

Technical report

A comprehensive feature comparison study of open-

source container orchestration frameworks

Eddy Truyen *, Dimitri Van Landuyt, Davy Preuveneers, Bert Lagaisse and Wouter Joosen

1 imec-DistriNet, KU Leuven; dimitri.vanlanduyt@cs.kuleuven.be (D.V.L);

davy.preuveneers@cs.kuleuven.be (D.P.); bert.lagaisse@cs.kuleuven.be (B.L);

wouter.joosen@cs.kuleuven.be (W.J.)

* Correspondence: eddy.truyen@cs.kuleuven.be; Tel.: +32-163-735-85

Featured Application: Practitioners and industry adopters can use the descriptive feature

comparison as a decision structure for identifying the most suited container orchestration

framework for a particular application with respect to different quality attributes such as genericity,

maturity and stability. Researchers and entrepreneurs can use it to check if their ideas for innovative

products or future research are not already covered in the overall technological domain.

Abstract: 1) Background: Container orchestration frameworks provide support for management of

complex distributed applications. Different frameworks have emerged only recently, and they have

been in constant evolution as new features are being introduced. This reality makes it difficult for

practitioners and researchers to maintain a clear view on the technology space. 2) Methods: we

present a descriptive feature comparison study of the three most prominent orchestration

frameworks: Docker Swarm, Kubernetes and Mesos that can be combined with Marathon, Aurora

or DC/OS. This study aims at (i) identifying the common and unique features of all frameworks, (ii)

comparing these frameworks qualitatively ánd quantitatively with respect to genericity in terms of

supported features, and (iii) investigating the maturity and stability of the frameworks as well as

the pioneering nature of each framework by studying the historical evolution of the frameworks on

GitHub. 3) Results: (i) we have identified 124 common features and 54 unique features that we

divided into a taxonomy of 9 functional aspects and 27 functional sub-aspects. (ii) Kubernetes

supports the highest number of accumulated common and unique features for all 9 functional

aspects; however no evidence has been found for significant differences in genericity with Docker

Swarm and DC/OS. (iii) Very little feature deprecations have been found and 15 out of 27 sub-

aspects have been identified as mature and stable. These are pioneered in descending order by

Kubernetes, Mesos and Marathon. 4) Conclusion: there is a broad and mature foundation that

underpins all container orchestration frameworks. Likely areas for further evolution and innovation

include system support for improved cluster security and container security, performance isolation

of GPU, disk and network resources and network plugin architectures.

Keywords: Container orchestration frameworks; Middleware for cloud-native applications;

Commonality and variability analysis; Maturity of features; Feature deprecation risk; Genericity.

 2 of 121

1. Introduction

In recent years, there has been a strong industry adoption of Docker containers due to its easy-

to-use approach for distributing and bootstrapping container images. Moreover in comparison to

virtual machines, Linux containers have a lower memory footprint and allow for flexible resource

allocation to improve server consolidation [1]. The popularity of Docker has also changed the way in

which application software can be packaged and deployed: container images are self-contained

components that can be tagged with version numbers and are made available for download from

private or public Docker registries. Moreover container images are portable across different operating

systems and different cloud provider stacks [2].

Container orchestration (CO) frameworks, such as Docker Swarm, Kubernetes and Mesos, build

upon and extend container runtimes with additional support for deploying and managing a multi-

tiered distributed application as a set of containers on a cluster of nodes [3]. Container orchestration

frameworks have also increasingly been used to run production workloads as for example

demonstrated in the annual OpenStack user survey [4]– [6].

We have used the OpenStack user survey as the main inspiration for selecting popular open-

source CO frameworks as OpenStack itself is a cloud provider company that is fully rooted in the

open-source culture and is a rather neutral with respect to promoting a specific CO framework.

Figure 1 gives an overview of the most popular PaaS platforms in OpenStack deployments according

to the last two surveys of October 2016 and November 2017. It shows that Kubernetes, OpenShift,

Docker Swarm and Mesos are the most used container orchestration frameworks for running

production-grade services. Note that OpenShift 3.0 [7] has been completely built on top of Kubernetes

and Cloud Foundry [8] also provides support for Kubernetes. Moreover, as OpenShift and Cloud

Foundry are not pure container orchestration frameworks, but also offer additional PaaS

development services, we choose to focus on Docker Swarm, Kubernetes and Mesos for deriving a

base of common and unique features.

Figure 1. The two most recent annual OpenStack public user surveys show that Kubernetes,

OpenShift, Docker Swarm and Mesos are the most popular container orchestration frameworks in

OpenStack deployments. Cloud Foundry has decreased in popularity.

https://www.openstack.org/assets/survey/

October2016SurveyReport.pdf

Container and PaaS tools used by

OpenStack users in 2016
Container and PaaS tools used for managing

OpenStack applications in 2017

https://www.openstack.org/assets/survey/

OpenStack-User-Survey-Nov17.pdf

https://www.openstack.org/assets/survey/October2016SurveyReport.pdf
https://www.openstack.org/assets/survey/October2016SurveyReport.pdf
https://www.openstack.org/assets/survey/OpenStack-User-Survey-Nov17.pdf
https://www.openstack.org/assets/survey/OpenStack-User-Survey-Nov17.pdf

 3 of 121

Note that Docker Swarm and Mesos actually cover different frameworks. As such, we compare

in total 7 CO frameworks:

1. Kubernetes [9] supports deploying and managing both service- and job-oriented

workloads as sets of containers.

Docker Swarm actually comes with two different distributions:

2. Docker Swarm stand-alone [10] manages a set of nodes as a single virtual host that

serves the standard Docker Engine API. Any tool that already communicates with a

Docker daemon can thus use this framework to transparently scale to multiple nodes.

This framework is minimal but also the most flexible because almost the entire API

of the Docker daemon is available. As such it is mostly relevant for platform

developers that like to build a custom framework on top of Docker.

3. The newer Docker Swarm integrated mode [11] departs from the stand-alone model

by re-positioning Docker as a complete container management platform that consists

of several architectural components, one of which is Docker Swarm.

4. Apache Mesos [12], [13] supports fine-grained allocation of resources of a cluster of

physical or virtual machines to multiple higher-level scheduler frameworks. Such

higher-level scheduler frameworks do not only include container orchestration

frameworks but also more traditional non-containerized job schedulers such as

Hadoop.

Currently, the following three Mesos-based CO frameworks are the most popular:

5. Aurora[14] (by Twitter) supports deploying long-running jobs and services. These

workloads can optionally started inside containers.

6. Marathon [15] supports deploying groups of applications together and managing

their mutual dependencies. Applications can optionally be composed and managed

as a set of containers.

7. DC/OS [16] is an easy-to-install distribution of Mesos and Marathon that extends

Mesos and Marathon with additional features.

 Motivation

There has been several high paces of feature additions among the most popular CO frameworks

as illustrated by Figure 2, which shows the number of feature additions over the course of time

between June 2013 and June 2018. As shown, there was a first peak of feature additions between June

2014 and January 2015 because Mesos v0.20.0 [17] and Marathon v0.8.0 [18] added support for Docker

containers and Google open-sourced Kubernetes v0.4.0 [19] that from its inception offered support

for Docker containers. Moreover, Kubernetes v0.6.0 included several innovating features such as

container IP and service IP networking [20], pods [21] and persistent volumes [22]. This caused a

ripple effect of feature additions across the other CO frameworks. For example, support for persistent

volumes has been added to Docker v1.7 [23] in June 2015. By August 2016, Docker’s architecture for

persistent volumes has also been supported by Mesos v1.0.0 [24], Marathon v1.3.0 [25] and DC/OS

v1.8 [26]. As another example, support for container IP networking has been added to Mesos

v0.25.0 [27], Marathon v0.14.0 [28] and Docker Swarm stand-alone v1.0.0 [29] by January 2016.

 4 of 121

Figure 2. Density of feature additions over time (common features only).

This high pace of feature additions has been a challenge for companies to (a) keep track with

understanding what constitutes the conceptual foundation of the overall domain and to (b) determine

which CO framework matches most closely with their requirements and to (c) determine which

framework is most mature with respect to these requirements. This is both a risk for companies who

start using container orchestration technology and companies who consider migrating from one CO

framework to another framework. They are also faced with (d) feature deprecation risks, i.e. there is

strong dependence on a feature that will not be supported anymore by future versions of the

employed CO framework. Finally, (e) academic researchers and entrepreneurs are also faced with

the challenge that innovative functionality may become obsolete when a new version of the CO

framework has been released.

An illustration of these challenges from the entrepreneur side is the story of ClusterHQ, a

company that pioneered in 2014 with the container data management service Flocker [30]. Flocker

initially gained a lot of traction and the company raised 12$ million in 2015 [31] and there was a well-

working integration [32] with Kubernetes, Mesos and Docker Swarm. However, by the end of 2016,

the company stopped all its activities because of reportedly “self-inflicted wounds” [33]. Actually, by

that time all major CO frameworks provided also built-in support for external persistent volumes.

A final challenge is to (f) keep track and interpret ongoing standardization efforts in this space.

For example, the Cloud Native Computing Foundation has pushed Docker’s containerd [34]

architecture and the associated OCI specification [35] as the de-facto standard for container

runtimes [36] and has pushed Kubernetes as the de-facto standard for container orchestration [37].

Indeed Kubernetes has been the most popular framework for several years now [4], [5], [38] and has

also the largest community on GitHub [39]. Moreover, DC/OS offers besides Marathon also support

for Kubernetes [40] and Docker Enterprise Edition (Docker EE) also supports Kubernetes as an

alternative orchestrator for Docker Swarm [41]. Even Amazon Web Services provides support for

Kubernetes [42]. Nonetheless, the development of the other CO frameworks remains to continue and

they also push other incompatible standards or architectures for networking and persistent volumes.

This raises therefore the question what are the relevant standardization initiatives to which different

CO frameworks align.

 5 of 121

 Contribution statement

To help address these challenges, we have performed a systematic assessment of the

documentation of the aforementioned 7 CO frameworks on GitHub with respect to three main

software qualities: genericity, maturity and stability. When the documentation appears inconclusive,

we rely on experience drawn from earlier run-time experiments with CO frameworks or we have just

tested out the specific feature.

A CO framework is defined as more generic than another when it supports more features than

another framework. After all, the more features are supported, the more application and cluster

configurations can be supported by a CO framework. The first aim of the systematic assessment is to

determine a mapping from CO frameworks to commonly supported features and unique features. In

order to provide an easy-to-navigate structure and draw higher-level insights from the results of this

systematic assessment, we logically group the found features into 9 functional aspects and 27 sub-

aspects that each cover a specific coherent set of related use cases (see Table 1). A functional aspect is

defined as a set of related use cases that are of concern to the same type of stakeholder, whereas a

functional sub-aspect is defined as an aspect of which the related use cases all represent interactions

with the same architectural component or logical substrate of functionality of CO frameworks. We

conduct not only a qualitative discussion of the identified aspects and CO frameworks, but also

present a quantitative analysis of the number of supported features in each aspect and CO

framework.

We also assess the maturity and stability of the different CO frameworks by studying the

historical evolution of these CO frameworks in terms of subsequent releases on GitHub. More

specifically, we have inspected all versions that are shown in Figure 3. The aim is to rank CO

frameworks with respect to the time when they have released support for a particular feature for the

first time. We also study the rate of feature deprecations in the development history to gather a more

complete insight in the overall stability of the technological domain and we project this history of

feature deprecation to an estimate of feature deprecation risks in the future.

This systematic assessment with respect to genericity, maturity and stability provides thus

answers on the following 10 research questions:

With respect to genericity:

RQ1. What are the common features of CO frameworks and what are the different implementation strategies

for realizing the common features?

RQ2. How can common features be organized in functional (sub)-aspects?

RQ3. What are the unique features of CO frameworks?

RQ4. How are functional (sub)-aspects ranked in terms of number of common and unique features?

RQ5. How are CO frameworks ranked in terms of number of common and unique features?

RQ6. (a) Which functional (sub)-aspects are best supported by a CO framework in terms of highest number

of common features? (b) What if unique features are taken into account?

With respect to maturity:

RQ7. What is the maturity of a CO framework with respect to a common feature or a functional (sub)-aspect?

RQ8. Which functional sub-aspects are mature enough to consider them as part of the stable foundation of

the overall domain? Which CO frameworks have pioneered in what sub-aspect?

With respect to stability:

RQ9. What are the relevant standardization initiatives and which CO frameworks align with these

initiatives?

RQ10. What is the risk that common or unique features might become deprecated in the future?

 6 of 121

Figure 3. Timeline of when successive versions of CO frameworks have been released (until sept

2018).

The contributions of this article are thus as follows: with respect to genericity, it will enable

industry practitioners and researchers to

1. compare CO frameworks on a per feature-basis (thereby avoiding comparing apples

with oranges),

2. quickly grasp what constitutes the overall functionality that is commonly supported

by the CO frameworks by inspecting the 9 functional aspects and 27 sub-aspects,

3. understand what are the unique features of CO frameworks,

4. determine which functional aspects are most generic in terms of common features,

5. identify those CO frameworks that support the most common and unique features

across all (sub)-aspects,

6. identify the most generic CO framework for a specific functional (sub)-aspect.

With respect to maturity and stability, it will enable industry practitioners and researchers to

7. identify and understand the impact of relevant standardization efforts,

8. compare the maturity of CO frameworks with respect to a specific common feature,

9. understand which features have a higher risk of being halted or deprecated, and

10. determine those (sub)-aspects that can be considered as mature and well-understood

and therefore shape the stable foundation of the technological domain; moreover,

academic researchers and entrepreneurs are guided to invest their time and energy

in adding innovative functional or non-functional aspects that have not yet been well

supported.

We have started this research around the beginning of 2017 as the pace of feature additions has

clearly slowed down after June 2017 (see Figure 2). As such, we believe that the insights resulting

from this systematic assessment will not become obsolete when new versions of CO frameworks have

been released.

 7 of 121

Table 1. Overview of functional aspects and sub-aspects and their number of common and unique

features.

Functional

aspects
Functional sub-aspects

#common

features

#unique

features

Cluster architecture and setup 13 2

Configuration management approach 1 0

Architectural patterns 5 0

Installation methods and deployment tools 7 2

CO system customization 6 9

 Unified container runtime architecture 3 0

Framework design of orchestration engine 3 9

Container networks 20 8

Services networking 8 2

Host ports conflict management 2 0

Plugin architecture for network services 4 0

Service discovery and external access 6 6

Application configuration and deployment 29 10

Supported workload types 7 1

Persistent volumes 9 6

Reusable container configuration 5 2

Service upgrades 6 1

Resource quota management 4 1

Container QoS Management 15 6

Container CPU and mem allocation with support for

over-subscription
5 1

Allocation of other resources 2 4

Controlling scheduling behavior by means of placement

constraints
3 0

Controlling preemptive scheduling and re-scheduling

behavior
5 1

Securing clusters 9 4

 User identity and access management 3 1

Cluster network security 6 3

Securing containers 7 3

 Protection of sensitive data and proprietary software 2 0

Improved security isolation between containers and OS 5 3

Application and cluster management 21 10

Creation, management and inspection of cluster and

applications
4 1

Monitoring resource usage and health 4 3

Logging and debugging of CO framework and containers 3 1

Cluster maintenance 5 2

Multi-cloud deployments 5 3

 124 54

 Structure of the article

The remainder of this article is structured as follows. First, Section 2 overviews related surveys

and research articles that provide an overview of CO frameworks. Then, Section 3 presents our

research method to perform the systematic assessment. Thereafter, Section 4 presents a qualitative

 8 of 121

assessment of the genericity of the CO frameworks, i.e., research questions RQ1-RQ3. Subsequently,

Section 5 presents the quantitative analysis with respect to the genericity requirement, i.e., research

questions RQ4-RQ6. Thereafter, Section 6 presents an assessment of the maturity and pioneering

nature of the CO frameworks, i.e., research questions RQ7-RQ8. Then, Section 7 presents the

assessment of the stability of the CO frameworks, i.e., research questions RQ9-RQ10. Finally, Section

8 discusses the threats to validity and concludes with the main lessons learned. All the collected data

including hyperlinks to relevant documentation pages of CO frameworks at GitHub is available at

Zenodo1.

2. Related work

There are a number of papers that mainly focus on describing (and evaluating) the common

features of the Linux container technology, i.e. system virtualization, and/or specific features of

Docker [43]–[48]. However, these works provide little to no overview of the common functions of

state-of-the-art container orchestration frameworks.

Heidari et al. [49] presents a survey of seven container orchestration frameworks that were

identified as most promising: Apache Mesos, Mesos Marathon, Apache Aurora, Kubernetes, Docker

Swarm and Fleet. This survey concisely and clearly describes the architecture of these frameworks

and zooms into a number of features of these platforms. However, it does not present a systematic

assessment of commonality and variability. Moreover, it does not study the maturity of these

frameworks and the risks of feature deprecation.

Jennings et al. [50] and Costache et al. [51] present classifications of resource management

techniques in cloud platforms. More specifically, Jennings et al. provides a review of the literature in

cloud resource management, while Costache et al. focuses on complete Platform-as-a-Service (PaaS)

platforms, including commercial and research solutions. The latter work by Costache et al. studies

commercial solutions include Mesos [12] and Borg [52], the predecessor of Kubernetes. Costache et

al. also presents a list of opportunities for further research, which includes the use of container

orchestration frameworks to support (i) generic resource management for any type of workload and

(ii) provisioning of cloud resources from multiple IaaS clouds. However these works do not study

the resource management concepts of container orchestration frameworks in detail, such as support

for oversubscription and neither includes an assessment of other functional aspects such as cluster

setup tools, virtual networking, customizability, security and multi-cloud support.

Pahl et al. [53] analyses required container orchestration functions for facilitating deployment

and management of distributed applications across multiple clouds and how these functions can be

integrated in PaaS platforms and relevant standards for portable orchestration of cloud applications.

However, these functions are presented at a high level.

Kratzke et al. [3], [54] define a reference model of container orchestration frameworks, i.e. these

works identify common functionalities of existing container orchestration frameworks such as

scheduling, networking, monitoring and securing clusters as well as their inter-dependencies. These

common functionalities are similar with the found commonalities of our study but these

functionalities are described shortly at a high-level while our work decomposes each functionality

into a detailed set of individual features.

In another paper, Kratzke et al. also present a domain-specific language (DSL) for specifying

portable, multi-cloud application descriptors that can be translated to application descriptors for

multiple container orchestration frameworks such as Docker Swarm and Kubernetes. This DSL is

mainly concerned with expressing common concerns that are of interest to an application manager,

i.e. specifying units of deployments and configuring their allocated resources and replica levels,

customizing scheduling decisions, auto-scaling rules. Additionally, Kratzke et al. [55] studies

concerns that are of interest to a cluster administrator in order to build a middleware platform to

transfer container clusters from one cloud provider to another cloud provider. As one of the

1 https://doi.org/10.5281/zenodo.1494190

 9 of 121

requirements of the DSL and the middleware platform is to favour pragmatism over

expressiveness [56], this DSL and middleware platform supports concepts that are supported by

Kubernetes, Docker Swarm and Mesos.

We confirm by large extent the common functionalities of container orchestration frameworks

as presented by Kratzke et al. However, we also extend the findings of these works in several

dimensions. Firstly, we relax the definition of what is a common feature, i.e. a common feature is

supported by at least two CO frameworks. Secondly, we also determine unique features that are only

supported by one CO framework. Thirdly, we give a systematic and exhaustive overview of all

common and unique features whereas the work of Kratzke et al. presents meta-models of

configuration languages that encompass concepts to support expressing cluster or application

configurations that are commonly supported by all CO frameworks; in other words, our work is

complementary as it can be used to refine and update the meta-models with support for common

features that have not been discovered by Kratzke et al. Finally, we do not only study common

features but we also study the maturity of these common features to distinguish between stable

features and those features that are relatively immature and subject to change; additionally we also

discuss the risks of feature deprecation.

In summary, to our knowledge, this is the first work that presents a detailed and exhaustive

commonality and variability analysis among popular container orchestration frameworks and that

studies the maturity frameworks as well as the risks of feature deprecation.

3. Research method

This section presents how we have been working towards studying the genericity, maturity and

stability of the CO frameworks. The reader can skip this section if she or he is not interested in these

methodological aspects of our work.

Before starting the research for this article, we have already acquired plenty of experience with

container orchestration frameworks in the context of the DeCOMAdS research project [57] that aims

to design advanced deployment and configuration middleware for adaptive multi-tenant SaaS

applications. At the beginning of this project we performed a technical SWOT2 analysis of containers

and container orchestration framework that helps a SaaS provider to make a cost-benefit analysis to

move their applications to a container orchestration framework [2]. Subsequently, we have also

compared the performance of Docker Swarm and Kubernetes for NoSQL databases [58] and we have

built a tool for comparing different auto-scalers for container-orchestrated services in

Kubernetes [59].

The following six subsections explain our method for (1) the qualitative assessment of the

genericity requirement, (2) the quantitative analysis with respect to the genericity requirement, (3)

the qualitative assessment of maturity, (4) the quality assessment of stability, (5) gathering feedback

from industry to improve the coherency and correctness of our research findings and (6) dealing with

the continuous evolution of the CO frameworks during the course of the research work.

 Qualitative assessement of genericity requirement

The following three subsections explain how (1) features of CO frameworks have been

identified, (2) how common and unique features across CO frameworks have been discovered and

modelled, (3) how features have been organized in functional aspects and sub-aspects.

 Identifying features in documentation of CO frameworks

For all CO frameworks, except DC/OS, we have manually processed their documentation on

GitHub because this platform has been used to manage the editing of the documentation as well as

the versioning of documentation. To manage the documentation of different versions of a CO

2 Strengths, Weaknesses, Opportunities and Threats

 10 of 121

framework, git tags are typically used. These git tags allow us to dynamically browse through

different versions of the documentation. This was essential for us in order to discover the addition

and removal of features across versions (see Section 3.4).

For DC/OS, however, git tags have not been used for versioning the documentation. Instead, the

documentation of different versions of DC/OS are stored in different directories on GitHub. This

makes it tedious to browse across versions on GitHub. Fortunately, it is possible to easily browse

through different versions of the documentation on the official website of DC/OS. Therefore we have

processed the documentation of the official DC/OS website.

Our method for identifying and modeling common and unique features among different CO

framework is widely inspired on feature modeling [60], [61] that is the commonly accepted method

in product line engineering for modeling the commonalities and variabilities of a family of

frameworks. A feature is defined as a characteristic of a framework that is visible to the end-user or

as a distinguishable characteristic that is relevant to some stakeholder [61].

We have first derived an initial list of features for each CO framework separately by inspecting

the release notes, change logs and feature planning documents of the latest version. We have then

refined this initial list of features with additional features by reviewing the full documentation of the

latest version of each CO framework. We also found multiple GitHub documentation pages that

explained the same feature with different audiences or purposes in mind. We have grouped these

pages so we could later study them together to fully understand the implementation strategy for the

feature or discover additional related features.

 Discovering common and unique features

We have identified common features and unique features by comparing the feature lists of all

CO frameworks pair-wise. We define a common feature as appearing in the documentation of two

or more container orchestration frameworks (or related incubation projects) and having passed the

beta stage in at least one of the frameworks.

We first identify all common features. The question whether two documentation pages from

different CO frameworks describe the same feature is concurred based on our previously acquired

research experience in using and evaluating CO frameworks [2], [58], [59].

We then determine all unique features for each CO framework. We define a unique feature as a

feature that has been documented by only one framework and other CO frameworks have no related

incubation projects or design proposals on GitHub. By striking through all documentation pages of

common features, we withhold documentation pages of possible unique features.

This work resulted into one table with common features and one table with unique features. The

former table has row and column names that correspond respectively with common features and CO

frameworks, while the latter table has only column names that correspond with CO frameworks.

Both tables order the aforementioned grouped documentation pages (see Section 3.1.1) per CO

framework and per specific feature. A table cell in these tables therefore contains all relevant

information about a specific feature of a specific framework.

 Organizing features in functional aspects and sub-aspects

We have organized the common and unique features in functional aspects because the number

of discovered features was too large to be comprehendingly presented as a flat list. We have used the

principles of card sorting[62] as the method for grouping features in usable aspects and naming these

aspects. We decided that two features belong to the same aspect when they relate to similar use cases

or requirements and have the same stakeholder in common.

