Novel Signatures of Dark Matter in Laser-Interferometric Gravitational-Wave Detectors

Yevgeny Stadnik

Kavli Fellow

Kavli IPMU, University of Tokyo, Japan

"Gravitational Wave Probes of Fundamental Physics", Amsterdam, November 2019

Motivation

Strong astrophysical evidence for existence of **dark matter** (~5 times more dark matter than ordinary matter).

Motivation

Motivation

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since $cold (E_{\varphi} \approx m_{\varphi}c^2)$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since $cold (E_{\varphi} \approx m_{\varphi}c^2)$
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} = \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since $cold (E_{\varphi} \approx m_{\varphi}c^2)$
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} = \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \leq 1 \text{ eV}$, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since $cold (E_{\varphi} \approx m_{\varphi}c^2)$
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} = \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \leq 1$ eV, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$
- $10^{-22} \text{ eV} \leq m_{\varphi} \leq 1 \text{ eV} \iff 10^{-8} \text{ Hz} \leq f \leq 10^{14} \text{ Hz}$ $\Lambda_{\mathrm{dB},\varphi}/2\pi \leq L_{\mathrm{dwarf galaxy}} \sim 1 \text{ kpc}$ Classical field

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since $cold (E_{\varphi} \approx m_{\varphi}c^2)$
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} = \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \leq 1 \text{ eV}$, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$
- $10^{-22} \text{ eV} \leq m_{\varphi} \leq 1 \text{ eV} \iff 10^{-8} \text{ Hz} \leq f \leq 10^{14} \text{ Hz}$ $\Lambda_{\mathrm{dB},\varphi}/2\pi \leq L_{\mathrm{dwarf galaxy}} \sim 1 \text{ kpc}$ Classical field
 - Wave-like signatures [cf. particle-like signatures of WIMP DM]

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{\gamma} = \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \frac{\delta\alpha}{\alpha} \approx \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda_{\gamma}}$$

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]

Solid material

$$L \sim Na_{\rm B} = N/(m_e \alpha)$$

Laser Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Grote, Stadnik, arXiv:1906.06193]

Michelson interferometer (GEO 600)

Laser Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Grote, Stadnik, arXiv:1906.06193]

• Geometric asymmetry from beam-splitter: $\delta(L_x - L_y) \sim \delta(nI)$

Laser Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Grote, Stadnik, arXiv:1906.06193]

- Geometric asymmetry from beam-splitter: $\delta(L_x L_y) \sim \delta(nI)$
- Both broadband and resonant narrowband searches possible: $f_{DM} \approx f_{vibr,BS} \sim v_{sound}/I$, $Q \sim 10^6$ enhancement

Michelson vs Fabry-Perot-Michelson Interferometers

[Grote, Stadnik, arXiv:1906.06193]

Michelson interferometer (GEO 600, Fermilab holometer) Fabry-Perot-Michelson interferometer (LIGO, VIRGO, KAGRA)

Michelson vs Fabry-Perot-Michelson Interferometers

[Grote, Stadnik, arXiv:1906.06193]

Michelson interferometer (GEO 600, Fermilab holometer) Fabry-Perot-Michelson interferometer (LIGO, VIRGO, KAGRA)

Linear Interaction of Scalar Dark Matter with the Electron

Linear Interaction of Scalar Dark Matter with the Electron

Linear Interaction of Scalar Dark Matter with the Electron

Summary

- Existing laser-interferometric gravitational-wave detectors are sensitive probes of scalar dark-matter fields oscillating at audio-band frequencies
- Changing arm mirror thicknesses by ~10% can greatly boost the sensitivity of Fabry-Perot-Michelson interferometers (LIGO, VIRGO, KAGRA) to dark matter
- (Small-scale) Interferometry experiments can be adapted to perform resonant narrowband searches
- Existing interferometers also sensitive to the passage of macroscopic dark-matter objects through detectors

Back-Up Slides

Temporal Coherence

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

•
$$\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} = \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$$

Probability distribution function of φ_0

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

1

 $\Gamma \mu \nu$

$$\mathcal{L}_{\gamma} = \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \frac{\delta\alpha}{\alpha} \approx \frac{\phi_{0} \cos(m_{\phi}t)}{\Lambda_{\gamma}}$$

$$\mathcal{L}_{f} = -\frac{\phi}{\Lambda_{f}} m_{f} \bar{f}f \implies \frac{\delta m_{f}}{m_{f}} \approx \frac{\phi_{0} \cos(m_{\phi}t)}{\Lambda_{f}}$$

$$\phi = \phi_{0} \cos(m_{\phi}t - \underline{p}_{\phi} \cdot \underline{x}) \implies F \propto \underline{p}_{\phi} \sin(m_{\phi}t)$$

$$\mathcal{L}_{\gamma}' = \frac{\phi^{2}}{(\Lambda_{\gamma}')^{2}} \frac{F_{\mu\nu} F^{\mu\nu}}{4}$$

$$\mathcal{L}_{f}' = -\frac{\phi^{2}}{(\Lambda_{f}')^{2}} m_{f} \bar{f}f$$

$$= \sum \frac{\delta\alpha}{\alpha} \propto \frac{\delta m_{f}}{m_{f}} \propto \delta\rho_{\phi}$$

$$F \propto \nabla\rho_{\phi}$$

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

Consider <u>quadratic couplings</u> of an oscillating classical scalar field, $\varphi(t) = \varphi_0 \cos(m_{\varphi}t)$, with SM fields.

$$\mathcal{L}_{f} = -\frac{\phi^{2}}{(\Lambda_{f}')^{2}} m_{f} \bar{f} f \quad \text{c.f.} \quad \mathcal{L}_{f}^{\text{SM}} = -m_{f} \bar{f} f \quad => \quad m_{f} \to m_{f} \left[1 + \frac{\phi^{2}}{(\Lambda_{f}')^{2}} \right]$$
$$= > \frac{\delta m_{f}}{m_{f}} = \frac{\phi_{0}^{2}}{(\Lambda_{f}')^{2}} \cos^{2}(m_{\phi}t) = \left[\frac{\phi_{0}^{2}}{2(\Lambda_{f}')^{2}} + \frac{\phi_{0}^{2}}{2(\Lambda_{f}')^{2}} \cos(2m_{\phi}t) \right]$$
$$\rho_{\phi} = \frac{m_{\phi}^{2}\phi_{0}^{2}}{2} \implies \phi_{0}^{2} \propto \rho_{\phi}$$

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

Consider <u>quadratic couplings</u> of an oscillating classical scalar field, $\varphi(t) = \varphi_0 \cos(m_{\varphi}t)$, with SM fields.

Fifth Forces: Linear vs Quadratic Couplings [Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)] Consider the effect of a massive body (e.g., Earth) on the scalar DM field Linear couplings ($\varphi \bar{X} X$) Quadratic couplings ($\varphi^2 \bar{X} X$) $\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r} \qquad \phi = \phi_0 \cos(m_\phi t) \left(1 - \frac{B}{r}\right)$

Gradients + screening/amplification

Gradients + screening/amplification

"Fifth-force" experiments: torsion pendula, atom interferometry

Gradients + screening/amplification

Constraints on Linear Interaction of Scalar Dark Matter with the Electron

Quartic Self-Interaction of Scalar

Constraints on Linear Interaction of Scalar Dark Matter with the Higgs Boson

Rb/Cs constraints:

[Stadnik, Flambaum, PRA 94, 022111 (2016)]

2 – 3 orders of magnitude improvement!

