spi=ls.freq.coli) 

res.sp.ordi<-res.spi[order(res.spi$freq.spi),] 

cpt=0 

for (k in 1: (nrow(res.sp.ordi)-1)) 

{ 

  if(res.sp.ordi$mbrshp.spi[k] !=res.sp.ordi$mbrshp.spi[k+1]) cpt=cpt+1 

} 
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nb.diff.spi=cpt-(length(levels(as.factor(res.sp.ordi$mbrshp.spi)))-1) 

res.sp.ord2i=res.spi[order(res.spi$mbrshp.spi),] 

write.table(res.sp.ordi,sep="\t",row.names=FALSE) 

write.table(probi_BFs,file="_prob_BFs",sep="\t",row.names=FALSE) 

 

##################Matrix organization ############### 

par(mfrow=c(1,1)) 

webBFs2<-webBFs 

webBFs[which(webBFs>1)]=1 

nb.row=nrow(webBFs) 

nb.col=ncol(webBFs) 

nds=webBFs 

nps=coBF 

res.prob=read.table("_prob_BFs",sep="\t",h=TRUE) 

ls.ord.col.prob=order(colSums(res.prob),decreasing=TRUE) 

ls.ord.row.prob=order(rowSums(res.prob),decreasing=TRUE) 

ls.ord.hhi=sapply(res.hhi$mbrshp.hhi,function(x) which (x==ls.ord.row.prob)) 

res.hh.ord2i=res.hhi[order(ls.ord.hhi),] 

row.nb.gpi=length(levels(as.factor(res.hhi$mbrshp.hhi))) 

res.hh.ord3i=NULL 

for (h in ls.ord.row.prob) 

{ 

  part=res.hh.ord2i[res.hh.ord2i$mbrshp.hhi==h,] 

  part.ord=part[order(part$freq.hhi,decreasing=TRUE),] 

  res.hh.ord3i=rbind.data.frame(res.hh.ord3i,part.ord) 

} 

ls.ord.sp=sapply(res.spi$mbrshp.spi,function(x) which (x==ls.ord.col.prob)) 

res.sp.ord2i=res.spi[order(ls.ord.sp),] 

col.nb.gb=length(levels(as.factor(res.spi$mbrshp.spi))) 

res.sp.ord3i=NULL 

for (h in ls.ord.col.prob) 

{ 

  part=res.sp.ord2i[res.sp.ord2i$mbrshp.spi==h,] 

  part.ord=part[order(part$freq.spi,decreasing=TRUE),] 

  res.sp.ord3i=rbind.data.frame(res.sp.ord3i,part.ord) 

} 

nds=nds[as.character(res.hh.ord3i$hh.namei),as.character(res.sp.ord3i$sp.namei)] 

nps=nps[as.character(res.hh.ord3i$hh.namei),as.character(res.sp.ord3i$sp.namei)] 

webBFs2=webBFs2[as.character(res.hh.ord3i$hh.namei),as.character(res.sp.ord3i$sp.namei)] 

 

######## Plot matrix with heatcolors and the number of visits ####### 

visits<-matrix(webBFs2,nrow=dim(webBFs2)[1]*dim(webBFs2)[2],ncol=1) 

visits<-visits[which(visits>0)] #without the zeros 

coord.function<-function(x,nI,nP){ 

  c(((x-1)%%nI)+1,((x-1)%/%nI)+1) 

} 
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func.plot.matrix<-function(x,y){ 

  indices<-which(x==1) 

  min<-min(y) 

  max<-max(y) 

  yLabels<-rownames(x) 

  xLabels<-colnames(x) 

  title<-c("Bois de Fontaret") 

  if(is.null(xLabels)){ 

    xLabels<-c(1:ncol(x)) 

  } 

  if(is.null(yLabels)){ 

    yLabels<-c(1:nrow(x)) 

  } 

  reverse<-nrow(x):1 

  yLabels<-yLabels[reverse] 

  y<-y[reverse,] 

  image.plot(1:length(xLabels),1:length(yLabels),t(y),col=c("white",heat.colors(12)[12:1]), xlab="", 

ylab="",axes=FALSE,zlim=c(min,max)) 

  if(!is.null(title)){ 

    title(ylab="Insects", line=8, cex.lab=1) 

    title(xlab="Plants", line=6, cex.lab=1.2) 

    title("Bois de Fontaret") 

  } 

  axis(BELOW<-1,at=1:length(xLabels),labels=as.factor(as.character(xLabels)),las =2, cex.axis=0.6) 

  axis(LEFT<-2,at=1:length(yLabels), labels=as.factor(as.character(yLabels)),las= 2,cex.axis=0.6) 

  axis(BELOW<-1,at=1:length(xLabels),labels=rep("",length(xLabels)),las =2,cex.axis=0.6) 

  axis(LEFT<-2,at=1:length(yLabels),labels=rep("",length(yLabels)),las=2,cex.axis<-0.6) 

  coo<-t(rbind(sapply(indices,function(xx) coord.function(xx,nrow(x),ncol(x))))) 

  text(coo[,2],nrow(webBFs)+1-coo[,1],labels=visits, cex=0.6) 

} 

func.plot.matrix(nds,nps) 

 

####### Black lines to delimit blocks in the plot ###### 

if (row.nb.gpi>1) 

{ 

  ls.class=as.numeric(as.data.frame(table(res.hh.ord2i$mbrshp.hhi))[ls.ord.row.prob,2]) 

  ls.cum=sum(ls.class)-cumsum(ls.class) 

  abline(h=ls.cum+0.5,col="grey20", lwd=2) 

} 

if (col.nb.gpi>1) 

{ 

  ls.class=as.numeric(as.data.frame(table(res.sp.ord2i$mbrshp.spi))[ls.ord.col.prob,2]) 

  ls.cum=cumsum(ls.class) 

  abline(v=ls.cum+0.5,col="grey20", lwd=2) 

 