Our first pass through the aforementioned two tables with features resulted into grouping the

features into 8 functional aspects into a Google Docs document [63]. Based on the feedback from

industry (see Section 3.5), we concluded that it takes too much time to process the volume of the

presented information in these tables. As such, we have refined the functional aspects into functional

sub-aspects because the lists of features in some functional aspects were still too large in order to be

comprehensively grasped from a helicopter view. We decided that two features of a functional aspect

 11 of 121

belong to the same functional sub-aspect when they concern the same architectural component or

logical substrate of functionality that is found in many CO frameworks.

We have then written an exhaustive inventory of common features by carefully reading the

documentation pages of the CO frameworks. This helped us for a given common feature to (i)

determine differences in feature implementation strategy among CO frameworks and (ii) to

discover new features that are also distinguishable in other CO frameworks. Moreover, (iii) we

discovered one new functional aspect and many sub-aspects; finally we have identified 9 functional

aspects and 27 functional sub-aspects (see Section 4 and Tables 2 to 10).

We also classified the found unique features in the different found sub-aspects. It was possible

to perform this task without introducing new functional sub-aspects which increased confidence that

the set of identified sub-aspects covered the whole technological domain of container orchestration.

This work resulted in an extension of Section 4 with a short description of the unique features and a

summarizing Table 28.

 Quantitative analysis with respect to genericity

The results of the qualitative assessment of genericity allowed us to quantify rankings between

(sub)-aspects in terms of number of supported common and unique features. Similarly it possible to

determine rankings between CO.

To find evidence for overall significant differences between the CO frameworks with respect to

the number of supported features across all 27 sub-aspects, we have used the statistical tests for

checking the overall ranking of multiple CO frameworks with respect to different sub-aspects. The

goal is to identify if there are significant differences in genericity between different CO frameworks,

i.e., although a CO framework may support a higher number of features for several sub-aspects, the

difference with other CO frameworks may still be just one or two features and therefore not

significant. We have used the Friedman and Nemenyi tests that are designed with this goal in mind,

but for un-replicated experimental designs [135]: un-replicated experiments take for each metric only

one sample of the performance of a system, but many different metrics are evaluated; in the context

of this study, metrics correspond with the 27 sub-aspects.

 Study of maturity

Initially we have established an historical timeline of the versions of each CO framework by

storing the date when each version of a CO framework has been released. We have extracted this

information from official release notes.

Then we have determined a historical timeline for each common feature. The historical timeline

of a common feature starts with a feature addition event, then has zero or more feature update events

and optionally ends with a feature removal/deprecation event. We annotate these events with the

version of the CO framework during which the events have occurred. These timelines have been

defined per CO framework by using the following pseudo-algorithm:

1. We first open in our browser the latest version of the root directory of the CO

framework’s documentation on GitHub.

2. We then iteratively trace back to the preceding versions of the root directory by

modifying the version tag in the URL naming scheme of GitHub.

3. When we discover that the documentation page of a specific feature disappears from

the list of files in the directory when tracing back from version x.y to version x.y-1 of

a CO framework, and there is no evidence that the documentation page has been

renamed, we concur that this feature has been officially added in version x.y, unless

specified otherwise in the documentation page of version x.y itself. On the contrary,

when the documentation page has been renamed in version x.y, we concur that the

implementation strategy of the feature has been updated. In both cases, we record

the GitHub URL of version x.y of that documentation page as the seed of that feature

addition or update.

 12 of 121

4. When we observe that a new file appears in the directory when tracing back from

version x.y to version x.y-1, and the new file describes features that are not yet in our

list of features, we concur that the features described in this documentation page

have been removed in version x.y of the CO framework, unless deprecation

information is specified in the documentation page itself.

The obtained timelines of different CO frameworks are then merged per common feature in

order to understand which CO framework pioneered in which feature and which functional sub-

aspects. The presentation of these merged timelines are structured according to the 9 functional

aspects (see Tables 18-26, Section 6, RQ7).

Finally, an overall assessment of the maturity of the sub-aspects has been conducted (see Section

6, RQ8). We define a sub-aspect as mature and well-understood if it meets the following three criteria:

(i) the sub-aspect has been consolidated by the pioneering framework at least two traditional release

cycles of 18 months [130] ago, (ii) the corresponding feature implementation strategies of the

pioneering framework have at least reached beta-stage in the meantime and (iii) there are no

deprecation or removal events of important features in the latest traditional release cycle.

 Assessment of stability

The existing standardization initiatives in the container orchestration space are an important

indicator for the stability of the platform development artifacts of the leading CO frameworks. We

have already identified the existing initiatives and the mapping towards adopting CO frameworks

during the commonality analysis. As such, we could easily derive a compact table from this work to

assess the overall state of these standardization initiatives (see Section 7, RQ9).

We have performed the assessment of feature deprecation risks during the last part of the

writing. The risks of feature deprecation have only been assessed for the unique features because an

analysis of the historical evolution of common features has shown that there were very few

deprecations of common feature implementation strategies by any CO framework (see Section 7,

RQ10).

 Involvement and feedback from industry

We have asked three senior platform developers to provide feedback on the grouping into

functional aspects based on the aforementioned Google Docs document [63]. All three platform

developers have worked and still work for companies who aim to create commercial platforms and

tools for container orchestration in cloud computing environments. Moreover they lead the

development of installation tools and network plugins for setting up container clusters in Docker

Swarm, Kubernetes and Mesos. They did not provide any substantial feedback however. This made

us doubt about whether there is any interest in comparisons between CO frameworks from platform

industry. When asked for the reasons of providing no feedback, it was because of lack of time.

We have also asked to review the current form of this article by a senior developer from a

software services company who has used DC/OS and Kubernetes for running their application

services. We have received detailed feedback that enabled us to improve the clarity and correctness

of the feature descriptions in this article.

 Dealing with continuous evolution of CO frameworks during the research

We have performed the above research from April 2017 till December 2017. After that period,

new versions of CO frameworks have of course been continuously released. We have kept the

collected information up-to-date as follows. Each time a new version of a CO framework has been

released, we reviewed the release notes and change logs of that new version in order to discover

feature additions, feature updates and feature deprecations. As a result, new common features have

been discovered when a unique feature of a CO framework becomes also supported by another

framework; if so, timeline information was also updated.

 13 of 121

As the article reached completion, we decide to take into account only versions released before

1 July 2018. Currently, Kubernetes versions 1.12 has been released. We have not thus not taken into

account changes introduced by that version.

4. Qualitative assessment with respect to genericity

We present in this section answers to research questions RQ1-RQ3

RQ1. What are the common features of CO frameworks and what are the different implementation strategies

for realizing the common features?

RQ2. How can common features be organized in functional (sub)-aspects?

RQ3. What are the unique features of CO frameworks?

In summary, we have identified 124 common features and 54 unique features. A common feature is

supported by at least two CO frameworks or related incubation projects and has not been released in

the latest version of at least one of the frameworks, whereas a unique feature is supported by only

one CO framework and has not been released in the latest version of the framework.

As stated above, common and unique features are grouped in 9 functional aspects that cover a

set of related functionalities that are of concern to a single type of stakeholder. For reasons of

simplicity we distinguish between two high-level stakeholders that each may subsume different user

types:

 Application Manager: A person who develops, deploys, configures, controls or monitors an

application that runs in a container cluster. An application manager can be an application

developer, application architect, release architect or site reliability engineer.

 Cluster administrator: A person who installs, configures, controls and monitors container

clusters. A cluster administrator can be a framework administrator, a site reliability engineer, an

application manager who manages a dedicated container cluster for his application, a

framework developer who customizes the CO framework implementation to fit the

requirements of his or her project.

A particular stakeholder, after reading the features of a particular functional aspect, will have a

clear understanding of how CO frameworks work and how they must be operated with respect to

that functional aspect.

In total we distinguish between the following 9 aspects:

1. cluster architecture and setup tools relevant by a cluster administrator

2. customization of container orchestration framework components by a cluster

administrator

3. container networking, i.e. setup of inter-container networks by a cluster

administrator

4. application configuration and deployment by an application manager

5. resource quota management by a cluster administrator

6. container QoS management by an application manager

7. securing clusters by a cluster administrator

8. securing containers by an application manager

9. application and cluster management

a. cluster management by an cluster administrator

b. application management by an application manager

This section is thus structured as follows. Sections 4.1-4.9 present the common and unique

features for each of the above 9 aspects. For each aspect, sub-aspects are indicated with a bold

paragraph heading. For each sub-aspect, a common feature is indicated in an italic paragraph heading.

Finally, for each common feature different feature implementation strategies for different container

orchestration frameworks are qualitatively compared based on relevant documentation webpages of

the frameworks. The URLs to these documentation pages are represented as bibliographic references.

 14 of 121

Direct hyperlinks are also available in table format as part of the supplementary material of this

article.

This section also includes for each functional aspect Tables 2-10 that map common features to

their corresponding implementation strategies of CO frameworks. The mapping includes also

structured information about (a) whether a common feature is fully or partially supported by that

CO framework, (b) whether it is available in the open-source distribution or only in the commercial

version of that CO framework, and (c) whether any standards related to the feature are implemented

by that particular CO framework.

As argued above, we refer to the links to the GitHub documentation instead of the official

documentation site because it enables many advantages in comparison to the official documentation

websites. The only disadvantage of presenting the documentation on GitHub is that dynamic scripted

content is not readable. Such dynamic content included scripts for downloading and displaying a

source file, for rendering graphical UI elements, and for generating reference documentation of HTTP

APIs and command-line commands. Therefore when the documentation is unreadable we refer to a

link to the official documentation site.

 Cluster architecture and setup

This aspect represents common architectural patterns and features of CO frameworks that a

cluster administrator must understand in order to be able to setup a running container cluster on top

of a particular operating system and/or cloud provider infrastructure.

 Common features

Configuration management approach. All container orchestration (CO) frameworks follow a

declarative configuration management approach instead of an imperative configuration management

approach [64]. Declarative configuration management implies that an application manager describes

or generates a declarative specification of the desired state of the distributed application. The CO

framework then continuously adapts the deployment and configuration of containers until the actual

state of the distributed application matches the described desired state. The configuration language

that is used for describing the desired state varies among CO frameworks. Docker Swarm stand-

alone [65], Docker Swarm integrated mode [66] and Kubernetes [67] support the YAML mark-up

language. Kubernetes also support the JSON mark-up language but recommends YAML. Aurora [68]

uses the Python programming. Marathon [69] and DC/OS [70] use the JSON mark-up language.

Architectural patterns. The core architectural pattern underlying a container cluster is very similar:

it is based on the Master-Workers architecture where a Master node controls that running applications

are always in their desired state by scheduling containers to the Worker nodes and by monitoring the

actual run-time state of nodes and containers. Masters use a distributed data store (e.g., etcd, Consul,

or Zookeeper) for storing the actual configuration state about all deployed containers and services. The

specific naming of master and worker nodes differs among CO frameworks:

 Docker Swarm [71] refers to Managers and Workers

 Kubernetes [72] refers to Masters and Nodes

 Mesos [73] refers to Masters and Agents.

 Aurora [74], Marathon [75] and DC/OS [76], which run on top of Mesos, refer to Schedulers and

Executors.

The scheduler of Mesos supports fine-grained sharing of the resources of a cluster of machines

across multiple frameworks, such as Aurora and Marathon. The overall scheduling architecture of

Mesos can be described as follows:

1. To deal with the differences between frameworks (e.g. some frameworks execute

applications in containers, while other frameworks don’t), Mesos uses the generic

concept of Task for launching both containerized and non-containerized processes.

 15 of 121

2. Mesos consists of a two-level scheduler architecture [73], i.e. the Mesos master and

multiple framework schedulers. The protocol between a framework scheduler, the

central Mesos master and multiple agent nodes to achieve the scheduling of a

container on an agent node are as follows:

a. Each agent node notifies the Mesos master when it has resources available.

b. The Mesos master then uses the Dominant Resource Fairness [77] algorithm

to determine to which framework to offer these available resources. The

Mesos master sends the resource offer then to the Scheduler component of

the selected framework.

c. The selected framework can then accept the offer by reserving a subset of the

offered resources on that agent [78]. The framework can also reject the offer

because it does not fit with data locality constraints for instance [12]; Mesos

will then send the resource offer to another framework

d. Once a subset of resources is reserved by a framework, the scheduler of that

framework can schedule tasks using these resources by sending the tasks to

the Mesos master [79].

e. The Mesos master then sends the tasks to the Mesos agent from which the

resource offer originates.

f. The Mesos agent delegates the execution of the tasks to the co-located

Executor [80] component of the framework.

g. The Mesos master continues to offer the reserved resources to the framework

that has performed the reservation. This is because the framework can

respond by unreserving [81] the resources.

3. Since the state of a task is stored by both the Mesos master and the framework

scheduler, this task state needs to be kept synchronized. Mesos’ architecture supports

at-most-once [82] unreliable message delivery between the Mesos master and the

frameworks. Therefore, when a framework’s scheduler has requested the master to

start a task, but doesn’t receive an update from the Mesos master, the framework

scheduler needs to perform task reconciliation [83].

Highly-Available (HA) master design. To ensure high-availability of the cluster, Masters can be

replicated in all CO frameworks (see Table 2).

Generic and automated setup of HA masters. A fully automated and portable framework for setting up

replicated Masters in different execution infrastructures is supported in Docker Swarm integrated

mode [84], Aurora [85], Marathon [82] and DC/OS [86]. The procedure for Docker Swarm stand-

alone [87] assumes that a distributed key-value store has been setup in advance. A fully automated

HA framework for Kubernetes does not exist in the open-source distribution. However a large

number of public cloud provider services (e.g. Google Compute Engine (GCE) [88], Amazon Elastic

Container Service for Kubernetes (EKS) [42] and Google Kubernetes Engine (GKE) [89]) and a

number of tools for installing and managing Kubernetes clusters (e.g. juju [90] and tectonic [91])

include support for an automated HA setup procedure.

Versioned HTTP API and Client API libraries. All CO frameworks except Aurora offer a versioned API

that defines the concepts for specifying the desired state of the cluster and distributed applications

(see Table 2). In the remainder of this article, we refer to an atomic element in such desired state

specification as an object. For example, a request to the Master API for registering a new worker node

will lead to the creation of Node object, which is specified in YAML and stored in the distributed data

store of Master nodes. Mesos also offers an HTTP API for the Scheduler [92] and Executor [80]

interfaces of frameworks, but these implement the interactions described as part of the above

described two-level scheduler architecture of Mesos.

To support evolution of the API, a specific versioning schema is devised for each CO framework.

In general, a specific version of the API corresponds with a certain version of the CO framework. The

version schema also allows demarcating stable parts of the API from those parts that are still beta.

 16 of 121

An HTTP API becomes only usable if there are client libraries available for one or more

programming languages. Kubernetes [93], and Marathon [94] both provide several robust client

libraries, while Mesos provides a client library for writing frameworks on top of Mesos’ Scheduler

API [92] and Executor API [80]. Docker supports the Docker SDK [95] for the Engine API. Finally, as

DC/OS [96] extends Mesos and Marathon with additional components, it offers additional REST-

based APIs for these components. However, client libraries for theses APIs do not yet exist.

Simple and policy-rich scheduling algorithm. An important element of every CO framework is the

scheduling algorithm that is responsible for computing on which node a container should be placed.

All CO frameworks, except Mesos, have a simple yet highly customizable scheduling algorithm. This

is an interesting difference with schedulers for traditional clusters like Hadoop which must compute

job placements at massive scale in a time-efficient manner such that node resources are utilized well

and resources are fairly distributed across different users [77], [97]– [100]. Container clusters, on the

other hand, need to run dozens of small services that need to be organized and networked to optimize

how they share data and computational power [101].

Docker Swarm stand-alone [102] supports three scheduling strategies: spread, binpack and a

trivial random strategy. The spread strategy places a new container on the node with the least number

of containers, while the binpack strategy places a new container on the node which is most packed,

but can still fit the container. Docker Swarm integrated mode [103] supports two distinct spread

strategies for respectively replicated services and global services.

Kubernetes [104] offers a generic scheduler component that performs the following three steps

for computing a placement for a container: (1) filter the nodes using a set of predicates, (2) prioritize

the filtered list of nodes using priority functions and (3) select the best fit node. The default scheduling

algorithm is an instantiation of this generic scheduler with a set of default predicates and default

priority functions [105]. The ensuing default scheduling algorithm guarantees for instance that

replicated containers of the same application are always spread on different nodes, and that nodes

with conflicting hardware states (such as ports already in use by other containers) are filtered out.

The scheduling algorithms of Aurora [106], Marathon [107] (and by inclusion DC/OS) are also

simple. They randomly select the first Mesos agent with a reserved resource offer that fits the task,

but the placement decision can be restricted by means of different kinds of constraints (see Section

4.6.1).

Installation methods and tools for setting up a cluster. In order to simplify the installation

procedure, a number of deployment methods and associated tools or platforms exist (see Table 2 for

a detailed overview):

 Methods that install the CO software itself as a set of Docker containers.

 Methods that use VM images with the CO software installed for local development.

 Methods that install the CO software from a traditional Linux package.

 Methods that use configuration management tools such as Puppet or Chef.

 Cloud provider owned tools and APIs

 Cloud provider independent orchestration tools that come with specific deployment bundles for

installing a container cluster on one or multiple public cloud providers.

 Container orchestration-as-a-Service platforms

 Setup-tools for Microsoft Windows or Windows Server

In our experience with these tools, we have found that methods, which install the CO software

from a Linux package, are easy-to-use and can be universally applied on any type of virtual machine

or cloud provider. Moreover, the Linux package comes typically with a CLI-based setup tool for

automating the setup of a secure cluster based on TLS certificates and authentication tokens. For

example, Docker Swarm integrated mode [108] is automatically installed when installing docker-

engine. A master node can then be created by running the docker swarm init command and a worker

node can be created using the docker swarm join command. Kubeadm [109] is a deployment tool that

installs the kubeadm CLI for setting up Kubernetes clusters and the kubelet agent from a Linux

package. Similar to Docker Swarm, a new master node can be created by running the kubeadm init

 17 of 121

command. When this command is executed, the rest of the Kubernetes software is installed as

containers. DC/OS [110] can also be deployed from a linux package that comes with a CLI-based

setup tool.

Proprietary tools and APIs of cloud providers 3 or Container-Orchestration-as-a-Service

platforms are more easy-to-use than Linux packaging tools because clusters are automatically setup

and several management aspects such as cluster software upgrades and HA masters are

automatically handled by the cloud provider. The disadvantage of these methods is that one has to

pay for this management automation and one is bound to using a provider-specific API for

configuring the management aspects. The cluster administrator also gives up some control over how

particular functionalities are implemented (e.g. upgrading the CO software is implemented by the

cloud provider in a specific way that may be in conflict with application-specific SLAs; workarounds

for handling known open issues4 are predetermined by the cloud provider.

3 e.g. gcloud[623] for setting up a Kubernetes cluster on top of Google Computer Engine (GCE) and Microsoft

Azure Container Service Engine[624] for setting up a Swarm mode, Kubernetes or DC/OS cluster on Microsoft

Azure

4 e.g., lack of N+1 fault tolerance guarantees in Kubernetes when rebooting VMs[403]

 18 of 121

Table 2. Common features of the “cluster architecture and setup” aspect.

Cluster
architecture
and setup
sub-aspects

Features

Sw
ar

m
 s

ta
n

d
-a

lo
n

e

Sw

ar
m

 in
te

gr
at

e
d

K
u

b
e

rn
e

te
s

M

e
so

s

M
e

so
s

+
 A

u
ro

ra

M
e

so
s

+
M

ar
at

h
o

n

D
C

/O
S

 Sa Si Ku Me Au Ma Dc

Configuration
management

Declarative configuration management n/a Dlgt

Architectural
patterns

Master-Worker architecture Dlgt

Highly-available (HA) master design Dlgt

Generic, automated setup of HA masters
GCE juju
tectonic Dlgt

Versioned HTTP API and client libraries Extnd

Simple, policy-rich scheduling algorithm n/a Dlgt

Installation
methods and
tools for
setting up a
cluster

Dockerized CO software

VM images with CO software for local dev Extnd

Linux packages + CLI for cluster setup Extnd

Configuration management tools

Cloud-provider tool or platform MsAz MsAz MsAz

Cloud-provider independent tools Add

Microsoft Windows or Windows Server

Column Legend:

 Sa: Docker Swarm stand-alone

 Si: Docker Swarm integrated

 Ku: Kubernetes

 Me: Mesos

 Au: Mesos+Aurora

 Ma: Mesos+Marathon

 Dc: DC/OS

Cell Legend:

 : The feature is fully supported by the open-source distribution of the platform. The URL to the
corresponding documentation is included.

 externalComponent: Support for the feature is not included in the open-source distribution of the
CO framework, but the feature is supported by a third party component or platform. The name of
the URL refers to the name of the component. The URL to the corresponding documentation is
included.

 DC/OS Legend:
o Dlgt (Delegate): The feature is implemented by Mesos+Marathon and DC/OS relies on it

completely
o Extnd (Extend): The feature is implemented by Mesos+Marathon, DC/OS relies on it but also

extends it with additional functionality
o Sprsd (Supersede): The feature is supported by Mesos+Marathon, but its implementation is

superseded by a new component of DC/OS
o Add (Add): The feature is not supported by Mesos+Marathon, but DC/OS adds support for it.

https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/index.md
https://kubernetes.io/docs/reference/#api-reference
http://aurora.apache.org/documentation/latest/reference/configuration/
https://mesosphere.github.io/marathon/api-console/index.html
https://docs.mesosphere.com/1.10/deploying-services/creating-services/
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/swarm_at_scale/about.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/how-swarm-mode-works/nodes.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/overview/components.md
https://github.com/apache/mesos/blob/1.4.x/docs/architecture.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/getting-started/overview.md
https://mesosphere.github.io/marathon/docs/core-architecture.html
https://docs.mesosphere.com/1.10/overview/architecture/
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/multi-manager-setup.md
https://github.com/docker/docker.github.io/blob/master/swarm/multi-manager-setup.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/high-availability/index.md
https://github.com/apache/mesos/blob/master/docs/high-availability.md
https://github.com/apache/aurora/blob/master/docs/operations/configuration.md#replicated-log-configuration
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/high-availability.md
https://docs.mesosphere.com/1.10/overview/high-availability/
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/multi-manager-setup.md
https://github.com/docker/docker.github.io/blob/master/engine/swarm/admin_guide.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/highly-available-master.md
https://coreos.com/tectonic/
https://coreos.com/tectonic/
https://github.com/apache/aurora/blob/master/docs/operations/configuration.md#replicated-log-configuration
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/high-availability.md
https://docs.mesosphere.com/1.10/overview/high-availability/
https://docs.docker.com/swarm/swarm-api/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/api/index.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/using-api/api-overview.md
https://github.com/apache/mesos/blob/master/docs/operator-http-api.md
https://github.com/mesosphere/marathon/tree/master/docs/docs/rest-api/public/api/v2
https://docs.mesosphere.com/1.10/api/
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/scheduler/strategy.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#control-service-scale-and-placement
https://docs.openshift.org/3.6/admin_guide/scheduling/scheduler.html#generic-scheduler
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/constraints.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/constraints.md
https://github.com/docker/docker.github.io/blob/master/swarm/install-manual.md
https://github.com/kubernetes-sigs/kubeadm-dind-cluster
https://github.com/mesosphere/docker-containers/tree/master/mesos
https://hub.docker.com/r/mesosphere/marathon/
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/setup/minikube.md
https://github.com/apache/mesos/blob/1.4.x/docs/tools.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/getting-started/vagrant.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/developing-vm.md
https://github.com/dcos/dcos-vagrant
https://github.com/docker/docker.github.io/blob/master/engine/swarm/swarm-tutorial/index.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/setup/independent/create-cluster-kubeadm.md
https://mesosphere.com/blog/mesosphere-package-repositories/
https://github.com/apache/aurora/blob/master/docs/operations/installation.md
https://github.com/mesosphere/marathon/blob/master/docs/docs/index.md
https://docs.mesosphere.com/1.11/installing/production/deploying-dcos/installation/
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/setup/salt.md
https://github.com/apache/mesos/blob/master/docs/tools.md
https://docs.microsoft.com/en-us/azure/container-service/dcos-swarm/container-service-docker-swarm
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/docker.dockerdatacenter?tab=Overview
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/setup/pick-right-solution.md#turnkey-cloud-solutions
https://github.com/Azure/dcos-engine
https://github.com/docker/docker.github.io/blob/v17.06-release/docker-cloud/cloud-swarm/index.md
https://github.com/kubernetes/kops
https://docs.mesosphere.com/1.12/installing/#mesosphere-supported
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/swarm-mode
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/getting-started-guides/windows/_index.md
https://github.com/apache/mesos/blob/1.4.x/docs/windows.md

 19 of 121

Table 2 presents the common features of the “cluster architecture and setup” aspect, organized

according to the three above sub-aspects. The first column references the name of the sub-aspect,

while the second column references the name of the common feature. CO frameworks with a

provide full support for the feature. If only a particular deployment tool or platform provides support

for the feature, the abbreviated names of the tools/platforms are shown. Finally as DC/OS builds upon

and extends Mesos+Marathon, we characterize the nature of how DC/OS supports a feature as

follows:

 Delegate (Dlgt): The feature is implemented by Marathon+Mesos and DC/OS relies on it

completely

 Extend (Extnd): The feature is implemented by Marathon+Mesos and DC/OS relies on it and

extends it

 Supersede (Sprsd): The feature is supported by Marathon +Mesos, but its implementation is

superseded by a new component of DC/OS

 Add (Add): The feature is not supported in Mesos+Marathon and DC/OS adds support for it.

