Averaging wins again
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The averaging method used to establish the classical inequality between the means works just as
well to show domination by the Root-Mean-Square.

To begin, Cauchy’s inequality [2]
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using the sequence of all ones {y;}={1;} yields immediately domination by the Root-Mean-
Square (RMS) over the Arithmetic-Mean (AM):
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However, for only two numbers this inequality is obvious:
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(x1 - x2)° > 0 implies that 2x1° + 2x27> (X1 + X2)7, 50 Y2(x1” + x2°) > (V2(x1 + x2))
and the result follows by taking square roots.

Now, let's emulate the averaging method in [1] and apply it carefully to the case for three
numbers. We get
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+ (1/8(3x12 + 3x2° + 2x3°))" < (1/16(5%12 + 5x22 + 6x32))” + (1/16(6x1° + 5x2° + 5x32))”* +
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and so on. Thus the components of the 3x3 matrix
V="I+S), I=(8),5=(i+1;)
and its powers appear now as multipliers of quadratic sums in each iteration. Let
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Since V is doubly stochastic, an appeal to the fundamental theorem for transition matrices [3] (or
directly, as in [1]), shows that
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where J = (1);; is the matrix of all 1's. Thus
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so the RMS-AM inequality will follow after showing that f;, is increasing. First, note that

fov™ x2) = fsV",x2)

since the shift matrix S just re-orders the sequence f, - albeit in a useful way. The ‘doublet’
averaging procedure amounts to expressing f, as

fo= 172(f(v",Xx2) + f(sV' . x2))
so an application of RMS-AM inequality for two numbers yields finally that
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Now that the inequality for three numbers has been established, let’s try ‘triplet’ averaging on
four numbers. We get

X1+ X2 + X3+ Xq4 = 1/3(X1 + X2+ X3) + 1/3(x2 + x3 + X4) + 1/3(X3 + Xq + X1) + 1/3(Xa + X1 + X2)
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x22))"? < (1/9(2x1% + 2x2% + 3x3% + 2x42))" + (1/9(2x1% + 2x2% + 2x3% + 3xa2)) " + (1/9(3x12 +
2x2° + 2x3% + 2xa42 ) + (19(2x1? + 3x2% + 2x3° + 2x42))”

and so on. This time the 4x4 doubly-stochastic matrix V is
V=1/31+5S+5?%
so that again
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and letting
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we get as before
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Finally, monotonicity for this f, sequence follows similarly: since
fov™ x2) = fsv",x3) = sV, x2)
‘triplet’ averaging means that
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f, = V3(f(V',X2) + f(SV X2 + f(S2V ,X%))

to which an application of the RMS-AM inequality for three numbers yields the desired result:

fo < f/a(v+ sV sV @) = £,



The proof for N numbers merely requires increasing the size of the matrix V accordingly, using
‘doublet’ or ‘triplet” averaging. In fact, the path is clear to an induction proof as well: at step N+1
use averaging for step N. Here are the details.

Since the RMS-AM inequality is obvious when N=2, assume validity at step N and let V be the
{(N+1) x (N+1) doubly stochastic matrix
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where S° = [ as usual. Next, define
N+1 N+1 1/2
fn= f(vn'xz) =21(21Vnux]2)
i=1"j=

The convergence
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implies that
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and since
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it only remains to show sequence monotonicity. But forany k =1, 2, ., N
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so that N-averaging becomes
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hence a final application of the RMS-AM inequality for N numbers yields
N-1
i< f( ZEUNSIV,E) = (W5X3) = f,
k=0

and induction carries through.
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