 Unique features

The following CO frameworks have also unique features for the sub-aspect “installation

methods and tools”:

Kubernetes:

 Kubernetes-as-a-Service [111]: Microsoft Azure [112], Google Kubernetes Engine [89], AWS [42]

and other cloud providers offer public Kubernetes-as-a-Service offerings with the highest-level

of automation and ease-of-use in comparison to other cloud provider specific tools and APIs.

DC/OS:

 A GUI installer [113] provides a simple graphical user interface that guides the cluster

administrator during the installation of DC/OS.

 CO framework customization

This aspect corresponds with features of CO frameworks that a cluster administrator must

understand in order to create a customized version of the CO framework.

 Common features

Unified container runtime architecture. All CO frameworks provide support for a unified container

runtime architecture such that multiple container runtimes can be plugged in, and optionally different

container image formats can be supported. Docker launched the containerd container runtime

architecture [34]. Kubernetes has defined the Container Runtime Interface (CRI) [114] for this purpose.

There is also a CRI plugin for containerd [115]. Mesos [116] defines its own Universal Container

Runtime (UCR) that supports different image formats: the Docker image specification [117] and the

Appc specification [118].

Support for Open Container Initiative specifications. The Open Container Initiative (OCI) [119] defines a

specification for container runtimes and a specification for container images. Containerd [34]

supports both specifications. Kubernetes [120] has an OCI-based implementation of its Container

Runtime Interface. Mesos-based frameworks will provide support for the OCI image specification in

the future [121].

Other supported container runtimes. As a consequence of the unified container runtime architectures,

each CO framework supports besides Docker Engine also other container runtimes: Docker Swarm

supports runC [122] that runs containers according to the OCI specification. Kubernetes supports the

rkt container runtime, runC and any other OCI-based container runtime [123]. Mesos-based

frameworks support besides the Docker containerizer also the Mesos containerizer [124]. The Mesos

 20 of 121

containerizer is composable, i.e. a cluster administrator can setup a customized and more light-

weight container runtime by selecting from an extensive list of existing isolator modules [125] that

each implement a particular aspect of how the execution environment for a Mesos task (or container)

is constructed. Isolators implement features such as resource isolation, monitoring, networking and

security. For example, the cgroups/devices [126] and linux/devices [127] isolators enable cluster

administrators to control access of containers to linux devices under the /dev directory.

Framework design of core orchestration engine. All CO frameworks except Aurora support an

external plugin architecture for customizing multiple cluster operations (see Table 3 for a detailed

overview). The following cluster operations can be typically customized by means of a plugin:

container networking, persistent volume operations, and Identity and Access Management (IAM).

Network plugin architectures are presented in Section 4.3, volume plugin architectures are discussed

in Section 4.4, and security plugin architectures are discussed in Section 4.7.

Plugin-architecture for schedulers. It is also possible to plug-in a custom scheduler in Kubernetes [128],

Mesos [129], Aurora [130](see scheduler configuration [131], parameter -offer_set_module),

Marathon [132] (and by inclusion DC/OS). In Kubernetes it is even possible to plug-in multiple

schedulers in parallel [133].

Modular interceptors for functional extension of the orchestration engine. Modular interceptors encapsulate

specific extensions of existing CO components. Different kinds of modular interceptors are supported

by Kubernetes, Mesos and Aurora. Kubernetes [134] supports three kinds of interceptors:

 Admission controllers [134] are run in sequence before each authorized request to the Master

API for creating a Kubernetes object. They can accept, reject or mutate the request. They can also

update the state of other Kubernetes objects. Admission controllers are only applied to API

requests that have been successfully authenticated and authorized. Admission controllers are

used for implementing various functionalities such as resource quota management (see section

4.5) and Pod Security Policies (see section 4.7). A disadvantage of admission controllers is that

new admission controllers cannot be loaded into a running cluster as a rebuild of the cluster

software is required.

 Two types of run-time pluggable admission controllers that deal with the aforementioned

disadvantage of admissions controllers:

o Initializers [135] are useful for cluster administrators to force policies or inject defaults in a

running cluster.

o Validating or mutating admission web hooks [136] are HTTP call backs that can

respectively reject or change the contents of an API request for creating a new Kubernetes

object.

Mesos [137] supports module hooks that allow framework developers to tie into internal

components of Mesos. Aurora also supports two kinds of interceptors:

 Client hooks [138] but these are limited to pre- and post-hooks around API client methods when

they are called by Aurora CLI commands.

 Thrift interceptors [139] that are able to intercept Thrift method calls from the Aurora

scheduler [131]. Apache Thrift [140] is a cross-language service development framework for

representing structured data in client/server RPC protocols as well as for internal data structure.

 21 of 121

Table 3. Commonly supported features for the “CO framework customization” aspect.

 Unique features

The following CO frameworks have unique features for the sub-aspect “framework design of

core orchestration engine”:

Docker Swarm integrated mode:

 It is possible to implement new types of plugins as global services [141].

Kubernetes [142] is highly extensible:

 Cloud-provider specific functionality is encapsulated in a separate CloudController

plugin [143]. This plugin supports several functions, e.g. configuration of external load balancers

when a new service is created and automatic labeling of nodes and persistent volumes to ensure

pods are scheduled in the availability zone where the persistent volume is located.

 The Kubernetes API can be extended with custom Kubernetes API objects [144] and associated

Controller plugins. Such custom objects can be versioned [145] and can have custom status and

scale sub-objects [146].

 Additional APIs [147] can also be aggregated in the overall Kubernetes API

 Attaching arbitrary metadata to Kubernetes objects is possible via annotations [148]. This

metadata can serve many purposes. The most common use case is to introduce alpha features

that are not yet supported by the Kubernetes API. For example, the PodSecurityPolicy API does

not yet support enforcing AppArmor profiles. Therefore, annotations to a

PodSecurityPolicy [149] specify the desired enforcement.

 Support for dynamically reconfiguring the Kubelet agent of a running cluster via dynamic

kubelet configuration [150].

 A device plugin architecture [151] for writing plugins that discover hardware resources of a

specific type of device. This feature is useful when Kubernetes orchestrates virtual network

functions in NFV architectures where certain network functions can only run on nodes with

CO framework
customization
sub-aspects

Features

Sw
ar

m
 s

ta
n

d
-a

lo
n

e

Sw

ar
m

 in
te

gr
at

e
d

K
u

b
er

n
et

e
s

M

es
o

s

M
es

o
s+

 A
u

ro
ra

M
es

o
s

+
 M

ar
at

h
o

n

D
C

/O
S

 Sa Si Ku Me Au Ma Dc

Unified
container
runtime
architecture

Unified container runtime architecture Dlgt

Support for OCI specifications future

Other supported container runtimes Dlgt

Framework
design of
orchestration
engine

External plugin architecture Dlgt

Plugin-architecture for schedulers Dlgt

Modular interceptors Dlgt

Cell legend:
 future: The feature is not yet part of the open-source distribution of the CO framework. It has

however been planned according to the documentation, or there is a separate incubation
project. The URL to relevant roadmap documentation is included.

https://containerd.io/
https://containerd.io/
https://github.com/kubernetes-sigs/cri-tools
https://github.com/apache/mesos/blob/1.4.x/docs/container-image.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/containers.md#mesos-containerizer
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/native-docker.md#universal-container-runtime
https://docs.mesosphere.com/1.11/deploying-services/containerizers/ucr/
https://containerd.io/
https://containerd.io/
https://github.com/kubernetes-sigs/cri-o/
https://issues.apache.org/jira/browse/MESOS-5011
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/overview/components.md#container-runtime
https://github.com/apache/mesos/blob/1.4.x/docs/mesos-containerizer.md
https://github.com/apache/mesos/blob/1.4.x/docs/mesos-containerizer.md
https://github.com/apache/mesos/blob/1.4.x/docs/mesos-containerizer.md
https://github.com/docker/docker.github.io/blob/v17.03-release/engine/extend/index.md
https://github.com/docker/docker.github.io/blob/v17.03-release/engine/extend/index.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/cluster-administration/addons.md
https://github.com/apache/mesos/blob/master/docs/modules.md
https://github.com/mesosphere/marathon/blob/master/docs/docs/plugin.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/configure-multiple-schedulers.md
https://github.com/apache/mesos/blob/1.4.x/docs/allocation-module.md#writing-a-custom-allocator
https://github.com/apache/aurora/blob/master/RELEASE-NOTES.md#0200
https://github.com/mesosphere/marathon/blob/v1.6.0-pre/docs/docs/plugin.md#scheduler
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/extensible-admission-controllers.md
https://github.com/apache/mesos/blob/1.4.x/docs/modules.md#isolator
https://github.com/apache/aurora/blob/master/RELEASE-NOTES.md#0190

 22 of 121

specific hardware features. This architecture does not allow that a single instance of a device can

be shared among containers.

Mesos:

 A resource provider abstraction [152] for easily extending and customizing how a Mesos agent

synchronizes with the Mesos master about available resources the agent’s node and handling

operations on these resources.

Aurora:

 Aurora can be configured to use a custom Executor [153] instead of the default Thermos

executor.

 Container networking

This aspect corresponds with features of CO frameworks that a cluster administrator must

understand in order to customize how containers are networked, load balanced and discovered.

 Common features

Services networking. A container exposes a certain service at a well-defined container port. In order

to support availability and fault-tolerance, multiple replicas of the container need to be started across

multiple nodes and health checked. In order to support connectivity to such container-based,

replicated services the following elements are necessary: (i) a stable service name or IP address that

is unique to this service irrespective of the state of the pool of containers of that service, (ii) a network

to connect to the containers via a unique network address, and (iii) a service proxy that enables to

lookup service network addresses and translate them to container replica network addresses; the

service proxy may also encompass a load balancer to spread the workload of a service across the

different replica’s.

There are three different approaches to enable these three elements of services networking. We

consider them as parent features that can be decomposed into a number of child features.

Routing mesh for global service ports. Here, (i) every service is identified by means of a unique port that

is opened at each node of the cluster where a container replica runs, (ii) a container is thus addressed

using the IP address of its local cluster node and the unique service port, (iii) at one or more nodes of

the cluster a load-balancer serves requests to a service port by forwarding the requests to the cluster

nodes where the containers of that service are running.

Load balancers (LBs) can be classified as according to the following sub-features:

1. Whether the LB is automatically distributed on every node of the cluster vs. centrally

installed on a few nodes by the cluster administrator. In the latter case, sending a request

to a service port requires a multi-hop network routing to an instance of the LB.

2. Whether the LB supports Layer 4 (i.e. TCP/UDP) vs Layer 7 (i.e. HTTPS) load

balancing. Layer 7 load balancing allows implementing application-specific load-

balancing policies.

3. Whether the L4 LB implementation is based on the ipvs load balancing module of the

Linux kernel [154]. This ipvs module is known as a highly-performing load balancer

implementations

4. Whether containers can run in bridged or in virtual network mode. In the former mode

containers can only be accessed via a host port of the local node; the host port is

mapped to the container port via a local virtual bridge. In the latter case, remote

network connections to a container can be served.

Docker Swarm integrated mode, Kubernetes, Marathon and DC/OS provide full support for a

routing mesh:

 23 of 121

 Docker Swarm integrated mode [155] and Kubernetes [156] allow exposing a service via so

called NodePort. Moreover, the load balancer of these frameworks can be characterized

according to the four above features:

1. Requests to NodePorts are automatically load balanced via a distributed service proxy

that is automatically installed at every node of the cluster, but can also be load

balanced by a centralized load balancer for exposing services to external clients outside

the cluster. The central load balancer is not automatically installed, but must be

manually activated and configured in both Docker Enterprise Edition (Docker

EE) [157] and Kubernetes [158].

2. The distributed service proxy operates a Layer 4 (L4), while the centralized load

balancer operates at Layer 7 (L7).

3. Docker Swarm’s L4 service proxy is by default based on ipvs [159], while in Kubernetes

v1.8+, the L4 service proxy can be optionally configured to use ipvs [160].

4. In Docker Swarm, containers can run in either bridged or virtual network mode, while

in Kubernetes containers must always run in virtual network mode.

 Mesos+Marathon [161] supports service ports that are served via Marathon’s load-balancer,

named marathon-lb [162]. This load balancer can be characterized as follows:

1. Instances of marathon-lb must be centrally installed by the cluster administrator.

Different types of load balancer tiers can be setup by the cluster administrator,

typically an internal and external load balancing tier.

2. Both L4 and L7 load balancing is supported by marathon-lb [163].

3. The L4 implementation is not based on ipvs.

4. Containers must run in bridged mode in order to assign a service port to the

encompassing Marathon application [164].

Note that Mesos provides an important building block, named port mapping isolator [165],

which manages the range of allowed service ports and isolates the network traffic on a per-

container-basis.

 Finally, DC/OS’ support for global service ports is identical to Mesos+Marathon as described

above [166], but DC/OS also supports a richer L7, centrally-deployed load balancer, named

Edge-LB [163] that provides support for multi-tenancy and load balancing non-container-

orchestrated services.

Virtual IP network for containers. Here, (i) each service is either identified by means of a stable DNS

name or a stable service IP address, (ii) containers run in virtual network mode, i.e. each container

has a unique IP address that can be remotely connected via of a virtual network; this virtual network

is supported by overlay network software that preferably supports IPv6 network addresses in order

to allow for a massive amount of containers in a single cluster, (iii) Service IPs are load balanced by

an automatically distributed Layer 4, ipvs-based load balancer, (iv) DNS names are served by an

internal DNS service that is automatically installed at one or multiple nodes of the cluster. For load-

balanced services with a Service IP, the DNS service resolves to the Service IP by default; otherwise

the DNS services resolves to the list of IP addresses of the containers behind that service. The DNS

service of different CO frameworks can be classified according to several features which are described

in the “service discovery and external access” sub-aspect.

All CO frameworks, except Aurora, support this approach, but some CO frameworks provide

only partial support:

 Docker Swarm stand-alone [167] partially supports this approach: only an IP address and DNS

name for containers is assigned and containers are not automatically replicated across multiple

nodes for ensuring fault tolerance; moreover, no unique Service IP address or DNS name for

addressing a load-balanced service as a whole is generated. As such clients need to implement

container replication and load balancing themselves. Support for IPV6 network addresses is an

optional feature [168]. In addition, a distributed DNS server is automatically installed when

installing Docker engine [169].

 24 of 121

 Docker Swarm integrated mode [155] and Kubernetes [156] allow to expose a service via a

unique Service IP address and DNS name. Requests to Service IPs are load balanced via a

distributed service proxy that runs at every node of the cluster.

o As stated above, Docker Swarm offers support for IPV6 addresses [168] and offers a

distributed DNS server [169].

o In opposition, Kubernetes’ DNS service is centrally deployed and, therefore, a DNS lookup

requires multi-hop routing. Moreover, support for IPv6 addresses is only supported by

some deployment tools (such as kubeadm [170]) or network plugins (such as Calico [171]).

 Mesos+Marathon [172] only partially supports this approach: containers of a Marathon

application are automatically replicated. However, only individual containers are associated

with an IP address; in other words, there is no stable Service IP address that is served by an L4

load balancer. As such clients need to implement a load-balancer themselves. IPv6 addressing is

supported since Marathon v1.6.0, but only for Docker containers.

 DC/OS extends Marathon’s approach: Load-balanced services can be manually created by

defining a name-based Virtual IP for a Marathon application using the DC/OS GUI [173]. This

name-based VIP is served by a distributed service proxy that runs at every node of the cluster

and forwards to the container IPs in a round-robin fashion [174]. DC/OS [175] also exposes this

VIP as a stable DNS name [176] that is served by a distributed DNS server, named dcos-dns (aka

Spartan) [177]. DC/OS v1.11 also supports IPv6 addresses for Docker containers [178].

 Marathon applications without a VIP can also be addressed via a stable DNS name [179]: the list

of the container IP addresses for a Marathon application are stored as a list of DNS A records in

dcos-dns [180]. Additionally, when containers expose a service at a named port, a list of SRV

records [181] is registered in the central DNS server of Mesos, named mesos-dns [182]. An SRV

record of a specific container consists of the unique DNS name of each container, the container

IP address and the container port at which the service of the container is exposed [183].

Host port networking. Here, (i) services are identified by means of a stable DNS name; (ii) container ports

are exposed via a host port – here containers can run either in host mode (i.e. share the network stack

of the underlying host) or in bridge mode which is less performant but more secure than host mode

because of the intermediate virtual bridge; (iii) in the internal DNS service, the IP addresses of the

nodes on which a container of the service is deployed are registered as a list of A records and these

records are returned according to the DNS round robin scheme; (iv) it may also be possible to register

exposed host ports as SRV records.

 Docker Swarm stand-alone [184] partially supports this approach: containers are not

automatically replicated across multiple nodes. Moreover, there is no unique DNS name for

addressing the service as a whole. Containers can run either in bridged [185] or host mode [186].

The advantage of host mode is that there is no performance overhead of using a virtual bridge

for mapping container ports to host ports. Its disadvantage is that the container has access to the

network namespace of the underlying host, which is an important security vulnerability. The

good practice of scanning a container’s image for malicious code via a Trusted Docker

Registry [187] must in this case certainly be applied.

 Kubernetes [188] does not recommend using host ports for the reason mentioned above.

Actually, it partially supports this approach: the number of container replicas of the service can

be scaled up or down, but no unique DNS name for addressing the service as a whole is

generated. Kubernetes only supports bridged mode and the host-mapper plugin [189] from the

Container Network Interface (CNI) project (see feature Support for Container Network Interface

specification below) must be separately installed on each node of the cluster.

 Docker Swarm integrated mode [190], Mesos+Aurora [191], Mesos+Marathon [192] and

DC/OS [166] fully support this third approach:

o the number of container replicas can be dynamically scaled up or down,

o services are identified by a unique DSN name,

 25 of 121

o Docker Swarm integrated mode [186], Mesos [193], Marathon [194] and DC/OS [195]

document that containers can run in bridged or host mode.

o In Docker Swarm integrated mode [190], IP addresses of the nodes on which the containers

run are registered as a list of A records in the internal DNS service and are returned using

DNS round-robin.

o In Mesos-based frameworks [181], in opposition, the set of replicated containers of a service

are registered as a list of SRV records in the centrally deployed mesos-dns [191].

DC/OS [166] additionally also allows to register the containers as a list of A records in the

distributed dcos-dns service [179].

Host ports conflict management. A common problem with host ports networking is that containers

with the same host port cannot be scheduled on the same node and therefore the number of scheduled

containers with the same host port is limited to the number of nodes in the cluster. For these reasons,

host mode is not recommended by Kubernetes [188] except for very specific use cases such as running

plugins as global containers (see Section 4.4) on every node of the cluster.

Dynamic allocation of host ports. To deal with host port conflicts at the same node, host ports for a

container are preferably dynamically allocated so that every allocated host port is guaranteed to be

unique within the cluster. Such dynamic allocation can be requested in the desired state specification

of a container in Docker Swarm integrated mode [196] by only specifying the container port and not

specifying the host port, in Aurora [197] by invoking the underlying Thermos executor (remember,

configuration management files in Aurora are written in Python – see Section 4.1) and in

Marathon [198] by setting the host port equal to 0.

Note that dynamic allocation of host ports also requires that the containerized application is

reconfigured via a custom Docker entry point so that the default port of the application is changed to

the dynamically allocated host port (see Section 4.4).

Management of statically specified host port conflicts on the same node. For those applications where

dynamically changing the default port is not possible or too cumbersome, or those CO frameworks

that do not support dynamic host port allocation, it is still possible in Docker Swarm integrated mode

and Kubernetes to statically reserve a particular port with support for resolution of port conflicts:

 in Docker Swarm integrated mode [199], host ports are centrally managed at the service level

such that requests for creating a new service with an already allocated host port is a priori

rejected

 in Kubernetes [200], the default scheduler policy (see Section 4.1) ensures that containers are

automatically scheduled on nodes where the requested host port is still available.

There is no specific support for host port conflicts the other CO frameworks. As a workaround,

in Docker Swarm stand-alone [201], Aurora [106] and Marathon [202], however, scheduling

constraints (see Section 4.6) can be specified per container in order to ensure that containers with the

same host port are scheduled on different nodes. Moreover, in Aurora and Marathon, Mesos agents

must be configured to offer port ranges that include the requested static port [203].

Plugin architecture for network services.

Network plugin architecture. In order to support different network implementations, all CO

frameworks support a common interface and composition framework for network plugins. What

network plugin is preferred by an application depends on various contextual parameters such as the

underlying cloud provider network, the desired performance, desired routing topology, etc. The

implementation of routing mesh and/or virtual network can be customized to accommodate

performance requirements of the containerized applications. The involved customizations include

the implementation of the local virtual bridge, the virtual overlay network software, and the

distributed load balancer. We refer to Table 4 for the relevant documentation pages of each CO

framework’s network plugin architecture.

 26 of 121

Support for the Container Network Interface specification. A noteworthy standardization initiative for

network plugins is the Container Network interface (CNI) project [204], which consists of a

specification and a library for writing network plugins as well as a set of helper plugins. Currently,

Kubernetes [205], Mesos [206] and the DC/OS distribution of Mesos and Marathon [207] support

CNI. The CNI specification also allows for multiple networks to exist simultaneously. Mainstream

Kubernetes deployment tools currently do not support the creation of multiple co-existing networks

however. Instead a single network must be installed for the entire cluster when bootstrapping the

master node. As such exhaustion of the number of available subnet IP addresses is an issue. Another

limitation is that most CNI plugins do not yet support hairpin mode which allows containers to reach

themselves via their Service IPs [208].

Support for Docker Swarm’s libnetwork. Docker Swarm uses its own networking plugin architecture,

libnetwork [209]. The advantage of this architecture in comparison to CNI is that multiple networking

plugins can be dynamically installed/removed and co-exist in an already running cluster, using the

docker plugin command-line interface. Mesos v1.0.0+ [210] and DC/OS v1.9+ [211] also support

Docker’s libnetwork architecture. Due to Mesos’ architecture, it is however not possible to add or

remove virtual networks at run-time [212], nor is it possible to connect a container to multiple Docker

networks [213].

Separation of data and control traffic. Docker v17.12 [214] can be configured to to use separate network

interfaces for handling data traffic and swarm control traffic. For CNI-based networks, a specific

Kubernetes network plugin, named Multus [215], also supports separating data and control traffic by

means of distinct container network interfaces.

Service discovery and external access.

Internal DNS service. All CO frameworks support an internal DNS service for mapping service DNS

names to IP addresses. Two approaches for deploying the DNS service exists:

 Docker Swarm integrated mode [169] and DC/OS [175] support a distributed DNS server that it

automatically installed on every node of the cluster. As such DNS lookups can be resolved

locally. Moreover DC/OS’ DNS server, named dcos-dns, can work with any type of container

mode, i.e. it resolves to virtual IP addresses when containers are attached to a virtual network,

or it resolves to IP addresses of the nodes when containers run in host or bridged mode.

 Kubernetes‘ DNS service [216] and mesos-dns [181], which is used by Aurora, Marathon and

DC/OS, are deployed in a central fashion. As such DNS lookups always require multi-hop

network routing. Note that mesos-dns is used in DC/OS as central back-end for the distributed

dcos-dns servers: when services have been launched in Mesos, the Mesos master synchronizes

with mesos-dns to add the appropriate DNS records; thereafter the dcos-dns synchronizes its

state with mesos-dns.

DNS SRV records. It is also possible to lookup named ports as SRV records [183] in Kubernetes [217],

Aurora [191] and DC/OS [218]. Note, in DC/OS, SRV records are only supported by the central mesos-

dns.

Bypassing the L4 service load balancer. Kubernetes and Docker Swarm allow to bypass the built-in L4

load balancer of respectively the virtual network layer and routing mesh by means of round-robin

DNS. In Kubernetes [219], this feature is supported as Headless Services, which don’t have a Service

IP address. Instead the IP addresses of the containers are stored as a DNS record in the internal DNS

service. Of course, clients need to implement the load-balancing itself. In Docker Swarm integrated

mode [190] it is only possible to bypass the L4 load balancer if the service is exposed as a global

service port via the routing mesh. A DNS lookup for the service name returns then a list of IP

addresses for the nodes running the containers behind that service.

Support for access to services from outside the cluster via the routing mesh. In order to support access to

services from external clients that run outside the cluster, an external load balancer solution must be

used. In CO frameworks with a routing mesh, the built-in L4 load balancer can play the role of such

 27 of 121

Table 4. Commonly supported features for the "container networking" aspect.

Container
networking
sub-aspects

Features

Sw
ar

m
 s

ta
n

d
-a

lo
n

e

Sw

ar
m

 in
te

gr
at

e
d

K
u

b
er

n
et

e
s

M

es
o

s

M
e

so
s+

 A
u

ro
ra

M
e

so
s+

 M
ar

at
h

o
n

D
C

/O
S

 Sa Si Ku Me Au Ma Dc

Services
networking

Routing mesh
for global
service ports

L4, ipvs-based LB
distributed on all nodes

central L4-L7 LB (without
ipvs)

$Docker

EE$
port

mapping
isolator

 Extnd

Virtual IP
network for
containers

L4 distributed LB (with
ipvs)

Add

with stable DNS name
for services

Add

IP per container Dlgt

Host ports
networking

Mapping container port
to host port

 Extnd

with stable DNS name
for service

 Extnd

Host mode networking Dlgt

Host ports
conflict
management

Dynamic allocation of host ports
port

mapping
isolator

 Dlgt

Management of host port conflicts

Plugin
architecture
for network
services

Network plugin architecture Dlgt

Support for CNI specification Dlgt

Support for Docker’s libnetwork Dlgt

Separation of data and control traffic
Multus
plugin

Service
discovery and
external
access

Internal
DNS
service

Distributed DNS server on all
nodes

 Extnd

Central DNS server Dlgt

DNS SRV records (only in central DNS) Dlgt

Bypassing the L4 service load balancer

Cell legend:

 $..$: Support for the feature is not included in the open-source distribution of the CO framework, but

is included in a commercial product or cloud service of the CO framework. The URL to the

corresponding documentation is included. The name of the URL refers to the name of the product or

service.

 externalComponent: Support for the feature is not included in the open-source distribution of the CO

framework, but the feature is supported by a third party component or platform. The URL to the

corresponding documentation is included. The name of the URL refers to the name of the

component.
 partial support: the CO framework offers partial support for the feature. The URL to a relevant

documentation page is included. The name of the URL refers to the essence of what is being

supported.

https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/networking.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/services-networking/service.md#type-nodeport
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/ingress.md#ingress-controllers
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/networking.md#specifying-service-ports
https://docs.mesosphere.com/1.11/networking/#layer-7
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/networking.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/service.md
https://docs.mesosphere.com/1.11/networking/SDN/dcos-overlay/
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/networking.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/service.md#dns
https://docs.mesosphere.com/1.11/networking/SDN/dcos-overlay/
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/networking.md
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/networking.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/networking.md
https://github.com/apache/mesos/blob/1.5.x/docs/networking.md
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/networking.md#enabling-container-mode
https://docs.mesosphere.com/1.11/networking/SDN/dcos-overlay/
https://github.com/docker/docker.github.io/blob/v17.12/network/bridge.md
https://github.com/docker/docker.github.io/blob/v17.12/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/configuration/overview.md#services
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/services.md#ports
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/service-discovery-load-balancing.md
https://docs.mesosphere.com/1.11/networking/#ip-connectivity
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#bypass-the-routing-mesh-for-a-swarm-service
https://github.com/mesosphere/mesos-dns/blob/master/docs/docs/http.md#get-v1servicesservice
https://github.com/apache/aurora/blob/rel/0.20.0/docs/features/service-discovery.md#using-mesos-dns
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/service-discovery-load-balancing.md
https://docs.mesosphere.com/1.11/networking/DNS/#myapp-mygroupmarathonautoipdcosthisdcosdirectory
https://github.com/docker/docker.github.io/blob/v17.12/network/host.md
https://github.com/docker/docker.github.io/blob/v17.12/network/host.md
https://github.com/apache/mesos/blob/1.5.x/docs/networking.md#docker-containerizer
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#host-networking
https://docs.mesosphere.com/1.11/networking/#host-mode-networking
https://github.com/docker/docker.github.io/blob/v17.03-release/engine/reference/run.md#expose-incoming-ports
https://github.com/docker/docker.github.io/blob/master/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/services.md#ports
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#port-definition
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node
https://docs.okd.io/latest/admin_guide/scheduling/scheduler.html#scheduler-sample-policies
https://github.com/docker/docker.github.io/blob/v17.12/swarm/networking.md
https://github.com/docker/docker.github.io/blob/v17.12/engine/swarm/networking.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/network-plugins.md#cni
https://github.com/apache/mesos/blob/1.5.x/docs/networking.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md
https://docs.mesosphere.com/1.11/networking/SDN/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/network-plugins.md#cni
https://github.com/apache/mesos/blob/1.5.x/docs/cni.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md
https://docs.mesosphere.com/1.11/networking/SDN/cni-plugins/
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/apache/mesos/blob/1.5.x/docs/networking.md#docker-containerizer
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md
https://docs.mesosphere.com/1.11/networking/#container-mode-networking
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#separate-control-and-data-traffic
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#separate-control-and-data-traffic
https://github.com/Intel-Corp/multus-cni
https://github.com/Intel-Corp/multus-cni
https://github.com/docker/docker.github.io/blob/v17.09-release/engine/userguide/networking/configure-dns.md
https://github.com/docker/docker.github.io/blob/v17.09-release/engine/userguide/networking/configure-dns.md
https://docs.mesosphere.com/1.11/networking/DNS/
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/services-networking/dns-pod-service.md
https://github.com/mesosphere/mesos-dns
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/service-discovery.md#using-mesos-dns
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/service-discovery-load-balancing.md#mesos-dns
https://docs.mesosphere.com/1.11/networking/DNS/
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/services-networking/dns-pod-service.md#srv-records
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/service-discovery.md#using-mesos-dns
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/service-discovery.md#using-mesos-dns
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/service-discovery-load-balancing.md#mesos-dns
https://docs.mesosphere.com/1.11/networking/DNS/#srv-records
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#bypass-the-routing-mesh-for-a-swarm-service
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/service.md#headless-services

 28 of 121

load balancer if the public or private IP addresses of one or more nodes of the cluster and the global

service port of the service are reachable for external clients. DC/OS’ Edge-LB load balancer is

specifically designed for this purpose [220] and also allows to load balance non-container

orchestrated services of DC/OS [221].

It is also possible to let a cloud provider’s load balancing service forward client requests to the

L4 load balancer. However, none of the CO frameworks, except Kubernetes [222], provide automated

support for provisioning of a cloud-provided load balancer (see Section 4.3.2).

Note, in CO frameworks without a routing mesh, host ports of containers may also be accessible

for external clients. Of course, clients have to implement then their own service load balancing.

Co-existence of service IPs and service ports for a single service. Docker Swarm integrated mode [223] and

Kubernetes [156] allow assigning to a single service both a global service port and a service IP. After

all, both network addresses are served by the same distributed L4 load balancer.

Note that this is not possible in Marathon or DC/OS [161]: global service ports and virtual

container networking cannot be combined for the same application: global service ports can only be

assigned to Marathon applications of which the containers do not run in container network mode

and thus these containers cannot be reached via a name-based VIP (which is served by DC/OS’

distributed L4 load balancer [174]). As a consequence, internal clients are required to send their

requests to the centrally deployed L4-L7 marathon load balancer. Vice versa, Marathon applications

that do run in container network mode cannot be accessed via the marathon-lb and thus are not

externally accessible. As a work-around, DC/OS containers that run in host or bridged mode can be

assigned a global service port and an internal DNS name (which is resolved by the distributed DNS

service of DC/OS to a cluster node IP [175]), but internal clients need to implement their own load

balancing.

 Unique features

Docker Swarm integrated mode and DC/OS have the following unique feature for the sub-aspect

“services networking”:

Docker Swarm integrated mode:

 Support for SCTP port mapping for stand-alone containers [224]. The Stream Control

Transmission Protocol (SCTP) is widely used in cellular networks as a transport protocol. One

of the popular application of SCTP is Diameter[225] . This feature is limited to running these

applications in stand-alone Docker containers [226] and connecting their SCTP port to an

existing virtual overlay network of Docker Swarm [227].

DC/OS

 Support for load-balancing of non-container orchestrated DC/OS services [228].

Kubernetes has the following unique features for the sub-aspect “service discovery and external

access”:

 Automated integration with external load balancers [222] of cloud providers via provider-

specific libraries [229]. Services of type LoadBalancer [230] are automatically provisioned with

an external load balancer of the underlying cloud provider if the Kubernetes cluster has been

installed with the cloud-provider-specific package.

 External DNS [231] synchronizes exposed Services and Ingresses with external DNS providers

such as Google Cloud DNS, AWS Route 53, etc.

 IP masquerading [232] is a form of NAT that can be used for hiding a Pod’s virtual IP address

behind the IP address of its Node. This feature is typically used when a Pod sends network traffic

to destinations outside the cluster’s Pod CIDR range.

 Support for adding host-aliases (similar to entries in /etc/hosts) of Pods in order to override DNS

lookup [233].

 29 of 121

 Support for using another name server for DNS lookup in a Pod by enabling the

CustomPodDNS feature gate and setting the Pod’s DNS policy to “None” and specifying all

DNS settings in the dnsConfig field in the Pod specification [234].

 Kubernetes 1.9+ also offers the possibility to replace the implementation of the default internal

DNS service kube-dns by another DNS service implementation, CoreDNS [235], which is

moving to become the new default.

 Application configuration and deployment

This aspect covers features of CO frameworks that an application manager must understand in

order to configure, compose, deploy, scale and upgrade containerized software services and

applications.

 Common features

Supported workload types. All CO framework offer support for running different types of

workloads: user-facing latency-sensitive, elastically scalable, stateless services; throughput-sensitive

job processing; and stateful applications. In this sub-aspect we zoom into the former two types of

workloads while the next sub-aspect focusses on the support for stateful applications.

Smallest unit of deployment. Docker Swarm integrated mode [236] and all Mesos-based

frameworks [79] propose the concept of Task, which is the smallest atomic unit of deployment. In

Docker Swarm, a task encapsulates always a single container. In Mesos-based frameworks, a task

encapsulates at most one container, but a task can also run non-containerized processes.

In opposition, in Kubernetes, the smallest unit of deployment is a Pod [237], which is a set of co-

located containers that logically belong together and therefore are always deployed together on the

same node.

Pods. The abovementioned Kubernetes concept of Pod has also be adopted in Mesos [238],

Marathon [239] and DC/OS [240]. Here multiple containers can be launched atomically as part of a

task group and these containers are all started inside an underlying Executor container. Such nested

containers are only supported in the Mesos containerizer runtime [241].

Container-based jobs. Batch-oriented workloads where one or more jobs run in parallel are supported

by Kubernetes [242] and Aurora [243]. In Aurora, a single job instance runs a task which consists of

one or more processes that are executed sequentially or in parallel. Optionally, this task can be run

inside a container. In Kubernetes jobs are always started inside a container and sequential or parallel

processing of jobs is also possible. Cron jobs, which run at predetermined time intervals, are also

supported by Kubernetes [244] and Aurora [245].

Container-based services. As already stated in section 4.3, all CO frameworks, except Docker Swarm

stand-alone, offer a Service concept for exposing a replicated set of containers to customers as a stable

service endpoint that is served by the distributed load balancer or the internal DNS service. Such

stable service endpoint can be represented by one or more forms: a virtual IP address, a global service

port, a fully qualified DNS name, or just a unique service name.

In Docker Swarm integrated mode [223] the following items must be declared by the application

manager in the configuration file of a Service specification: (i) the container image to be deployed, (ii)

optionally a virtual network to which the container must be connected – this virtual network must

be created in advance [155] -- and (iii) optionally one or more global service ports or host ports. If a

virtual network is specified, Docker Swarm will then also automatically generate a virtual IP address

for the service. Moreover it will configure the L4 load balancer of its routing mesh to serve the

declared global service ports.

Kubernetes expects that the application manager specifies in a Service configuration file one or

more target ports at which the service must be exposed within the virtual IP cluster network; for each

target port, it is also possible to expose the service within the routing mesh using a global service

port [246]. However, no information about the virtual network must be declared; after all exactly one

 30 of 121

virtual network is mandatory installed in advance for the entire cluster. Moreover the application

manager must not specify information about the container image. Instead, Kubernetes introduces the

concept of ReplicaSet [247] for deploying a container image, exposing one or more container ports

and host ports, for managing the number of container replicas and for attaching labels [248] to the

running containers. The Service configuration file then only contains a so called label selector [249],

which selects containers based on their attached labels. Labels and label selectors allow thus defining

multiple services that load balance containers from different replica sets.

In order to expose a set of containers as a global service port in Marathon [250] and DC/OS [251],

the cluster administrator must first install one or more instances of the marathon-lb or edge-lb load

balancer [252]. To deploy an application, the application manager must then declare the following

information in a so called Application specification [251]: (i) the container image, (ii) port mappings

which are tuples of (host port, container port, global service port), (iii) the load balancer that should

process the requests for the application and (iv) optionally the fully qualified domain name of the

application when such DNS name is managed by an underlying cloud provider [253].

As DC/OS also supports virtual IP addresses per container [173], Marathon applications can

alternatively be discovered via dcos-dns [176] and load balanced via a layer-4 load balancer [174].

The cluster administrator must first install one or more virtual networks [254]. The application

manager must then specify in the Application specification (i) what virtual network to use [255] and

(ii) a so-called name-based virtual IP [173] at which the service of the application must be exposed.

Finally, in Aurora a service is defined as a job of type Service that runs a container image in

daemon mode [256]. As Aurora only supports host ports, DNS load balancing is used via mesos-

DNS [191]: the containers of that service are registered in mesos-DNS as a list of SRV records (i.e. IP

address and named ports see Section 4.3).

Elastic scaling of services. In all CO frameworks, the containers behind a service can be replicated across

one or more nodes. The number of container replicas can be increased or decreased and for those CO

frameworks with a service proxy, the service proxy will automatically reconfigure itself to take into

account the change. Finally, although Docker Swarm stand-alone [257] does not offer the Service

concept, it is still possible to replicate a specific container via Docker Compose [258], which is a tool

for deploying composite applications across different environments in a portable way.

Auto-scaling of services. Kubernetes [259] also supports an auto-scaler functionality that automatically

adapts the number of replicas depending on one or more threshold values with respect to a

performance or resource consumption metric. In order for the auto-scaling to work, resource

monitoring features (see Section 4.8.2) must be enabled. The DC/OS [260] distribution of Marathon

also supports auto-scaling of Marathon applications by running a Python implementation inside a

separate Docker container. It also includes third party documentation with other approaches for auto-

scaling services.

Global containers. For some applications or framework support services it is necessary that a particular

container image is running at every node of the cluster. This concept is supported in Docker Swarm

integrated mode [103] and Kubernetes [261] as respectively global services and daemon sets.

Composite applications. Docker Swarm integrated mode and Marathon provide support for deploying

multiple tiers of a distributed application in such an order that the dependencies between the tiers

are respected. In Docker Swarm integrated mode [262], different service configurations and their

mutual dependencies can be specified as part of a ComposeV3 file [66]. The docker stack deploy

command takes as input such ComposeV3 file and deploys all the specified services together as one

group while respecting the interdependencies between the services. Marathon supports a similar

concept called Application groups [263].

Kubernetes does not support a similar concept natively, but several tools exist. First, Helm [264]

is a command-line interface and run-time configuration management server for creating and

managing the Helm charts. A Helm chart is a highly-configurable deployment package that

encapsulates inter-dependent Kubernetes objects such as services, configuration setting or

authentication credentials. Second, the Kompose tool [265] takes as input a Docker ComposeV3 file

 31 of 121

and translates this file to Kubernetes configurations such as multiple Services, ReplicaSets, Persistent

volume configurations or Helm charts.

Persistent volumes. In all container orchestration frameworks, containers are stateless; when a

container dies, any internal state is lost. Therefore, so called persistent volumes, which store the

persistent state, can be attached to containers. Persistent volumes can be implemented by various

mechanisms: services for attaching block storage devices to virtual machines such as Cinder,

distributed file frameworks such as NFS, cloud services such as Google Persistent Disk, or local

volumes that reserve a subset of the local disk resources. Persistent volume mechanisms can be

categorized according to the following 9 features:

Local volumes that are comprised of disk resources of a container’s local host node are supported by

all CO frameworks. Mesos also enables frameworks to configure local volumes that are composed of

multiple disk resources [266].

Automatic (re)scheduling of containers to local volumes. Containers that are configured to use a specific

local volume are automatically (re)scheduled to the node where that local volume resides.

Kubernetes [267], Mesos [268], Marathon and DC/OS [269] and Aurora [270] include full support for

local persistent volumes with automatic scheduling support. Docker Swarm integrated mode [271]

supports local volumes, but a manual scheduling constraint (see Section 4.6) must be specified to

ensure that containers are always scheduled to that node only.

Shareable volumes between containers are supported by Docker Swarm integrated mode and stand-

alone [272], Kubernetes [273] and Mesos [274]. Such shareable volumes can be used as an

asynchronous data communication channel between containers. Note however, that in general not

all types of persistent volumes support sharing.

External persistent volumes are supported by all CO frameworks. Such external volumes support

managing data sizes that exceed a node’s disk capacity and also allow for state recovery in case of

node failures. Docker Swarm stand-alone [275], Docker Swarm integrated mode [276], Mesos [277],

Aurora [278], Marathon [279] and DC/OS [280] provide support for mounting external Docker

volumes by relying on a specific Docker volume plugin implementation [281]. Kubernetes also offers

support for various persistent volume implementations but uses its own library of persistent volume

implementations. Mesos and Kubernetes also support the Container Storage Interface (CSI)

specification [282].

Volume plugin architecture. All CO frameworks except Aurora support a unified interface for different

volume implementations. Overall there are two different architecture that are adopted by multiple

CO frameworks: the Docker Engine plugin framework and the CSI-based plugins. These

standardization efforts will be explained as part of the following paragraphs.

Support for Docker volume plugin architecture. The Docker Engine plugin framework [283], which offers

a unified interface between the container runtime and various volume plugins, is adopted by

Mesos [277], Marathon [279] and DC/OS [284] in order to support external persistent volumes. In

Mesos-based frameworks, Docker volume plugins must be integrated via a separate Mesos module,

named dvdi [285], which requires writing plugin-specific glue code. As such a limited number of

Docker volume plugins are currently supported in Mesos.

Support for the Common Storage Interface (CSI) specification. The Common Storage Interface

specification [282] aims to provide a common interface for volume plugins so that each volume

plugin needs to written only once and can be used in any container orchestration framework. The

specification also supports run-time installation of volume plugins. Typically, CSI can be

implemented in any CO framework as a normal volume plugin, which itself is capable interacting

with multiple external CSI-based volume plugins. Currently, CSI has been adopted by

Kubernetes [286], Mesos [287] and DC/OS [288].

 32 of 121

Support for run-time installation of volume plugins has been supported by the Docker Engine plugin

framework[281] since Docker engine v1.12 and therefore also supported by Docker Swarm. As

Mesos, Marathon and DC/OS have adopted the Docker volume plugin framework, these frameworks

in principle also support run-time installation. Kubernetes also supports a unified interface for

different volume implementations, but these are packaged in the source code of the Kubernetes

releases [289]. As such, they cannot be dynamically installed in a running cluster. However,

Kubernetes v1.9+ [286] and Mesos v1.5+ [287] support the CSI specification [282] that allows run-time

installation of external volume plugins.

Dynamic provisioning of persistent volumes is supported by most CO frameworks. This feature entails

that volumes must not be manually created by the application manager in advance, but instead

volumes are automatically created or re-provisioned when a new container is started.

 In Docker Swarm integrated mode [290], volumes are linked to a service by means of the --mount

option in the docker service create command. Here the volume plugin, known as volume driver,

must be specified. When Docker schedules a task of a service on a specific node, and the volumes

of the service are not present or linkable on that node, Docker Swarm tries to create a new one

using the specified volume driver.

 Kubernetes [291] uses a more elaborate approach. Volumes are associated with Pods. Pods

declare the required persistent volume type as a persistent volume claim [292] that requests a

specific StorageClass [293] and specific data size quota and access modes. When none of the

statically created, unmounted persistent volumes match that claim, Kubernetes dynamically

provisions a volume based on the requested StorageClass.

 In Mesos-based frameworks, pinned persistent volumes can be dynamically provisioned thanks

to Mesos’ scheduler architecture that supports dynamic reservation and un-reservation of any

type of resource [294]. Mesos also inherits the capability of the Docker Engine plugin framework

to automatically provision Docker volumes, but this is not recommended in the documentation

of Mesos [295].

Reusable container configuration. There are a number of commonly supported features related to

supporting generic yet configurable container images.

Passing environment variables to a container. First, all CO frameworks allow to pass environment

variables to a container, which is a common way for configuring the software that is running inside

the containers (see Table 5).

Self-inspection API. Kubernetes [296] and Marathon[297] enable a container to retrieve information

about itself via a so called downward API. Therefore, this information must not be specified as part

of the container configuration or container image.

Storing non-sensitive information (such as configuration files) outside a container’s image. Docker Swarm

integrated mode [298] and Kubernetes [299] additionally support separating configuration data from

images in order to keep containerized applications portable.

Configuring a custom ENTRYPOINT and CMD. All CO frameworks allow customizing the default

ENTRYPOINT and CMD entries of a Docker image at run-time. ENTRYPOINT specifies the

command that must be run when starting the container (e.g. /bin/sh –c opens a shell), while CMD

specifies the arguments for the entrypoint’s command (e.g. cassandra –f starts the Cassandra program

of the official Cassandra container image).

Docker engine’s docker run command allows to customize both the ENTRYPOINT and CMD at

run-time. When only a custom CMD is specified, the default ENTRYPOINT is ran with the custom

CMD. When a custom ENTRYPOINT is specified, the default CMD is cleared [300].

Docker Swarm stand-alone [301] supports the same customization scheme as the Docker engine

because Docker Swarm stand-alone manages a set of nodes as a single virtual host that serves the

standard Docker Engine API. Docker Swarm integrated mode [302] also supports the same scheme

via the docker service create command.

 33 of 121

Kubernetes [303], Mesos’ Docker containerizer [304] and Mesos containerizer [305] as well as

Marathon [306] also support the same customization scheme as Docker engine. Aurora requires that

Python is installed inside a Docker container. However it supports passing a number of parameters

to the Docker Engine that may include a customized ENTRYPOINT and CMD parameter.

Service upgrades. All CO frameworks support rolling upgrades of services by means of restarting the

containers of the service with a new image. In this way the old version of the service gets gradually

replaced with a new version. The status of the rolling upgrade can be monitored. Health or readiness

checks can be configured in order to monitor the health or readiness of new container replicas. In

case of failures, the upgrade can be paused, resumed or rolled back. The upgrade process itself can

also be customized with respect to the desired availability of the old and new version of the service

during the upgrade. Note Aurora supports both rolling upgrades of jobs and services [307].

Monitoring the progress of a rolling upgrade. Docker Swarm integrated mode [308] allows to monitor the

progress of a rolling upgrade via the docker service inspect command. Aurora [309] allows to check

the health of new tasks by means of heartbeat mechanism. A lost heartbeat pulse will block the

update. Kubernetes [310] and Marathon [311] introduce the concept of Deployment for monitoring

the progress of a rolling upgrade. A blocked update must be explicitly unblocked. Kubernetes

provides the most extensive support for detecting a failed upgrade.

Configuration of custom readiness checks. It is also possible to configure custom readiness checks in

Kubernetes [312] and Marathon [313]. These checks control when a newly started container is ready

to process requests.

Customizing the enactment of the rolling upgrade. Docker Swarm integrated mode [258],

Kubernetes [314], Marathon [315] and DC/OS offer various options to customize how the rolling

upgrade process is executed/enacted. A common enactment customization is controlling how many

instances of the old and new version of the service should always be running during the upgrade. In

Docker Swarm integrated mode [316], the maximum number of containers that can be upgraded in

parallel can be specified. Kubernetes [317] allows to specify the maximum number of unavailable

pods during the upgrade and to specify the maximum surge [318], which is the number of pods that

can be created over the desired number of pods. Marathon [315] allows specifying the minimum

health capacity of the old version as a percentage of old containers for which a new container must

be deployed side-by-side, after which the new version is scaled to 100% and the old version is

stopped. Aurora [319] only supports side-by-side replacements, but the number of tasks that can be

updated in parallel can be configured.

Roll back. Docker Swarm integrated mode [320], Kubernetes [321], Aurora [319] and the DC/OS [322]

distribution of Marathon support rolling back an upgrade. Aurora does not offer a command for

rolling back an upgrade but can be configured to automatically rollback in case of a failure. Note that

recovering from a failed upgrade is a more complicated problem than what a roll back can resolve.

In most case, it is better to roll forward by upgrading to a resolved application state.

Canary deployments. A variant of rolling upgrades, named blue-green deployments or canary

deployments, intents the same effect as a rolling upgrade but allows for more manual control over

the upgrade. The application manager will deploy a completely new service next to the existing

service and the application manager can manually control when to redirect users from the old to the

new service. Typically this redirection is only performed after testing the health and readiness of the

new service. Moreover, users are redirected in a gradual way so the old service is gradually scaled

down while the new service is gradually scaled up. Kubernetes [323], Aurora [319] and DC/OS [324]

support performing such canary deployments.

In-place updates of application configurations. Several CO frameworks allow narrow updates to

application configuration files such as changing the value of a field. Two different implementation

strategies exist:

 34 of 121

 Kubernetes [325] and DC/OS [326] support updating the configuration file of a Pod with a new

version of that configuration file. Kubernetes does not only support updating Pods but also any

other API objects such as Deployments and Secrets; moreover different kubectl commands exist

for updating the API configuration files: patching [327], applying [328] or editing [329].

 Docker Swarm stand-alone [330], Docker Swarm integrated mode [331] and DC/OS [332] offer

an update command that allows changing one or more properties in an application

configuration directly without creating a new configuration file.

Table 5. Commonly supported features for the “application configuration and deployment” aspect.

Application
configuration
and
deployment
sub-aspects

Features

Sw
ar

m
 s

ta
n

d
-a

lo
n

e

Sw

ar
m

 in
te

gr
at

e
d

K
u

b
e

rn
e

te
s

M

e
so

s

M
e

so
s

+
 A

u
ro

ra

M
e

so
s

+
 M

ar
at

h
o

n

D
C

/O
S

 Sa Si Ku Me Au Ma Dc

Supported
workload
types

Pods Dlgt

Container-based jobs Add

Container-based services Dlgt

Elastic scaling of services Dlgt

Auto-scaling of services
marathon-
autoscale

Global containers

Composite applications
Helm

Kompose Dlgt

Persistent
volumes

Local volumes Dlgt

Automatic (re)scheduling Dlgt

Shareable volumes between containers

External volumes Dlgt

Volume plugin architecture Dlgt

Run-time installation of volume plugins CSI Dlgt

Docker volume plugin system support Dlgt

Common Storage Interface (CSI) support Dlgt

Dynamic provisioning of volumes
Supported for local volumes but
not recommended for Docker
volumes

Reusable
container
configuration

Pass environment variable to container Dlgt

Self-inspection API Dlgt

Separate configuration data from image

Cell legend:

 Partially supported feature: The feature is only partially supported

 externalComponent: Support for the feature is not included in the open-source distribution of the

CO framework, but the feature is supported by a third party component or platform. The URL to the

corresponding documentation is included. The name of the URL refers to the name of the

component.
 tutorial: The feature is not directly supported by the framework, but a set of tutorials how to add

auto-scaling capabilities using third-party components has been provided as part of documentation.

https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/workloads/pods/pod.md
https://github.com/apache/mesos/blob/1.4.x/docs/nested-container-and-task-group.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md
https://docs.mesosphere.com/1.10/deploying-services/pods/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/jobs-run-to-completion.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration-tutorial.md
https://docs.mesosphere.com/1.10/deploying-jobs/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/service.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/services.md
https://github.com/mesosphere/marathon/blob/master/docs/docs/application-basics.md
https://docs.mesosphere.com/1.8/usage/managing-services/creating-services/
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm-tutorial/scale-service.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/workloads/controllers/replicaset.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/client-commands.md#adding-instances
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/application-groups.md#group-scaling
https://docs.mesosphere.com/1.10/deploying-services/scale-service/
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/tasks/run-application/horizontal-pod-autoscale.md
https://docs.mesosphere.com/1.10/tutorials/autoscaling/
https://docs.mesosphere.com/1.10/tutorials/autoscaling/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#control-service-scale-and-placement
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/workloads/controllers/daemonset.md
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/index.md
https://github.com/kubernetes/helm
https://github.com/kubernetes/kompose
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/application-groups.md
https://docs.mesosphere.com/1.7/usage/cli/command-reference/#dcosmarathon
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/index.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md#start-a-service-with-volumes
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/storage/volumes.md#local
https://github.com/apache/mesos/blob/1.4.x/docs/persistent-volume.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#mesos-object
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/persistent-volumes.md
https://docs.mesosphere.com/1.10/storage/persistent-volume/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/volume-topology-scheduling.md
https://github.com/apache/mesos/blob/1.4.x/docs/persistent-volume.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#mesos-object
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/persistent-volumes.md
https://docs.mesosphere.com/1.10/storage/persistent-volume/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/storage/volumes.md
https://github.com/apache/mesos/blob/1.4.x/docs/shared-resources.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md#use-a-volume-driver
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#data-volumes
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/storage/persistent-volumes.md#types-of-persistent-volumes
https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#docker-object
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/external-volumes.md
https://docs.mesosphere.com/1.10/storage/external-storage/
https://github.com/docker/docker.github.io/blob/v17.03-release/engine/extend/index.md
https://github.com/docker/docker.github.io/blob/v17.03-release/engine/extend/index.md
https://github.com/kubernetes/kubernetes/tree/master/pkg/volume
https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/external-volumes.md
https://docs.mesosphere.com/1.10/storage/external-storage/
https://github.com/docker/docker.github.io/blob/v17.03-release/engine/extend/index.md
https://github.com/docker/docker.github.io/blob/v17.03-release/engine/extend/index.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/storage/volumes.md#csi
https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md#pre-conditions
https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md#pre-conditions
https://docs.mesosphere.com/1.10/usage/storage/external-storage/
https://github.com/docker/docker.github.io/blob/v17.06/engine/extend/index.md
https://github.com/docker/docker.github.io/blob/v17.06/engine/extend/index.md
https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md#pre-conditions
https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md#pre-conditions
https://docs.portworx.com/scheduler/mesosphere-dcos/portworx-volumes.html
https://github.com/apache/mesos/blob/1.6.x/docs/csi.md
https://docs.mesosphere.com/services/beta-storage/0.3.0-beta/volume-plugins/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md#start-a-container-which-creates-a-volume-using-a-volume-driver
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#give-a-service-access-to-volumes-or-bind-mounts
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/storage/dynamic-provisioning.md
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/docker-volume.md#pre-conditions
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/docker-volume.md#pre-conditions
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/docker-volume.md#pre-conditions
https://github.com/docker/docker.github.io/blob/v17.06/compose/compose-file/compose-file-v2.md#environment
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/index.md#environment
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/define-environment-variable-container.md
https://github.com/apache/mesos/blob/1.4.x/docs/mesos-containerizer.md#docker-runtime-isolator
https://github.com/apache/aurora/blob/master/docs/reference/configuration.md#docker-parameter-object
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md#additional-pod-fields
https://docs.mesosphere.com/1.10/deploying-services/pods/examples/#additional-pod-fields
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#downward-api
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/configs.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/tasks/configure-pod-container/configmap.md

 35 of 121

Non-disruptive, In-place updates without restarting containers. CO frameworks differ in whether the

aforementioned in-place updates can be performed with or without restarting containers.

 In Docker Swarm stand-alone [330], the docker update command allows performing changes to

containers without restarting them. The set of possible properties than can be updated is

extensive, but application managers should be aware that some properties such as resource

limits, should be updated carefully in order to prevent service outages.

 In Docker Swarm integrated mode [331], the docker service update command performs every

in-place update by means of a rolling upgrade but containers are not always restarted in order

for the update to take effect.

 In Kubernetes [327], in-place updates of a Pod API object are always performed using a rolling

upgrade and Pods are always restarted regardless of the property. As a result, Pods may also be

rescheduled on another node. Note, however, that in-place updates of other API objects (e.g.

editing the upgrade strategy of a Deployment object) can be performed without restarting the

related Pods.

 In DC/OS [332], this feature is not supported: every in-place update is performed by means of a

rolling upgrade and containers are always restarted regardless of the properties.

 Unique features

Several CO frameworks have unique features in several sub-aspects.

Supported workload types. For this sub-aspect, Kubernetes offers the following unique features:

 Init containers [333] are specialized containers that run before application containers and can

contain utilities or setup scripts not present in the application image.

 Vertical Pod Autoscaler [334] is an infrastructure service that automatically sets resource

allocation policies of Pods and dynamically adjusts them at runtime, based on analysis of

historical resource utilization, amount of resources available in the cluster and real-time events,

such as out-of-memory events. Adjusting resource allocation policies requires that Pods are

killed and new Pods will be recreated with adjusted policies set.

Persistent volumes. For this sub-aspect Kubernetes, Mesos, and DC/OS offer the following unique

features

Kubernetes:

 Higher-level, automated support for deploying stateful services such as database clusters is

provided via the StatefulSet [335] concept. The realization of this concept depends on the

automated provisioning of persistent volumes feature and two container networking features:

bypassing the L4 load balancer and the internal DNS for service discovery (see Section 4.3).

 Support for managing raw block storage inside containers [336] without the abstraction of a file

system. This allows for higher performance of containerized databases [337].

Custom ENTRYPOINT Dlgt

Custom CMD Dlgt

Service
upgrades

Rolling upgrades of services Dlgt

Monitoring of a rolling upgrade Dlgt

Roll back Add

Configuration of custom readiness checks Dlgt

Customizing the rolling upgrade process Dlgt

Canary deployments Add

In-place updates of app configurations Add

Non-disruptive, in-place updates

https://github.com/moby/moby/blob/17.05.x/docs/reference/run.md#overriding-dockerfile-image-defaults
https://github.com/moby/moby/blob/17.05.x/docs/reference/commandline/service_create.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/tasks/inject-data-application/define-command-argument-container.md
https://github.com/apache/mesos/blob/1.4.x/docs/mesos-containerizer.md#docker-runtime-isolator
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#docker-object
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/native-docker.md#command-vs-args
https://github.com/moby/moby/blob/17.05.x/docs/reference/run.md#overriding-dockerfile-image-defaults
https://github.com/moby/moby/blob/17.05.x/docs/reference/commandline/service_create.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/tasks/inject-data-application/define-command-argument-container.md
https://github.com/apache/mesos/blob/1.4.x/docs/mesos-containerizer.md#docker-runtime-isolator
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#docker-object
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/native-docker.md#command-vs-args
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm-tutorial/rolling-update.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/workloads/controllers/deployment.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/job-updates.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/deployments.md
https://docs.docker.com/engine/reference/commandline/service_inspect/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/deployment.md#deployment-status
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/job-updates.md#coordinated-job-updates
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/deployments.md#the-v2deployments-endpoint
https://docs.mesosphere.com/1.10/cli/command-reference/dcos-marathon/dcos-marathon-deployment-watch/
https://docs.docker.com/engine/reference/commandline/service_rollback/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/deployment.md#rolling-back-to-a-previous-revision
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#updateconfig-objects
https://docs.mesosphere.com/1.10/cli/command-reference/dcos-marathon/dcos-marathon-deployment-rollback/
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/tasks/configure-pod-container/configure-liveness-readiness-probes.md#define-readiness-probes
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/readiness-checks.md
https://docs.docker.com/v17.06/engine/reference/commandline/service_update/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/deployment.md#rolling-update-deployment
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#updateconfig-objects
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/deployments.md#rolling-restarts
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/manage-deployment.md#canary-deployments
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/job-updates.md#canary-deployments
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/blue-green-deploy.md
https://docs.docker.com/engine/api/v1.37/#operation/ContainerUpdate
https://docs.docker.com/engine/reference/commandline/service_update/#extended-description
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/cluster-administration/manage-deployment.md#in-place-updates-of-resources
https://docs.mesosphere.com/1.11/deploying-services/update-user-service/
https://docs.docker.com/engine/api/v1.37/#operation/ContainerUpdate
https://docs.docker.com/engine/api/v1.37/#operation/ContainerUpdate
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/manage-deployment.md#kubectl-apply

 36 of 121

 Kubernetes v1.8+ [338] enables to resize existing persistent volumes. Kubernetes v1.11+ [339]

allows resizing of persistent volumes without having to restart the Pods that refer to these

persistent volumes.

 Support for dynamic maximum volume count [340] enables volume plugins to specify a limit on

the maximum number of volumes that can be attached to a node and allows this limit to be

configured per type of node.

Mesos:

 A shared local volume can be shared by tasks of different frameworks [274].

 Mesos v1.6+ [341] extends the Framework API with operations for growing or shrinking

persistent volumes, but these new operations have not yet been used by any Mesos-based CO

framework.

DC/OS

 DC/OS commons [342] is a collection of tools, libraries, and documentation for easy integration

and automation of stateful services, such as databases, message brokers, and caching services. It

comes with pre-configured packages for deploying such stateful services in DC/OS. These

services do not run on top of DC/OS’s container orchestration framework however. This might

give a performance gain in comparison to other CO frameworks because the substantial

performance overhead of a virtual network layer is avoided.

Reusable container configuration. For this sub-aspect, Kubernetes and Docker Swarm integrated

mode offer the following unique features:

Kubernetes:

 Podpresets [343] can be used to inject volume mounts, secrets or environment variables into a

Pod at creation-time. It helps application developers to avoid rewriting the same Pod

configuration specification across multiple Pods. It also enables separation of concerns:

developers of containers consuming a specific service do not need to know all the details about

that service

Docker Swarm:

 An option can be set for running a simple service initialization system inside containers.

Applications that fork child process typically rely on a service initialization system for reaping

these child processes to prevent resource leaks and zombie processes. As existing service init

systems for Linux such as systemd or upstart are overkill for use in containers, a simplified

service init system called tini [344] can be set as the ENTRYPOINT of a container image (see

Common feature “configuring a custom ENTRYPOINT and CMD”). Such reconfiguration of the

entry point must in principle be applied for any application that forks and haven't been written

with child reaping in mind as normally they would leave this up to the init system. A typical

case is the java Jenkins applications.

Docker Swarm provides an init option [345] to automatically apply this reconfiguration. When

creating a service and the init option is set, Docker Swarm will automatically set the

ENTRYPOINT to tini and passes the CMD to it or whatever is specified in the command-line.

This option is possible for Docker Swarm stand-alone [346] and Docker Swarm integrated

mode [345].

Service upgrades. For this sub-aspect, Docker Swarm integrated mode offers the following unique

feature:

 Docker Swarm integrated mode allows customizing the enactment of a roll back [320] of a

service. Several options can be specified.

 37 of 121

 Resource quota management

This aspect covers features of CO frameworks that a cluster administrator must understand in

order to organize the hardware resources of a cluster among different teams or organizations.

 Common features

Concept for partitioning API objects into logically named user groups. All container orchestration

frameworks offer a concept for partitioning one or more types of API objects (e.g. services, volumes)

into a logically named user group that corresponds with a specific organization or tenant that is able

to contract resources from the cluster. Docker EE [347] names this concept Collections [348],

Kubernetes calls it Namespaces [349], Apache Aurora uses Job roles [350] that directly refer to a Unix

user account. Mesos Marathon does not support this concept, but the extended DC/OS distribution

of Marathon supports Service Groups [351]. The typical use case of user groups is to reserve a subset

of resources for a tenant of the cluster.

Mesos does not offer the exact concept of user groups. Instead it offers a similar concept, named

framework roles [352], for dividing hardware resources across multiple scheduler frameworks. A

specific Mesos framework is authorized by a cluster administrator (see Section 4.7) to run tasks using

the resources of one or more roles. When a framework reserves a set of resources, it must specify a

role so that the Mesos master can account for the total resource usage of that role.

Table 6. Commonly supported features of the “resource quota management” aspect.

Declaring a minimum guarantee and/or maximum limit on CPU, memory and disk quota per user group.

Kubernetes, Mesos and Aurora provide support for declaring a minimum and a maximum quota of

CPU, memory and disk resources per user group. More specifically:

 Kubernetes supports attaching to Namespaces minimal guarantees and maximum limits for

CPU and memory quota [353] and maximum limits for disk quota per storage class [354].

 Mesos supports attaching to framework roles minimal guarantees [355] for CPU, mem and disk

quota [356] for local volumes as well as weights [357] for dividing resources across roles. Apache

Aurora allows attaching to job roles quota for memory and disk [358] via the aurora_admin

set_quota command.

Resource
quota
management
sub-aspects

Features

Sw
ar

m
 s

ta
n

d
-a

lo
n

e

Sw

ar
m

 in
te

gr
at

e
d

K
u

b
er

n
e

te
s

M

e
so

s

M
es

o
s

+
 A

u
ro

ra

M
es

o
s

+
 M

ar
at

h
o

n

D
C

/O
S

 Sa Si Ku Me Au Ma Dc

Resource
quota
management

Partitioning API objects in user groups
$Docker

EE$ Add

CPU, mem and disk quota per user group

Object count quota limits per user group ports

Reserving resources for the CO framework Dlgt

Cell legend:

 $EnterpriseEdition$: Support for the feature is not included in the open-source distribution of the

CO framework, but is included in the commercial enterprise edition. The URL to the corresponding

documentation is included. The name of the URL refers to the name of the enterprise edition.
 partial support: the CO framework offers partial support for the feature. The URL to a relevant

documentation page is included. The name of the URL refers to what’s essentially supported.

https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/manage-access-with-collections.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/overview/working-with-objects/namespaces.md
https://github.com/apache/mesos/blob/1.4.x/docs/roles.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md
https://docs.mesosphere.com/1.10/overview/concepts/#dcos-service-group
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/resource-quotas.md#compute-resource-quota
https://github.com/apache/mesos/blob/1.4.x/docs/quota.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md#preemption
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/resource-quotas.md#object-count-quota
https://github.com/apache/mesos/blob/1.4.x/docs/operator-http-api.md#get_roles
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/tasks/administer-cluster/reserve-compute-resources.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md#executor-resources
https://docs.mesosphere.com/1.10/deploying-services/pods/technical-overview/#executor-resources

 38 of 121

Declaring an object count quota limit for the number of API objects per user group. Kubernetes and Mesos

allow assigning to user groups a maximum number of API objects such as the number of nodes,

containers, services, etc. More specifically, in Kubernetes [359], object count quota can be declared by

expressing a maximum quantity for different kinds of Kubernetes API objects. In Mesos [356], port

ranges can be associated to framework roles. In Docker EE [347] high-level resources such as

nodes [360], volumes [361] and services can be organized in collections, but there is no declaration of

a maximum limit. The DC/OS distribution of Marathon [362] also allows organizing services into

service groups without enforcing a limit on the number of services for a service group.

Reserving resources for the CO framework. The available set of resources on a node is automatically

computed via the operating system in all CO frameworks. Additionally, Kubernetes [363] and

Marathon [364] can be configured to reserve a subset of the node resources for the framework’s

operation and local daemons.

 Unique features

Mesos offers the following unique feature for the aspect Resource quota management. This feature

contributes to improved performance isolation between Mesos frameworks:

 Framework rate limiting [365] aims to protect high-SLA frameworks (e.g., production, service)

by setting limits to the request rate to the Mesos Master. Frameworks that violate the request

rate limit are throttled and these requests are stored in memory by the Mesos master.

 Container QoS management

This aspect covers features of CO frameworks that an application manger must understand in

order to efficiently use the resources of a user group while also achieving the intended QoS level of

its applications.

Supporting high utilization of allocated resources while also maintaining desired QoS levels of

applications, during either normal execution or resource contention and failures, is a complex goal.

To support this complex goal, CO frameworks are designed with the following two goals in mind:

 Resource allocation models have been developed that support QoS differentiation between

containers while also allowing for over-subscription of resources to improve server

consolidation.

 CO frameworks offer various mechanisms to application managers for controlling scheduling

decisions that influence the performance of the application. These decisions include the

placement of inter-dependent containers and data, and prioritization of containers during

resource contention.

Note that the offered features do not provide strong SLA guarantees at the level of application-

specific metrics (e.g. latency or throughput) but include general mechanisms that can be used to

balance the competing goals of improved resource utilization and controllable performance of the

application.

 Common features

Container CPU and memory allocation with support for oversubscription. This sub-aspect covers

common features of CO frameworks that an application manager must understand to (i) allocate

sufficient resources to a container to achieve its intended performance level, but also to (ii) allow

flexible reallocation of idle resources to improve resource utilization.

In general, the allocation of computational resources to a container is governed by means of

resource allocation policies. Container orchestration frameworks differ in their support for resource

allocation policies and also differ in the type of resources that can be limited. In the following, we set

out the available support for the different types of resources.

 39 of 121

Minimum guarantees and maximum limits for CPU and memory. Kubernetes and Docker Swarm provide

support for minimum guarantees and maximum limits for CPU and memory, while Mesos-based

frameworks supports minimum guarantees for CPU and maximum limits for both CPU and memory:

 Kubernetes manages a <request, limit> [366] pair for CPU and memory for each container and

Pod. A Request defines the resource quantity that is always guaranteed to the container (e.g. a

requests of 1.5 CPU imply that 1 CPU core and 50% of another CPU core is fully assigned to the

container), while a Limit specifies the maximum resource quantity that can be used by this

container (e.g. a request of 1.5 CPU and a Limit of 2 CPU specifies that the container is

guaranteed 1.5 CPU cores, but it can take up until 2 full CPU cores if the processing power is not

used by other containers). When a CPU limit is crossed [367] by a container, the container will

be throttled. When a memory limit is crossed [368], the process using the most memory in the

container is killed. Note that when the Request is set lower than the Limit, the container is

guaranteed the Request but can opportunistically consume the difference between Request and

Limit if some resources are not being used by other containers. It has been shown in Borg, the

predecessor of Kubernetes, that setting Requests and Limits in the above ways increases resource

utilization [52]. Logically, when Requests and Limits of the enclosing Pod are defined, the sum

of the Requests and the sum of the Limits of its containers must always be lower than the Request

and Limit of the Pod. The current implementation [369] of Requests and Limits for Docker

containers uses specific options of the docker run command.

 Docker Swarm integrated mode implements a similar model as Kubernetes called a <reservation,

limit> [370] with the same semantics as a <request, limit> pair in Kubernetes.

 Docker Swarm stand-alone supports all resource allocation options of the docker run command;

Since Docker 1.13+ it is possible to model minimal guarantees (i.e. reservations) as well as

maximum limits for CPU and memory. Minimal guarantees for CPU involves however complex

configuration [371] of the Linux kernel’s CFS scheduler [372] either through --cpu-shares or a

combination of --cpu-quota and --cpu-period options.

 In Mesos, different isolator modules [193] exists for enforcing resource allocation modules for

CPU and memory:

o Various cgroups-based isolator modules are used for enforcing among others: CPU

guarantees and limits [373] and memory limits. The isolator for CPU supports minimal

guarantees (but based on complex configuration of CFS-based CPU shares [372]) and

maximum limits (by means of CFS-based bandwidth control [374]).

o Mesos v1.1.0+ [375] provides support POSIX rlimits [375], which consist of a soft and

hard limit for CPU and memory. The soft limit does not imply a guarantee however, it

implies an effective limit which is set by the application manager; this limit may

however be increased until the hard limit, which is set by the cluster administrator.

The advantage of POSIX rlimits is that it does not only support limiting CPU and mem

but also other POSIX resources such as nproc and memlock. POSIX rlimits are

currently not used by any Mesos-based CO framework however.

o Mesos also offers support for another kind of over-subscription in the form of

revocable resources [376], which are resources that are already reserved for other

processes but currently not used. However these resources are best-effort and can be

revoked anytime by Mesos (see also Section 4.6). Only Aurora [377] uses this Mesos

feature.

 Aurora [378] and Marathon [379] support only minimal guarantees for CPU (based on CPU-

shares) and maximum limits for memory.

Abstraction of cpu-shares for enforcing CPU guarantees. Note that Mesos, Aurora, Marathon and Docker

Swarm stand-alone rely on CPU-shares of the CFS Scheduler for implementing minimal guarantees.

CPU-shares are however difficult to configure because cpu-shares are always defined as weights that

are relative to the cpu-shares of other co-located containers: for example, if a new container is started,

then the cpu-shares declared by that new container reduce the weights of the already running

 40 of 121

containers. Kubernetes [366] and Docker Swarm integrated mode [370], on the other hand, offer

higher-level abstractions for expressing minimal guarantees that hide the complexity of cpu-shares.

Allocation of other resources.

Limits for NVIDIA GPU are supported by Mesos [380], Aurora [378] and Marathon [381] (and

DC/OS [382]). Kubernetes [383] offers partial support for GPU allocation. First, containers cannot

requests fractions of a GPU, only a whole GPU. A single GPU device can neither be shared between

containers.

Limits for disk resources. Mesos offers support for hard [241] and soft limits for disk usage. Hard limits

for disk usage are adopted by Aurora [384], Marathon [381] (and DC/OS). Kubernetes [385] offers

support for setting a <request, limit> pair for usage of a node’s local root partition (ephemeral

storage).

Controlling scheduling behavior by means of placement constraints. All CO frameworks allow to

restrict the placement decision of the default scheduling algorithm by means of various user-specified

constraints in order to improve the QoS level of applications. These user-specified constraints support

placing inter-dependent application containers and data close or far from each other in the network

topology. Different types of constraints are supported:

Restrict the set of nodes by evaluating over node labels. CO frameworks allow to restrict the set of nodes

on which a specific container can be scheduled by means of evaluating over node labels or attributes

(see Section 4.8.2). A label is defined as a <key, value> pair. A number of such labels are predefined

like the hostname of the node.

Evaluate over custom labels. Custom labels can also be defined: in Docker Swarm integrated mode [316]

and Kubernetes [386], custom labels can be dynamically added or removed, whereas in

Marathon [202] and DC/OS [387] custom attributes [388] can only be changed by (re)starting the

Mesos agent with the desired list of attributes.

More expressive constraints. The CO frameworks differ in the expressiveness of the constraints. Docker

Swarm integrated mode [389] offers set-based inclusion operators for both label keys and label

values.

Kubernetes [390] does not only offer the same set-based inclusion operator, but also more expressive

affinity and anti-affinity constraints [391] between pods and nodes, and inter-pod affinity and anti-

affinity constraints [391]. Finally, taints and tolerations [392] work together to ensure that pods are

not scheduled onto inappropriate nodes such as nodes with specific hardware such as GPUs. As such

pods that don’t need GPU resources are kept off those nodes.

Aurora [106] and Marathon [107] also offer different kinds of operators for evaluating over attributes.

Controlling preemptive and re-scheduling behavior. This sub-aspect covers common features of

CO frameworks that an application manager must understand in order to customize the pre-emptive

scheduling and rescheduling logic of CO frameworks such that an intended QoS level for a

containerized application is achieved during several exceptional conditions: (i) resource contention

at the scheduler level, (ii) out-of-resource node conditions, (iii) node failures, (iv) container start

failures and (v) unbalanced services of which the containers are not spread across different nodes..

Pre-emptive scheduling. Kubernetes [393] and Aurora [394] use priorities between containers for killing

low-priority containers in case the scheduler cannot find a node with enough available resources for

scheduling a new container.

Container eviction when a node runs out of resources. A fully packed node will likely run out of resources

in Kubernetes and Docker Swarm when the maximum resource limits of multiple containers on that

node are set higher than their minimum guarantees. After all, the default scheduling algorithm of

 41 of 121

Kubernetes [395] and Docker Swarm5 will allocate containers to a node so that, for each resource

type, the sum of the containers’ minimum guaranteed resources does not exceed the capacity of that

node.

To handle such out-of-resource conditions, Kubernetes [396] distinguishes between different

QoS classes of containers. Kubernetes orders Pods in the best-effort, burstable and guaranteed QoS

classes depending on the containers’ Request and Limits. Kubernetes provides supports for pro-

active and reactive out-of-resource handling:

 Proactive handling by means of Pod eviction [397]: When a node is about to run out of CPU,

memory or disk resources, the local kubelet agent can trigger the eviction of a Pod consuming

the most resources from that node. Moreover when CPU and memory resources are affected,

Pods are also ranked according to the QoS class they belong:

o The best-effort class will be evicted first.

o A Pod of the bursty class that consumes the greatest amount of the starved resource relative

to their request are evicted thereafter.

o A pod of the guaranteed class will never be evicted because of another Pod’s resource

consumption, unless a system daemon (docker, kubelet, journald) is consuming more

resources than were reserved (cfr Section 4.5, Reserving resources for the CO framework).

The scheduler will try to place the evicted Pod on another node in case the Pod is controlled by

a Replicaset or Deployment.

 Reactive handling by means of killing a container [398]: When a node runs out of memory

resources because the local kubelet agent did not evict a pod on time, container processes that

are consuming the largest amount of memory relative to their request will be killed first. When

a node runs out of CPU resources, it will not be killed but the CPU will be throttled

Aurora [358] also orders tasks in the revocable, pre-emptible, and preferred classes. Revocable

tasks have the lowest priority as they can only use revocable resources [377], which are resources that

are currently not needed but can always be reclaimed by other running Mesos tasks (see Section 4.5).

Container eviction on node failures. Node failure detection is performed by means of different kinds of

health checks by the master. When a node is considered failed, the master reschedules containers on

that node to healthy nodes. Mesos [399] offers more advanced support in the fact that it distinguishes

between multiple failure scenarios (failed or partitioned agents) and multiple recovery tactics

depending on whether the frameworks on the failed agent have enabled checkpointing [400].

Container lifecycle handling. All CO frameworks, except Docker Swarm stand-alone, manage the life

cycle of a container as a state machine from the moment a request to create a new container arrives at the

Master API. This means that when containers are placed on a node, but they are stuck in a pending

or staging state, application managers are automatically informed via their CLI, web GUI or via an

event (see Section 4.8.2). In Kubernetes [401], container developers can use a container life cycle hook

framework to run code triggered by events during their management lifecycle.

Re-distributing unbalanced services. As container clusters are very dynamic, the distribution of

containers over nodes may become unbalanced over time, for example when adding new nodes to

the cluster. Docker Swarm integrated mode [402] will not automatically redistribute unbalanced

containers of a service to idle nodes in order to avoid temporary service disruptions. Instead the

application manager can force by means of the docker service update command that the containers

of a particular service are re-distributed.

In Kubernetes, Pods may also arrive in an unbalanced state. For example, we experienced that

the Kubernetes scheduler does not redistribute pods of a service across multiple nodes after

5 There is no documentation on this. Run-time tests indeed showed that only reservations are taken into account

by Docker Swarm’s scheduling algorithm.

 42 of 121

suspended or shutdown VMs come back on-line. This isn't a problem with clusters with high number

of nodes but in small clusters with a few nodes, it is a problem in the sense that all pods of a service

may get stuck on the same node [403]. However, a future version of Kubernetes [404] will contain a

Descheduler component, which automatically evicts Pods of unbalanced services based on a policy.

When these pods belong to a replication controller, the replication controller will ensure that a

replacement Pod will be placed on an appropriate node by the default scheduler.

Table 7. Commonly supported features for the “container QoS management” aspect.

 Unique features

Docker Swarm stand-alone offers the following unique feature for the sub-aspect “Container CPU

and memory allocation with support for oversubscription”:

Container QoS
management
sub-aspects

Features

Sw
ar

m
 s

ta
n

d
-a

lo
n

e

Sw

ar
m

 in
te

gr
at

e
d

K
u

b
e

rn
e

te
s

M

e
so

s

M
e

so
s

+
 A

u
ro

ra

M
e

so
s

+
 M

ar
at

h
o

n

D
C

/O
S

 Sa Si Ku Me Au Ma Dc

Container CPU
and memory
allocation with
support for
oversubscription

Minimum guarantees for CPU Dlgt

Abstraction of cpu-shares for CPU
guarantees

Minimum guarantees for memory

Maximum limits for CPU

Maximum limits for memory Dlgt

Allocation of
other resources

Limits for NVIDIA GPU
no gpu
sharing Dlgt

Limits for disk resources
local

storage Dlgt

Controlling
scheduling
behavior by
means of
placement
constraints

Evaluate over node labels/attributes n/a Dlgt

Define custom node labels/attributes Dlgt

More expressive constraints n/a Dlgt

Controlling
preemptive
scheduling and
re-scheduling
behavior

Preemptive scheduling

Container eviction when out-of-resource

Container eviction on node failure Dlgt

Container lifecycle handling Dlgt

Re-distributing unbalanced services future

Cell legend:

 partially supported: The feature is partially supported by the CO framework. A URL to relevant

documentation has been included. The name of the URL explains the essence of what is supported.

 future: The feature is not yet part of the open-source distribution of the CO framework. It has

however been planned according to the documentation, or there is a separate incubation project. A

URL to relevant roadmap documentation is included.

https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/compose-file-v2.md#cpu_count-cpu_percent-cpu_shares-cpu_quota-cpus-cpuset-domainname-hostname-ipc-mac_address-mem_limit-memswap_limit-mem_swappiness-mem_reservation-oom_score_adj-privileged-read_only-shm_size-stdin_open-tty-user-working_dir
https://github.com/docker/docker.github.io/blob/master/compose/compose-file/index.md#resources
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-cpu.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-isolation.md#cpu-isolation
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md#basic-pod-container-fields
https://docs.mesosphere.com/1.9/deploying-services/pods/examples/#basic-pod-container-fields-
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/compose-file-v2.md#cpu_count-cpu_percent-cpu_shares-cpu_quota-cpus-cpuset-domainname-hostname-ipc-mac_address-mem_limit-memswap_limit-mem_swappiness-mem_reservation-oom_score_adj-privileged-read_only-shm_size-stdin_open-tty-user-working_dir
https://github.com/docker/docker.github.io/blob/master/compose/compose-file/index.md#resources
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/compose-file-v2.md#cpu_count-cpu_percent-cpu_shares-cpu_quota-cpus-cpuset-domainname-hostname-ipc-mac_address-mem_limit-memswap_limit-mem_swappiness-mem_reservation-oom_score_adj-privileged-read_only-shm_size-stdin_open-tty-user-working_dir
https://github.com/docker/docker.github.io/blob/master/compose/compose-file/index.md#resources
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md
https://github.com/apache/mesos/blob/1.4.x/docs/posix_rlimits.md
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/compose-file-v2.md#cpu_count-cpu_percent-cpu_shares-cpu_quota-cpus-cpuset-domainname-hostname-ipc-mac_address-mem_limit-memswap_limit-mem_swappiness-mem_reservation-oom_score_adj-privileged-read_only-shm_size-stdin_open-tty-user-working_dir
https://github.com/docker/docker.github.io/blob/master/compose/compose-file/index.md#resources
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md
https://github.com/apache/mesos/blob/1.4.x/docs/posix_rlimits.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-isolation.md#memory-isolation
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md#basic-pod-container-fields
https://docs.mesosphere.com/1.9/deploying-services/pods/examples/#basic-pod-container-fields-
https://github.com/apache/mesos/blob/1.4.x/docs/gpu-support.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-isolation.md#gpu-sizing
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md#basic-pod-container-fields
https://docs.mesosphere.com/1.11/deploying-services/gpu/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md#local-ephemeral-storage-alpha-feature
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md#local-ephemeral-storage-alpha-feature
https://github.com/apache/mesos/blob/1.4.x/docs/mesos-containerizer.md#posix-disk-isolator
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-isolation.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md#basic-pod-container-fields
https://docs.mesosphere.com/1.10/deploying-services/pods/examples/#basic-pod-container-fields.
https://github.com/docker/docker.github.io/blob/v17.03-release/swarm/scheduler/filter.md
https://github.com/docker/docker.github.io/blob/v17.03-release/engine/swarm/services.md#specify-service-placement-preferences---placement-pref
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md#nodeselector
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/constraints.md#value-constraints
https://github.com/mesosphere/marathon/blob/v1.5.1/docs/docs/constraints.md#cluster-operator
https://docs.mesosphere.com/1.10/deploying-services/marathon-parameters/#constraints
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/scheduler/filter.md#example-node-constraints
https://docs.docker.com/v1.12/engine/reference/commandline/node_update/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md#step-one-attach-label-to-the-node
https://github.com/apache/mesos/blob/1.4.x/docs/attributes-resources.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/constraints.md#mesos-attributes
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/constraints.md#attribute-field
https://docs.mesosphere.com/1.10/installing/oss/faq/#q-how-to-add-mesos-attributes-to-nodes-to-use-marathon-constraints
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/scheduler/filter.md#configure-the-available-filters
https://github.com/docker/docker.github.io/blob/v17.03-release/engine/swarm/services.md#specify-service-placement-preferences---placement-pref
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/constraints.md#limit-constraints
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/constraints.md#operators
https://docs.mesosphere.com/1.10/deploying-services/marathon-parameters/#constraints
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/configuration/pod-priority-preemption.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md#preemption
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/resource_constraints.md#understand-the-risks-of-running-out-of-memory
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/out-of-resource.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md#configuration-tiers
https://github.com/docker/docker.github.io/blob/v17.03-release/swarm/scheduler/rescheduling.md
https://www.slideshare.net/Docker/using-docker-swarm-mode-to-deploy-service-without-loss-by-dongluo-chen-nishant-totla
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/architecture/nodes.md#node-controller
https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-guide.md#dealing-with-partitioned-or-failed-agents
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/task-lifecycle.md#unexpected-termination-lost
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/task-handling.md#non-terminal-states
https://docs.mesosphere.com/1.9/deploying-services/task-handling/#non-terminal-states
https://github.com/docker/docker.github.io/blob/master/engine/swarm/how-swarm-mode-works/swarm-task-states.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/pods/pod-lifecycle.md
https://github.com/apache/mesos/blob/1.5.x/docs/task-state-reasons.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/task-lifecycle.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/task-handling.md
https://docs.mesosphere.com/1.10/deploying-services/task-handling/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/admin_guide.md#force-the-swarm-to-rebalance
https://github.com/kubernetes-incubator/descheduler

 43 of 121

 The Remote Docker API supports updating resource reservations and limits without recreating

the container [330]. This is a dangerous operation because human users can set resource

reservations higher than the actual available resources of the local node and therefore threaten

the QoS of other containers on that node. Therefore, such operations should be managed

automatically, for example by a vertical scaler approach [128].

Mesos and Kubernetes offers the following unique features for the sub-aspect “allocation of other

resources”:

Kubernetes:

 Extended Resources [406] allow cluster administrators to add new node-level resources of

random kind. Extended resource quantities must be integers and cannot be overcommitted. As

such, a pod’s request and limit for an extended resources must be equal if both are declared.

 Kubernetes supports the allocation of pre-allocated huge pages [407] by applications in a Pod.

Contemporary computer architectures support bigger pages [408] for virtual memory so that

CPU and OS need less memory address lookups for retrieving a piece of data, thereby speeding

up performance.

Mesos contributes to improved network performance isolation between containers:

 When containers are interconnected via the routing mesh network, the port mapping

isolator [165] includes extensive support for network isolation between containers: port range

limits , rate limits for container egress traffic [409].

 The Mesos containerizer also supports network isolation between containers for virtual

networks [410]. The cgroups/net_cls [410] Isolator module enables cluster operators to

implement network performance isolation and segmentation by means of the Linux kernel’s

network classifier cgroup [411] (net_cls), which provides an interface to tag network packets

with a class identifier. These class identifiers can be used by kernel modules such as qdisc (for

traffic engineering) and net-filter (for firewall rules) to enforce network performance and

security policies. These policies can be specified by a cluster administrator through tools such as

tc [412] and iptables.

Unfortunately, little of these features is currently used by Aurora and Marathon. Only container

port ranges of the port mapping network isolator are managed in Marathon.

Kubernetes also offers the following unique feature for the sub-aspect “controlling scheduling

behavior by means of placement constraints”:

 CPU management policies [413] allow application managers to exclusively reserve a set of CPUs

for a specific Pod and once the Pod has been allocated to a set of CPUs of a particular node, the

Pod cannot be migrated to another node. This feature is important for workloads where CPU

cache affinity and scheduling latency significantly affect workload performance.

 Securing clusters

This aspect covers features that a cluster administrator must understand in order to setup a

secure cluster. Note this aspect focuses on the security at the level of the container orchestration

framework only as it does not entails features related to the security of the applications running inside

containers.

 Common features

User identity and access management. All CO frameworks provide secure access to their Master API

by means of authentication and authorization of users. The CO frameworks differ in the range of

supported authentication and access control models, as well as the plug-ability of the solutions:

 Both Docker Swarm stand-alone [414] and integrated mode [415] rely on TLS-based

authentication of the Docker daemon. With respect to authorization, the default authorization

model is all or nothing: any user with permission to access the Docker daemon can run any

 44 of 121

Docker client command. However, it is also possible to start the Docker daemon with external

authorization plugins. Docker EE’s Universal Control Plane [416] (UCP) also supports role-

based access control [347].

 Kubernetes supports various authentication strategies [417] and various mainstream access

control models [418]. Kubernetes 1.11+ [419] also supports improved plugin framework for

supporting third-party credential providers. Cloud providers, vendors, and other platform

developers can now release binary plugins to handle authentication for specific cloud-provider

IAM services, or that integrate with in-house authentication frameworks that aren’t supported

by the open-source distribution, such as Active Directory.

 Mesos supports CRAM-MD5-based authentication [420] of cluster administrators and

frameworks, which are both identified through principals. A framework’s principals is the

person responsible for that specific frameworks.

 Aurora supports authentication and role-based authorization of users [421] by means of Apache

Shiro [422].

 Marathon supports authentication [423] and authorization [424] of users with respect to the

master API of the container orchestration framework.

 The DC/OS Enterprise distribution of Marathon supports provider-based authentication for

single sign-on [425] via either SAML or OpenID Connect. DC/OS Enterprise also provides

directory-based authentication [426] based on LDAP. Finally authorization is permission [427]-

based.

Tenant-aware access control. All CO frameworks, except Docker Swarm stand-alone, support tenant-

aware access-control that grants users, teams or organizations specific access permissions to a particular

user group (see user groups and quota in Section 4.5).

Docker EE’s UCP uses role-based access control [347] for granting users and teams access to

Collections [348]. Kubernetes [418] associates by default authorization rules to a specific

Namespace [349].

Mesos [428] supports authorization of frameworks, which means that cluster administrators can

configure which principals can register frameworks under which roles [352] (i.e. resource quota

reserved for a particular user group – see Section 4.5).

Aurora [429]’s authorization documentation unfortunately uses the same term for managing

access permissions and user groups, i.e. roles: on the one hand, Aurora’s basic authorization

module [430] allows associating users to roles and permissions to these roles. On the other hand, the

latter permissions may include access to the resources of a particular user group, which is named Job

Role [394] in Aurora.

The DC/OS Enterprise distribution of Marathon [431] grants users and organizations access to

Service Groups [351].

Cluster network security.

Authentication of worker nodes with the master API is supported by Docker Swarm stand-alone [432],

Docker Swarm integrated mode [433], Kubernetes [434], Mesos [420] and Aurora [422]. Docker

Swarm and Kubernetes rely both on TLS-based public key certificates. Worker nodes use a client

certificate in order to join the cluster in a secure manner.

Automated bootstrap of authentication tokens for worker nodes is also supported by Docker Swarm

integrated mode [435] and Kubernetes [436] . An authentication token is essentially a symmetric key

that enables worker nodes to more easily register with the master node to join the cluster. For

Kubernetes, this feature is only out-of-the-box supported in the kubeadm [437] deployment tool.

Authorization of CO agents on worker nodes towards the master API is additionally supported by

Kubernetes , Mesos [438], and Aurora [422]. In Kubernetes, this feature allows to grant master API

access permissions to the Kubelet agent of any node based on the containers which are currently

running on that node. Mesos can be configured with an ACL to allow or deny worker nodes to

 45 of 121

(re)-register with the master. Aurora relies on Zookeeper’s ACL mechanisms [439] for controlling

Aurora-specific actions of the worker nodes.

Table 8. Commonly supported features for the “securing clusters” sub-aspect.

Encryption of control messages between masters and workers is supported by Docker Swarm integrated

mode [440] and Kubernetes Container-as-a-Service offering Google Container Engine [441].

Moreover, DC/OS [442] can be configured to startup in a strict or permissive security mode that

respectively enables or enforces TLS encryption of communications between masters and agents.

Encryption of application messages is supported by Docker Swarm integrated mode and DC/OS as an

optional feature. In Docker Swarm integrated mode [443], it is possible to turn on IPSEC encryption

of application messages per overlay network. In DC/OS [442] permissive or security mode,

encryption of application messages is also enabled/enforced but only for user services that offer a

TLS certificate of their own. Finally, the Weave NET plugin of Kubernetes also supports encryption

of application messages.

Restricting external access to service ports. As stated in Section 4.3 on container networking – sub-aspect

External access to services – containers of which the services are exposed via a service port can be

accessed from outside the cluster if there exists a cluster node with a load balancer which has an IP

address that is routable from outside the cluster. However, a security risk thus ensues that any

container with a service port is susceptible to outside malicious attacks, especially if the load balancer

is deployed distributed on every nodes. In order to manage this security risk, one needs a way to

Securing
clusters sub-
aspects

Features

Sw
ar

m
 s

ta
n

d
-a

lo
n

e

Sw

ar
m

 in
te

gr
at

e
d

K
u

b
er

n
et

e
s

M

es
o

s

M
e

so
s

+
 A

u
ro

ra

M
e

so
s

+
 M

ar
at

h
o

n

D
C

/O
S

 Sa Si Ku Me Au Ma Dc

User identity
and access
management

Authentication of users with master API Extnd

Authorization of users with master API $Extnd$

Tenant- aware ACLs
$Docker

EE$ Add

Cluster
network
security

Authent. of worker nodes with master API Dlgt

Automated bootstrap of worker tokens
kube
adm

Authorization of CO agents on workers

Encryption of control messages GKE Add

Restricting external access to service ports Add

Encryption of application messages
weave

NET Add

Cell legend:

 $..$: Support for the feature is not included in the open-source distribution of the CO framework,

but is included in a commercial product or cloud service. The URL to the corresponding

documentation is included. The name of the URL refers to the name of the product or service.

 externalComponent: Support for the feature is not included in the open-source distribution of the

CO framework, but the feature is supported by a third party component or platform. The name of

the URL refers to the name of the component. The URL to the corresponding documentation is

included.

https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/secure-swarm-tls.md
https://github.com/docker/docker.github.io/blob/v17.06/engine/security/https.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/admin/authentication.md
https://github.com/apache/mesos/blob/1.4.x/docs/authentication.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#authentication
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/ssl-basic-access-authentication.md
https://docs.mesosphere.com/1.10/security/oss/iam-api/
https://github.com/docker/docker.github.io/blob/v17.03-release/engine/extend/legacy_plugins.md#authorization-plugins
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/admin/authorization/index.md
https://github.com/apache/mesos/blob/1.4.x/docs/authorization.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#authorization
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/plugin.md#security
https://docs.mesosphere.com/1.10/security/ent/perms-reference/
https://docs.docker.com/v17.06/datacenter/ucp/2.2/guides/access-control/
https://docs.docker.com/v17.06/datacenter/ucp/2.2/guides/access-control/
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/admin/authorization/index.md
https://github.com/apache/mesos/blob/1.4.x/docs/authorization.md#local-authorizer
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#implementing-a-custom-realm
https://docs.mesosphere.com/1.9/security/ent/restrict-service-access/
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/configure-tls.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/how-swarm-mode-works/pki.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/kubelet-tls-bootstrapping.md
https://github.com/apache/mesos/blob/1.4.x/docs/authentication.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#announcer-authentication
https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/swarm-tutorial/create-swarm.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/admin/bootstrap-tokens.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/admin/bootstrap-tokens.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/admin/authorization/node.md
https://github.com/apache/mesos/blob/1.4.x/docs/authorization.md#authorizable-actions
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#announcer-authentication
https://github.com/docker/docker.github.io/blob/v17.06/engine/userguide/networking/overlay-security-model.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/architecture/master-node-communication.md#ssh-tunnels
https://docs.mesosphere.com/1.10/security/ent/#transport-layer-security-tls-encryption
https://github.com/moby/moby/blob/17.05.x/docs/reference/commandline/swarm_init.md#--listen-addr
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/network/nodeport-ip-range.md
https://docs.mesosphere.com/1.10/overview/architecture/node-types/
https://github.com/docker/docker.github.io/blob/v17.06/engine/userguide/networking/overlay-security-model.md
https://github.com/weaveworks/weave/blob/2.5/site/concepts/encryption.md
https://github.com/weaveworks/weave/blob/2.5/site/concepts/encryption.md
https://docs.mesosphere.com/1.10/security/ent/#transport-layer-security-tls-encryption

 46 of 121

segregate the nodes of a cluster into those attached to a private network only and those attached to a

private and public network.

With this end in view, Docker Swarm integrated mode [444] allows starting master and worker

nodes with a specific IP address or network interface to which it should listen so that service ports

on that node are only accessible from the network to which the IP address or network interface is

attached.

Kubernetes v1.10+ [445] added a similar feature but also allows to specify a range of IP addresses

instead of a single IP address when starting a master or worker node.

Finally, DC/OS [446] distinguishes directly between private and public node types. Public nodes

support inbound connections from outside the cluster and are thus primarily meant for externally

facing load balancers like marathon-lb or edge-lb. Private nodes cannot be directly accessed from

outside the cluster.

 Unique features

Kubernetes offers the following unique feature for the sub-aspect “user identity and access

management”:

 Auditing [447] provides a security-relevant chronological set of records documenting the

sequence of activities that have affected the overall state of the Kubernetes cluster. These

activities can be performed by individual application managers, the cluster administrators or

Kubernetes-specific software components.

Docker Swarm integrated mode, Kubernetes and DC/OS offer the following unique features for the

sub-aspect “cluster network security”:

Docker Swarm integrated mode:

 Encryption of Swarm manager logs [448] is automatically performed to protect data from

attackers.

Kubernetes:

 Kubelet authentication and authorization [449] allows to protect the kubelet’s HTTP endpoint

on every worker node.

 Network policies [450] are specifications of how groups of pods are allowed to communicate

with each other and other network endpoints.

 Securing containers

This aspect covers features that an application manager must understand in order to manage

sensitive-information, manage passwords for getting access to private Docker repositories, and

limiting the attack interface of containers by limiting the access of containers towards the underlying

kernel.

 Common features

Protection of sensitive data and proprietary software. Docker Swarm integrated mode [451],

Kubernetes [452], Mesos [453], Marathon [454] and the Enterprise distribution of DC/OS [455] offer

concepts for storing sensitive information such as private keys in Secret API objects which encompass one

or more encrypted data fields.

Pulling images from a private Docker registry. Docker Swarm, Kubernetes, Mesos and Marathon offer

support for automated docker login to a private Docker registry using a Docker username and

password. The Docker daemon requires that a user must log in using the docker login command,

which asks for a username and password of the DockerHub. A successful login creates or updates

then a config.json file that holds an authorization token.

Docker Swarm [302] allows to set the --with-registry-auth option of the docker service create

command in order to pass the stored authorization token when creating a service.

 47 of 121

Kubernetes [456] allows generating a secret which automatically includes the authorization

token that results from the docker login command. A Pod’s configuration file must then include this

secret for pulling images from a private registry.

Similarly, Marathon [457] requires to store the config.json file as a secret that must then also be

included in a Pod’s configuration file.

Finally, Mesos’ DockerContainerizer runtime [458] supports passing the Docker config.json file

as a flag to the Mesos agent such that the authorization token is passed by default for all container

images . This Mesos feature can thus be used in any container orchestration framework such as

Aurora.

Improved security isolation: One of the weaknesses of containers is that they have a broader security

attack surface than virtual machines: containers run on the same host operating system and thereby

enlarge the attack surface in comparison to virtual machines that run on a more compact hypervisor.

For this reason, all major cloud providers continue to use a virtual machine as a key abstraction for

representing a node in order to protect their assets.

Therefore, besides the basic isolation mechanisms at the level of linux containers, i.e. cgroups

and namespaces [129], container orchestration frameworks additionally leverage existing security

modules in the Linux kernel in order to configure on a per container basis what a container is allowed

to do in terms of linux system calls, file permissions, etc.

These modules include SELinux, AppArmor, seccomp and Linux capabilities. SELinux [460] and

AppArmor [461] are security modules that can limit by means of access control policies what a

process can do. Seccomp-bpf [462] allows filtering of framework calls using a configurable policy

implemented using Berkeley Packet Filter [463] rules. Linux capabilities [464] allows to give a user-

level process specific root-level permissions. As such a process can be granted access to what it needs

without running the process as root.

All container orchestration frameworks have just began to integrate with these different security

modules. Note that the following security features are supported by Docker-engine and therefore

also for Docker Swarm stand-alone. However, these security features are not yet available for Services

in Docker Swarm integrated mode.

Setting Linux capabilities per container is supported by Docker Swarm stand-alone [465],

Kubernetes [466] and Mesos .

Setting SELinux labels per container is supported by the Fedora Atomic distributions of Docker-

engine [467] and by Kubernetes [468].

Setting custom AppArmor profiles per container is supported by Docker Swarm stand-alone [469] and is

a beta feature of Kubernetes [470].

Setting custom seccomp profiles per container is supported by Docker Swarm stand-alone [471] and there

is also alpha support for seccomp profiles in Kubernetes [472].

Higher-level aggregate objects for storing multiple security profiles. Kubernetes offers a generic aggregate

object in the Kubernetes API, named SecurityContext [473], which manages per container and per Pod

which Linux capabilities, custom profiles, SELinux labels and other privileges must be applied.

Docker [474] has launched a design proposal and work-in-progress library for supporting a similar

generic object, called entitlements [475]. Such entitlements are actually envisioned as higher-level

abstractions for encompassing security profiles of Services in Docker Swarm integrated mode as well

as Pods in Kubernetes. Moreover, a possible future direction entails that image publishers can already

store a preconfigured entitlement with the container image and sign it as part of a trusted bundle.

 48 of 121

Table 9. Commonly supported features for the “securing containers” aspect.

 Unique features

Kubernetes offers the following unique features for the sub-aspect “improved security isolation”:

Kubernetes:

 A run-time verification of SecurityContexts by means of a PodSecurityPolicy [476] API object.

Kubernetes validates that the SecurityContext of each container is set with the appropriate

profiles, capabilities and privileges. If the validation check fails, the container is not permitted

to start. A PodSecurityPolicy also sets default profiles, capabilities and privileges for containers

without an explicit SecurityContext object. PodSecurityPolicy objects also control a broader set

of restrictions [476] for containers including the range or process ids under which a container

must run, and the allowed type of volumes. PodSecurityPolicy objects are specified and

managed per namespace. It can be controlled by means of role-based authorization [477] which

users are allowed to perform what actions on a PodSecurityPolicy object for each namespace.

 Support for configuring the Linux sysctl interface [478]. Linux sysctl interface allows an

administrator to modify kernel parameters at runtime. Systcl parameters are either considered

safe or unsafe by Kubernetes. Kubernetes enables all safe systcl parameters by default. All unsafe

systcl parameters must be enabled manually per node. A pod that is set with an unsafe systctl

feature must be scheduled using the taints and toleration feature (see Section 4.6).

 Application and cluster management

Securing
containers
sub-aspects

Features

Sw
ar

m
 s

ta
n

d
-a

lo
n

e

Sw

ar
m

 in
te

gr
at

e
d

K
u

b
er

n
et

e
s

M

es
o

s

M
es

o
s

+
 A

u
ro

ra

M
es

o
s

+
 M

ar
at

h
o

n

D
C

/O
S

 Sa Si Ku Me Au Ma Dc

Protection of
sensitive data
and software

Storage of sensitive-data as secrets Extnd

Pull image from a private Docker registry Extnd

Improved
security
isolation

Setting Linux capabilities per container future future

Setting SELinux labels per container
Red
Hat future

Setting AppArmor profiles per container future

Setting seccomp profiles per container future

Higher-level aggregate objects future future

Cell legend:

 future: The feature is not yet part of the open-source distribution of the CO framework. It has

however been planned according to the documentation, or there is a separate incubation project.

The URL to relevant roadmap documentation is included.
 externalComponent: Support for the feature is not included in the open-source distribution of the

CO framework, but the feature is supported by a third party component or platform. The name of

the URL refers to the name of the component. The URL to the corresponding documentation is

included.

https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/secrets.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/configuration/secret.md
https://github.com/apache/mesos/blob/1.4.x/docs/secrets.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/secrets.md
https://docs.mesosphere.com/1.11/security/ent/secrets/
https://github.com/moby/moby/blob/17.05.x/docs/reference/commandline/service_create.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/tasks/configure-pod-container/pull-image-private-registry.md
https://github.com/apache/mesos/blob/1.4.x/docs/docker-containerizer.md#private-docker-repository
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/native-docker-private-registry.md
https://docs.mesosphere.com/1.10/deploying-services/private-docker-registry/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/security.md#linux-kernel-capabilities
https://github.com/moby/libentitlement
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md#set-capabilities-for-a-container
https://github.com/apache/mesos/blob/1.4.x/docs/linux_capabilities.md
https://jira.mesosphere.com/browse/DCOS_OSS-1069
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_policy
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_policy
https://github.com/moby/libentitlement
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md#assign-selinux-labels-to-a-container
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/apparmor.md
https://github.com/moby/libentitlement
https://github.com/kubernetes/website/blob/release-1.8/docs/tutorials/clusters/apparmor.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/seccomp.md
https://github.com/moby/libentitlement
https://docs.openshift.com/container-platform/3.3/admin_guide/seccomp.html
https://github.com/moby/libentitlement
https://github.com/moby/libentitlement
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md

 49 of 121

This aspect covers features of CO framework that a cluster administrator or application manager

must understand in order to manage various non-functional requirements of respectively the cluster

or the containerized applications. These management services rely on the Identity and Access

Management functionality (see Section 4.7) in order to support customized instances of their

functionality to cluster administrators and application managers.

 Common features

Creation, management and inspection of cluster and applications. To support user-friendly usage

of the Master API, a Command Line Interface (CLI) with a well-defined command structure is provided

in all CO frameworks.

Web UI. Docker [479], Kubernetes [480] and DC/OS [481] offer beside their HTTP-based Master API

and Command-Line Interface (CLI) also a graphical user interface for inspecting and managing the

state of all objects that can be managed via the Master API, e.g. nodes, services, containers, replication

levels of containers, volumes, user groups, multi-tenant authorization controls etc. Erroneous states

such as unhealthy containers or failed nodes can also be inspected. Docker’s dashboard also offers a

tab for managing the deployed networks. Marathon [482] also offers a dashboard, which is still

supported in the DC/OS distribution but no longer developed in favor of DC/OS’s dashboard. DC/OS

can be configured to control user access to the different tabs of its dashboard [483] and to Marathon’s

dashboard [484]. Finally, Aurora [485] also offers a Web UI, but this only supports limited

functionality of the scheduler API, such as finding running jobs6.

Labels for organizing and selecting subsets of API objects. Finally, the CLI and/or dashboard of Docker,

Kubernetes, Mesos and DC/OS also use labels for organizing and selecting subsets of containers,

services and nodes according to multiple dimensions (e.g. development vs production environments,

front-end vs database tiers). As already stated in Section 4.6, labels are <key, value> pairs where the

key represents a dimension and the value a particular subset of objects in that dimension. Objects can

of course belong to multiple dimensions and therefore be associated with multiple labels. Subsets of

particular objects can be selected by means of the set-based inclusion operator over their (key, value)

pairs as well as their key. Docker Swarm supports service labels [486] and node labels [487]. In

Kubernetes, labels can be attached to various API objects [248] and the Kubernetes CLI and

dashboard allows to select objects by their labels. Mesos supports task labels [488], while the DC/OS

distribution of Marathon allows to attach labels to Marathon applications and Mesos tasks [489].

Inspection of cluster-wide resource usage. These GUIs and associated CLIs also support inspection of

(aggregate statistics of) cluster-wide resource usage in order to inspect global cluster state and health.

Docker EE’s Universal Control Plane [479] shows CPU and memory resource consumption of nodes.

Kubernetes’ dashboard [480] shows CPU and memory usage at different levels: cluster-wide, per

node, and for each separate pod. Aurora’s Observer component [490] enables browser-based access

of disk usage metrics per task. DC/OS [481]’s dashboard shows CPU, memory and disk usage at

similar levels: cluster-wide, per node, per service.

Monitoring resource usage and health. Kubernetes, Mesos and the DC/OS distribution of Mesos and

Marathon offer central monitoring of resource usage of services and containers. Kubernetes [491] provided

in the past the Heapster add-on service that allows monitoring of CPU, mem, storage and network

resources [492] at different levels: Pods, Nodes, etc. As Heapster stores the collected metrics in a time-

series database, it is possible to consult the metrics of the past.

However Heapster has been deprecated since Kubernetes v.11. [493] Heapster has been replaced

by two resource metrics pipelines: (i) a core Metrics API [494] that is used to support monitoring of

Pods and auto-scaling of Pods and only stores metrics for the short term and (ii) several independent

6 A new Web UI is created in release 0.19.0 which provides the ability to inject your own custom UI components.

 50 of 121

full metrics pipelines [495] of which the most prominent are the Prometheus open-source project with

built-in support for Kubernetes and the Google Cloud Monitoring.

Mesos [496] exposes at every agent an HTTP endpoint with aggregate resource consumption

metrics for containers running under that agent. When using marathon-lb [162] for exposing the

service of a container, statistics for the network interface of that container [497] can be monitored at

the same HTTP endpoint. When using a CNI network [498], network statistics of a container can also

be queried.

DC/OS supports a central Metrics API [499] for monitoring containers and Marathon

applications. This also involves monitoring network usage per container.

Central monitoring of resource usage by CO framework components. Besides monitoring the resource usage

of services and containers, Docker Swarm, Kubernetes, Mesos, Aurora and DC/OS also support

central monitoring of (aggregated statistics) of resource usage by CO framework components.

 For Docker Swarm [500], it is possible to use Prometheus for monitoring the resource usage of

multiple cluster nodes.

 Kubernetes [501] offers support for monitoring performance and health metrics of the

ControllerManager component and health metrics can also be monitored for persistent volume

operations in GCE, AWS, Vsphere and OpenStack.

 Mesos [502] offers two monitoring concepts: Counters keep track of discrete events and are

monotonically increasing, e.g. the number of failed tasks cluster-wide. Gauges represent a

sample from a continuously monitored metric such as the uptime of a master and whether the

master is elected.

 Aurora [503] does not only support these two Mesos concepts, but also offers threshold-based

alerts.

 Marathon [504] offers gauges, timers and meters. DC/OS’ metrics endpoint combines Mesos and

Marathon monitoring data [505].

 Mesos [506]-based frameworks also support monitoring GPU usage. Kubernetes v1.9 [507] has

also just released support for GPU monitoring.

Reusable and configurable framework for checking the health of containers. All CO frameworks also offer a

framework for developing custom health checks per container. Different health check methods are

possible including HTTP check and check via a shell command. Relevant configuration parameters

include the timeout period, the interval between two checks and the minimum number of consecutive

failed checks for the health check to be considered failed. Docker Swarm uses the

HEALTHCHECK [508] instruction of a container image or a customized health check as part of a

ComposeV2/V3 file [509]. Kubernetes [312] additionally lets the kubelet agent on every node restart

containers that have failed the health check. Mesos v1.2.0+ [510] introduces a general framework for

task health checking, whereas in Mesos v1.4.0+ [511] the interpretation of the health check can also

be delegated to the framework. Marathon v1.4.0+ [512] has deprecated its original health checking

mechanism and adopted Mesos’ health checking framework instead. Finally, Aurora [513] still uses

its own health checking mechanism.

Central monitoring of distributed events. Docker Swarm integrated mode, Kubernetes, Mesos, Aurora

and Marathon also support an API for monitoring of events about new requests for creating services,

container, container state changes and errors. In Docker Swarm integrated mode [514], events can be

monitored using the docker events command line interface. In Kubernetes [515], events are

Kubernetes objects that are accessible via the Master API. To avoid filling up master’s disk, a retention

policy is enforced: events are removed one hour after the last occurrence. To provide longer history

and event aggregation a third party solution such as Stackdriver [516] must be used. In Mesos [517],

the Operator API supports subscribing to an event stream. In Aurora [518], it is possible to configure

a simple HTTP webhook to receive task state change events. In Marathon [519], all API requests and

scaling events are captured by an event bus to which can be subscribed via the REST API of Marathon.

Logging and debugging of CO framework and containers.

 51 of 121

Logging of containers is supported via the CLI and/or dashboard of Docker Swarm [520],

Kubernetes [521], Mesos [522] and DC/OS’ Marathon [523].

Internal logging of CO framework components is supported by all CO frameworks. Which specific

logging tool is used, depends on the used deployment method: when the CO framework is deployed

as a set of containers, container logging can be used (see Logging and debugging in Section 4.4); when

the CO framework is installed as Linux package, the journald [524] service is used; Mesos uses the

glog logging library [525]. Marathon exposes framework logs as part of its REST API [526].

Integration with external log aggregation frameworks is documented in Docker Swarm [527],

Kubernetes [528] and DC/OS [529].

Cluster maintenance.

Cluster state backup and recovery is a built-in feature of Docker Swarm integrated mode [530],

Mesos [531], Aurora [532] and Marathon [533]. For Kubernetes an external project for cluster state

management operations [534] such as backup and restore exists. Note that Mesos uses state machine

replication (SMR) for storing the state of the entire cluster, including the state of the running

frameworks. Aurora uses Mesos’ SMR while Marathon does not.

Documentation about how to upgrade a running cluster to a next release is provided by Kubernetes [535],

DC/OS distribution of Mesos [536], Aurora [537] and Marathon [538].

The effect of an upgrade on running containers. Docker [539] enables that when the Docker daemon

crashes or is shut down for upgrade on a node, the containers on that node can continue running. In

Kubernetes [535], the effect of an upgrade on running Pods depends on the used deployment tool or

cloud platform. For example the kubeadm [540]deployment tool supports upgrades without affecting

running Pods, while in Google Compute Engine [541], Instance Groups [542] are used to sequentially

destroy and recreate each node with new software; and any pods that are running on a destroyed

node are either automatically recreated when associated with a ReplicaSet object, or must be

manually re-created after the upgrade is finished. In Mesos [400], a framework’s running tasks can

reconnect to the new Mesos agent after an upgrade if the framework checkpointing flag is turned on

for the framework. Aurora [537], Marathon [538] and DC/OS [536] have this flag turned on by

default.

A CLI command for draining all containers from a node for maintenance is supported by Docker Swarm

integrated mode [543], Kubernetes [544], Mesos [545], Marathon [546] and DC/OS [547]. Note that

Mesos offers higher-level support to cluster administrator for announcing maintenance time

windows to frameworks before the actual draining of nodes.

Garbage collection of containers and/or images is differently supported by different CO frameworks.

Docker [548] supports manual garbage collection of images at the level of the local registry;

Kubernetes’ kubelet agent [549] supports automated garbage collection of container images as well

as containers. Mesos v1.5 [550] supports automated garbage collection of Docker images for the

Unified Container Runtime, but not containers. Finally, DC/OS extends Mesos with support for

garbage collection of container images for both the Unified Container Runtime as well as the Docker

containerizer. Moreover, the architecture of DC/OS [551] also includes support for garbage collection

of Docker containers.

Multi-cloud support.

One cluster across multiple availability zones or regions. The design of Mesos [552]-based frameworks, in

particular DC/OS allows that one cluster can be more easily deployed across multiple availability zones or

regions because these CO frameworks have generic and automated support for setting up replicated

masters (see Highly-Available Master/Manager architecture in Section 4.1). Docker Swarm stand-

alone [553] as well as integrated mode [554] also allow deploying multiple master nodes across

multiple availability zones. Kubernetes [555] provides limited support for multi-zone deployments

as generic support for automated HA master setups is not provided. However, Kubernetes-as-a-

 52 of 121

Service platforms such as Google Kubernetes Engine (GKE) and Amazon Elastic Container Service

for Kubernetes (Amazon EKS) [42] offer scalable and highly-available Kubernetes clusters where

multiple masters can be deployed across different availability zones.

Recovering from network partitions. Mesos [399] has good support for dealing and recovering from

network partitions. Aurora v0.20.0 [130] has added an optional and experimental feature for using

the Mesos partition-aware APIs in order to customize the job or service recovery strategy. Users of

Aurora can set partition policies [556] per job of whether or not to reschedule and how long to wait

for the partition to heal.

Management of multiple clusters across multiple clouds. Docker’s Docker Cloud [557], Kubernetes’

kubefed [558], and DC/OS’ multi-cluster CLI [559] also offer CLI commands for managing multiple

clusters across one or more cloud providers.

Federated authentication: Kubernetes’s federated API [560] and DC/OS’ single-sign-on across

clusters [561] capability support federated authentication of users.

Multi-zone/multi-region workloads: All CO frameworks, except Docker Swarm stand-alone, allow to

control the availability of a service by spreading its containers across multiple fault domains (i.e.,

availability zones, regions or datacenters). Docker Swarm integrated mode [389], Mesos [562],

Aurora [563], Marathon and DC/OS [564] require that nodes are in advance labeled with their zone,

region or datacenter and offer a placement preference operator that ensures that containers of a

service are spread across these different fault domains. DC/OS [565] also offers fault domain detect

scripts for AWS EC2 and Azure nodes that automatically start Mesos agents with the detected zones

and regions. Kubernetes [566] uses another approach: It uses its extensive support for federating

multiple container clusters across different fault domains. Kubernetes’ kubefed command line

interface can then be used to deploy federated instances of all Kubernetes API objects such as

Deployments, ReplicaSets, StatefulSets, Jobs, Services, Secrets, ConfigMaps, etc. There is also alpha

support for federated autoscalers [567]. Moreover, cross-cluster service discovery is supported as

well.

 53 of 121

Table 10. Commonly supported features for the “application and cluster management" aspect.

Application
and cluster
management
sub-aspects

Features

Sw
ar

m
 s

ta
n

d
-a

lo
n

e

Sw

ar
m

 in
te

gr
at

e
d

K
u

b
e

rn
et

e
s

M

e
so

s

M
e

so
s

+
 A

u
ro

ra

M
e

so
s

+
 M

ar
at

h
o

n

D
C

/O
S

 Sa Si Ku Me Au Ma Dc

Creation,
management
and inspection
of cluster and
applications

Command-line interface (CLI) Sprsd

Web UI $Docker EE$ Sprsd

Labels for organizing API objects Dlgt

Inspection of resource usage graphs $Docker EE$
disk

usage Add

Monitoring
resource usage
and health

Monitoring container resource usage Extnd

Monitoring CO framework resource usage Prometheus Dlgt

Framework for container health checks Extnd

Distributed events monitoring Dlgt

Logging and
debugging of
CO framework
and containers

Logging of containers Extnd

Logging of CO framework components Extnd

Integration with log aggregator systems $Docker EE$ Add

Cluster
maintenance

Cluster state backup and recovery future Dlgt

Official cluster upgrade documentation Extnd

Upgrade does not affect active containers
kube
adm Dlgt

Draining a node for maintenance Dlgt

Garbage collection of containers/images images images images Extnd

Multi-cloud
support

A cluster across availability zones/regions
GKE
AWS Extnd

Recovering from network partitions

Management of multiple clusters Add

Federated authentication across clusters Add

Multi-zone/multi-region workloads Extnd

Cell legend:

 future: The feature is not yet part of the open-source distribution of the CO framework. It has

however been planned according to the documentation, or there is a separate incubation project.

The URL to relevant roadmap documentation is included.

 externalComponent: Support for the feature is not included in the open-source distribution of the

CO framework, but the feature is supported by a third party component or platform. The URL to

the corresponding documentation is included. The name of the URL refers to the name of the

component.
 $..$: Support for the feature is not included in the open-source distribution of the CO framework,

but is included in a commercial product or cloud service. The URL to the corresponding

documentation is included. The name of the URL refers to the name of the product or service.
 partial support: the CO framework offers partial support for the feature. The URL to a relevant

documentation page is included. The name of the URL refers to the essence of what is being

supported.

https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/reference/index.md
https://github.com/moby/moby/blob/17.03.x/docs/reference/commandline/index.md#swarm-node-commands
https://kubernetes.io/docs/user-guide/kubectl-overview/
https://github.com/mesosphere/mesos-cli
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/client-commands.md
https://github.com/mesosphere/marathon#marathon-clients
https://docs.mesosphere.com/1.10/cli/
https://github.com/docker/docker.github.io/tree/v17.06-release/datacenter/ucp/2.2/guides/index.md
https://github.com/kubernetes/dashboard
https://www.packtpub.com/mapt/book/big_data_and_business_intelligence/9781783288762/1/ch01lvl1sec14/mesos-web-ui
https://github.com/apache/aurora/blob/rel/0.18.0/docs/getting-started/tutorial.md#watching-the-job-run
https://github.com/mesosphere/marathon-ui
https://docs.mesosphere.com/1.10/gui/
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/compose-file-v2.md#labels-1
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/index.md#labels-1
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/overview/working-with-objects/labels.md
https://mesosphere.com/blog/mesos-0-22-0-released/
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md#additional-pod-container-fields
https://docs.mesosphere.com/1.10/tutorials/task-labels/
https://github.com/docker/docker.github.io/tree/v17.06-release/datacenter/ucp/2.2/guides/index.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/access-application-cluster/web-ui-dashboard.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/observer-configuration.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/observer-configuration.md
https://docs.mesosphere.com/1.10/gui/
https://github.com/kubernetes/heapster/blob/master/docs/storage-schema.md
https://github.com/apache/mesos/blob/1.4.x/docs/endpoints/slave/monitor/statistics.md
https://docs.mesosphere.com/1.10/metrics/
https://github.com/docker/docker.github.io/blob/v17.12/config/thirdparty/prometheus.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/cluster-administration/controller-metrics.md
https://github.com/apache/mesos/blob/1.4.x/docs/monitoring.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/monitoring.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/metrics.md
https://docs.mesosphere.com/1.10/monitoring/performance-monitoring/
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/compose-file-v2.md#healthcheck
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/index.md#healthcheck
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/tasks/configure-pod-container/configure-liveness-readiness-probes.md
https://github.com/apache/mesos/blob/1.4.x/docs/health-checks.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md/#healthcheckerconfig-objects
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/health-checks.md#mesos-level-health-checks
https://docs.mesosphere.com/1.10/deploying-services/creating-services/health-checks/
https://docs.docker.com/v17.12/engine/reference/commandline/events/
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/tasks/debug-application-cluster/events-stackdriver.md
https://github.com/apache/mesos/blob/1.4.x/docs/operator-http-api.md#events
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/webhooks.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/event-bus.md
https://docs.docker.com/engine/reference/commandline/logs/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/logging/view_container_logs.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/logging.md#basic-logging-in-kubernetes
https://github.com/apache/mesos/blob/1.4.x/docs/logging.md#containers
https://docs.mesosphere.com/1.10/monitoring/logging/#service-task-and-node-logs
http://man7.org/linux/man-pages/man8/systemd-journald.service.8.html
http://man7.org/linux/man-pages/man8/systemd-journald.service.8.html
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/logging.md#system-component-logs
https://github.com/apache/mesos/blob/0.26.0/docs/logging-and-debugging.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#logger
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/rest-api/public/api/general/logging.raml
https://docs.mesosphere.com/1.10/monitoring/logging/#system-logs
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/admin/configure/store-logs-in-an-external-system.md
https://github.com/docker/docker.github.io/tree/v17.06-release/datacenter/ucp/2.2/guides/
https://github.com/docker/docker.github.io/tree/v17.06-release/datacenter/ucp/2.2/guides/
https://docs.mesosphere.com/1.10/monitoring/logging/aggregating/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/admin_guide.md#back-up-the-swarm
https://github.com/mhausenblas/reshifter
https://github.com/apache/mesos/blob/1.4.x/docs/replicated-log-internals.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/backup-restore.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/backup-restore.md
https://docs.mesosphere.com/1.10/administering-clusters/backup-and-restore/
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/tasks/administer-cluster/cluster-management.md#upgrading-a-cluster
https://github.com/apache/mesos/blob/1.4.x/docs/upgrades.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/upgrades.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/upgrade/index.md
https://docs.mesosphere.com/1.10/installing/oss/
https://github.com/docker/docker.github.io/blob/v17.12/config/containers/live-restore.md
https://github.com/docker/docker.github.io/blob/v17.12/config/containers/live-restore.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/tasks/administer-cluster/kubeadm-upgrade-1-8.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/tasks/administer-cluster/kubeadm-upgrade-1-8.md
https://github.com/apache/mesos/blob/1.4.x/docs/agent-recovery.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/upgrades.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/upgrade/index.md
https://docs.mesosphere.com/1.10/installing/upgrading/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm-tutorial/drain-node.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/tasks/administer-cluster/safely-drain-node.md
https://github.com/apache/mesos/blob/1.4.x/docs/maintenance.md
https://github.com/mesosphere/marathon/blob/v1.6.322/docs/docs/maintenance-mode.md
https://docs.mesosphere.com/1.10/administering-clusters/update-a-node/
https://github.com/docker/docker.github.io/blob/v17.09-release/registry/garbage-collection.md
https://github.com/docker/docker.github.io/blob/v17.09-release/registry/garbage-collection.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/kubelet-garbage-collection.md
https://github.com/apache/mesos/blob/1.5.x/docs/container-image.md#garbage-collect-unused-container-images
https://docs.mesosphere.com/1.10/overview/architecture/components/#docker-gc
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/plan-for-production.md#multiple-clouds
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/admin_guide.md#distribute-manager-nodes
https://cloud.google.com/kubernetes-engine/docs/concepts/multi-zone-and-regional-clusters
https://aws.amazon.com/eks/
https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-guide.md#dealing-with-partitioned-or-failed-agents
https://github.com/apache/aurora/blob/master/docs/operations/configuration.md#replicated-log-configuration
https://github.com/mesosphere/marathon/blob/master/docs/docs/high-availability.md
https://docs.mesosphere.com/1.10/installing/oss/high-availability/multi-zone/
https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-guide.md#dealing-with-partitioned-or-failed-agents
https://github.com/apache/aurora/blob/rel/0.20.0/docs/reference/configuration.md#job-objects
https://github.com/docker/docker.github.io/blob/v17.06-release/docker-cloud/cloud-swarm/index.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/federation/set-up-cluster-federation-kubefed.md
https://docs.mesosphere.com/1.11/administering-clusters/multiple-clusters/
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/federation/set-up-cluster-federation-kubefed.md#basic-and-token-authentication-support
https://docs.mesosphere.com/1.11/administering-clusters/multiple-clusters/cluster-links/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#specify-service-placement-preferences---placement-pref
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/federation.md#api-resources
https://github.com/apache/mesos/blob/1.6.x/docs/fault-domains.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/constraints.md#limit-constraints
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/constraints.md#group_by-operator
https://docs.mesosphere.com/1.11/deploying-services/fault-domain-awareness/

 54 of 121

 Unique features

Creation, management and inspection of cluster and applications. Docker offers the following

unique feature for the sub-aspect “creation, management and inspection of cluster and applications”:

 Docker’s CLI [568] comes with command-line completion for Docker Swarm integrated mode.

Monitoring resource usage and health. Kubernetes, Aurora and DC/OS offer the following unique

features for the sub-aspect “monitoring resource usage and health”:

Kubernetes:

 The Cluster autoscaler [569] is a tool that automatically adjusts the size of the Kubernetes cluster

by adding or removing nodes, e.g. when all nodes are running out of resources or nodes are idle.

Aurora:

 SLA metrics [570] of running and recently completed jobs (e.g. Median Time to Start) are

reported in different scopes: per cluster, per job, or per node size (in terms of CPU, memory and

disk resource sizes).

DC/OS:

 Custom node and cluster health checks [571] can be configured during installation.

Logging and debugging of CO framework and containers. Kubernetes offers the following unique

feature for the sub-aspect “logging and debugging of CO framework and containers”:

 Port forwarding [572] allows a developer to connect his local workstation to a running Pod for

debugging

Cluster maintenance. Kubernetes offers the following unique features for the sub-aspect “cluster

maintenance”:

 A disruption budget [573] enables an application manager to limit the number of concurrent

voluntary disruptions that his application experiences due to cluster maintenance operations. A

request to drain a node for maintenance will be denied if that request would violate the

disruption budget of any Pod on that node.

 The hosted Kubernetes Engine [574] provides automated support for upgrades of Kubernetes.

Upgrading the etcd key-value store [575] of the master is always a manual operation however.

Multi-cloud support. Kubernetes offers the following unique features for the sub-aspect “multi-

cloud support”:

 Support for the Open Service Broker API [576] in order for containers to use services that are

offered by other cloud providers.

 Kubernetes offers a separate federated API with federated instantiations of several single-cluster

API objects [577] such as deployments, daemon sets, ingress, etc.

 Multi-cluster service discovery and management [578] : a federated service consists of different

service shards that are deployed across different Kubernetes clusters in different cloud

availability zones. Service discovery using the federated DNS name of the service will return the

service shard that is closed and still healthy.

5. Quantitative analysis with respect to genericity

This section presents the results of quantitative analysis of the collected data in Section 4 to

determine evidence of significant differences in genericity between aspects and CO frameworks. We

structure the presentation of these results in accordance with the research questions RQ4-RQ6 (see

Section 1.2).

A CO framework is more generic than another CO framework when it supports a higher number

of common features. After all, the more features are supported, the broader the set of application and

cluster configurations that can be supported and managed by a CO framework. The same measure

can also be used to quantify differences in genericity between (sub)-aspects.

 55 of 121

We also take into account the number of unique features for quantifying the differences in

genericity because Kubernetes has a relatively large number of unique features. Since Kubernetes is

already supported by many public cloud providers and Docker EE and DC/OS also offer support for

Kubernetes as an alternative orchestrator, these unique features are widely available at a large set of

private and public cloud platforms.

RQ4: How are functional (sub)-aspects ranked in terms of number of common and unique

features? Table 11 presents an overview of the number of common and unique features found for the

9 aspects of container orchestrations. The table ranks the aspects according to the number of common

feature implementation strategies by CO frameworks. We see that the functional aspects of

“application configuration and deployment”, “application and cluster management”, “container

networking” and “container QoS management” count the most common feature implementation

strategies. On the other hand, the aspects of “securing containers”, and “resource quota

management” counts the lowest number of common feature implementation strategies.

Table 11. Functional aspects ranked according to the number of common feature implementation

strategies by CO frameworks. If a common feature is partially supported by or only supported in the

commercial version of a CO framework, the implementation strategy is counted as ½. Finally, the

number of common and unique features of each functional aspect are also presented.

Aspects
#common

features

#implementation

strategies

#unique

features

Application configuration and deployment 29 130.5 10

App and cluster management 21 104 10

Container networking 20 82 8

Container QoS Management 15 69 6

Cluster architecture and setup 13 63 2

Securing clusters 9 36 4

CO framework customization 6 32 9

Securing containers 7 19.5 3

Resource quota management 4 12.5 1

Total 124 548.5 53

These numbers should only be used as a measure for ranking sub-aspects in terms of genericity:

the more common features are identified in a specific aspect, the larger the set of concerns that are

covered by this aspect. Of course, real genericity entails to the actual number of common feature

implementation strategies by the different CO frameworks. This number of common feature

implementation strategies is, in turn, a metric for the size of the set of all possible application and

cluster configurations that can be managed by a particular CO framework.

Table 12 ranks the functional sub-aspects according to the number of common feature

implementation strategies. Again, this metric is a measure for ranking sub-aspects in terms of

genericity. For example, we see that the sub-aspect “persistent volumes” counts the most common

features and the most common feature implementation strategies. This is because of two reasons:

 Besides the main functional requirement of persistent storage, various orthogonal orchestration

features for management of persistent volumes can be distinguished. Moreover most of these

features are supported by almost all CO frameworks.

 The adoption of the Docker volume plugin architecture by Mesos-based systems as well as the

CSI specification by Kubernetes and Mesos has also been recorded as an additional feature.

Secondly the sub-aspect “services networking” counts also a high number of common features

because of again two similar reasons:

 No less than 3 alternative approaches to services networking can be distinguished that are all

supported by multiple CO frameworks and within each alternative approach one can

distinguish at a lower nested level between different alternative load balancing strategies.

 56 of 121

 There are again two standardization initiatives related to this sub-aspect: Docker’s libnetwork

architecture and the CNI specification.

Table 12. Functional sub-aspects ranked according to the number of common feature implementation

strategies by CO frameworks.

Sub-aspects
#common

features

#implementation

strategies

#unique

features

Persistent volumes 9 47 6

Services networking 8 35 2

Service upgrades 8 32 1

Architectural patterns 5 31.5 0

Reusable container configuration 5 26 2

Installation methods and deployment tools 7 25.5 2

Supported workload types 7 25.5 1

Cluster maintenance 5 25 2

Container CPU and mem allocation with support for

over-subscription
5 23 1

Creation, management and inspection of cluster and

applications
4 22.5 1

Service discovery and external access 6 22 6

Monitoring resource usage and health 4 22 3

Multi-cloud deployments 5 19.5 3

Controlling scheduling behavior by means of placement

constraints
3 19 0

Cluster network security 6 18.5 3

Controlling preemptive scheduling and re-scheduling

behavior
5 18 1

Plugin architecture for network services 4 17.5 0

User identity and access management 3 17.5 1

Unified container runtime architecture 3 17 0

Framework design of orchestration engine 3 15 9

Logging and debugging of CO framework and containers 3 15 1

Resource quota management 4 12.5 1

Protection of sensitive data and proprietary software 2 10 0

Improved security isolation 5 9.5 3

Allocation of other resources 2 9 4

Host ports conflict management 2 7.5 0

Configuration management approach 1 6 0

Total 124 548.5 53

An interesting question is whether there is a linear association between the number of common

feature implementation strategies and the number of unique features across sub-aspects. We ranked

these two vectors using R’s rank function with the parameter ties.method set to ”average”, i.e. when

two sub-aspects have the same number of strategies or unique features, their absolute ranks are

replaced by the mean of these absolute ranks.

According to several existing linear association measures (see Table 13) there is a very weak

association. As such, there is no relation between the number of common feature implementation

strategies and the number of unique features. The independence between these variables is confirmed

by the chi-square test (p = 0.3264) and the linear-by-linear association test (p-value = 0.4199) using the

coin R package.

The weak linear association implies that when determining the overall risk of feature lock-in for

a specific sub-aspect, one should study unique features and the number of common feature

 57 of 121

implementation strategies for a specific sub-aspect independently in order to come to an accurate

estimation.

Table 13. Application of existing association measures for ordinal data using the DescTools R

package.

Statistic Value 95% confidence interval

Kendall’s Tau-b 0.1730347 (-0.1424626; 0.4885320)

Stuart’s Tau-c 0.1760402 (-0.1430893; 0.4951698)

Somers’ D C|R 0.1589595 (-0.1288827; 0.4468018)

Goodman Kruskal’s Gamma 0.1903114 (-0.1601409; 0.5407637)

RQ5: How are CO frameworks ranked in terms of number of supported common features? As

shown in Figure 4, Kubernetes implements the highest number of common features (but also

supports the highest number of unique features).

Figure 4. Comparison of CO frameworks according to the total number of supported features.

RQ6a. Which functional (sub)-aspects are best supported by a CO framework in terms of common

features?

As shown in Figure 5, Kubernetes implements the highest number of common features for 6 aspects.

Docker Swarm integrated mode supports the most common features for the aspects “container

networking” and “securing clusters”. Finally, DC/OS supports the most common features for the

aspect “application and cluster management”.

 58 of 121

Figure 5. The number of common feature implementation strategies supported by each CO

framework is shown for each of the 7 CO frameworks.

Table 27 presents an overview of the number of common feature implementation strategies per CO

framework and per (sub)-aspect. We find significant differences in ranking between the frameworks

when applying the Friedman test for unreplicated designs [135] (p-value=2.668e-08). To deal with

tied observations in this test, we again compute ranks using R’s rank() method where ranks for tied

observations are replaced by their mean.

We also performed during post-hoc analysis a pairwise comparison between CO frameworks

using the Nemenyi multiple comparison test with q approximation for unreplicated blocked

data [135] (see Figure 6).

Figure 6. Resulting p-values of the Nemenyi multiple comparison test. For p-values <= 0.05, we can

reject the null hypothesis, i.e. there is no significant difference in overall ranking between a pair of

CO frameworks).

Based on the p-values of the Nemenyi test, we find that Docker Swarm stand-alone and Aurora

differ significantly from both Kubernetes and DC/OS. Moreover there is a significant difference

between Kubernetes on the one hand and Mesos and Marathon on the other hand:

 Docker Swarm stand-alone and Aurora are indeed clearly less generic in terms of offered

features than the other CO frameworks. After all, Aurora is specifically designed for running

long-running jobs and cron jobs, while Docker Swarm stand-alone is also a more simplified

framework with substantial less automated management.

 59 of 121

Table 14. For each functional (sub)-aspect, the number of common feature implementation strategies

by each CO framework are shown and the framework(s) with the highest number is/are also shown.

Aspects Sub-aspects CO frameworks
FW(s) with most
common features Sa Si Ku Me Au Ma Dc

cluster architecture and setup 7.5 9.5 12.5 8 7 9 9.5 Ku

Configuration management
approach 1 1 1 0 1 1 1 All but Me
Architectural patterns 5 5 4.5 3 4 5 5 Sa/Si/Ma/Dc
Installation methods and
deployment tools 1.5 3.5 7 5 2 3 3.5 Ku

CO system customization 4 4 6 5 4 4 5 Ku

Unified container runtime
architecture 3 3 3 2 2 2 2 Sa/Si/Ku
Framework design of
orchestration engine 1 1 3 3 2 2 3 Ku/Me/Dc

Container networks 8 16.5 14.5 11 5 12 15 Si

Services networking 3 7.5 6 4.5 2 5 7 Si
Host ports conflict
management 1 2 1 0.5 1 1 1 Si
Plugin architecture for network
services 3 3 2.5 3 0 3 3 Sa/Si/Me/Ma/Dc
Service discovery and external
access 1 4 5 3 2 3 4 Ku

Application configuration and
deployment 14 21 27 12.5 14 18.5 23.5 Ku

Supported workload types 2 4 6.5 1 3 4 5 Ku
Persistent volumes 7 7 7.5 8.5 3 6.5 7.5 Me
Reusable container
configuration 3 4 5 3 3 4 4 Ku
Service upgrades 2 6 8 0 5 4 7 Ku

Resource quota management 0 1 4 2.5 2 1 2 Ku
Container QoS Management 8 11 13 8 11 9 9 Ku

Container CPU and mem
allocation with support for
over-subscription 4 5 5 3 2 2 2 Si/Ku
Allocation of other resources 0 0 1 2 2 2 2 Me/Au/Ma/Dc
Controlling scheduling
behavior by means of
placement constraints 3 3 3 1 3 3 3 All but Me
Controlling preemptive
scheduling and re-scheduling
behavior 1 3 4 2 4 2 2 Ku/Au

Securing clusters 2 7.5 7.5 5 5 2 7 Si

User identity and access
management 1 2.5 3 3 3 2 3 Ku/Me/Au/Dc
Cluster network security 1 5 4.5 2 2 0 4 Si

Securing containers 3.5 2 7 3 0 2 2 Ku

Protection of sensitive data and
proprietary software 0 2 2 2 0 2 2 All but Sa/Au
Improved security isolation 3.5 0 5 1 0 0 0 Ku

App and cluster management 9.5 14.5 18 16.5 12.5 13 20 Dc

Creation, management and
inspection of cluster and
applications 3 3 4 3 2.5 3 4 Ku/Dc
Monitoring resource usage and
health 1.5 2.5 4 4 3 3 4 Ku/Me/Dc
Logging and debugging of CO
framework and containers 2.5 2.5 3 2 1 1 3 Ku/Dc
Cluster maintenance 1.5 3.5 3.5 4.5 3 4 5 Dc
Multi-cloud deployments 1 3 3.5 3 3 2 4 Dc

Total # common feature implementation
strategies 56.5 87 109.5 71.5 60.5 70.5 93 548.6

We only recommend Docker Swarm stand-alone as a possible starting point for developing

one’s own CO framework. This is a relevant direction because 28% of surveyed users in the most

recent OpenStack survey [4], responded that they have built their own CO framework instead

of using existing CO frameworks (see also Figure 1). We make such recommendation because

the API of Docker Swarm stand-alone is the least restrictive in terms of the range of offered

options for common commands such as creating, updating and stopping a container. For

example, Docker Swarm stand-alone is the only framework that allows to dynamically change

 60 of 121

resource limits without restarting containers. Such less restrictive API is a more flexible starting

point for implementing a custom developed CO framework.

 The significant difference between Kubernetes and Mesos can be partially explained by the fact

that Mesos by itself is not a complete CO framework as Mesos enables fine-grained sharing of

resources across different CO frameworks such as Marathon, Aurora and DC/OS. It is moreover

self-explaining that there are no significant differences between Mesos on the one hand and

Aurora, Marathon and DC/OS on the other hand, because many feature implementation

strategies of the latter three CO frameworks rely on Mesos.

The significant difference between Kubernetes and Marathon can be explained by the fact that very

few new features have been added to Marathon since the start of DC/OS. After all DC/OS is the

extended Mesos+Marathon distribution that has also an enterprise edition.

There are no significant differences between the other CO frameworks. However, for 13 sub-aspects,

a specific CO framework distinguishes itself by offering the most common features in that sub-aspect.

In particular, Kubernetes, Docker Swarm integrated mode, DC/OS and Mesos are the most

distinguishing frameworks:

 Kubernetes has the absolutely most features for 7 sub-aspects:

1. Installation methods and deployment tools

2. Service discovery and external access

3. Supported workloads

4. Reusable container configuration

5. Service upgrades

6. Resource quota management

7. Improved security isolation

For all 7 sub-aspects, the open-source distribution of Kubernetes supports all common features

of these sub-aspects. As such Kubernetes is very generic with respect to these sub-aspects.

 Docker Swarm integrated mode has the most features for 3 sub-aspects:

1. Services networking

2. Host ports conflict management

3. Cluster network security

For the first two sub-aspects, Docker Swarm integrated mode offers support for all common

features, while for the last sub-aspect, the open-source distribution of Docker Swarm integrated

mode offers support for all common features except authorization of CO agents on worker nodes.

 DC/OS has the most features for 2-sub-aspects:

1. Cluster maintenance

2. Multi-cloud deployments

For the first sub-aspect, DC/OS offers support for all common features of this sub-aspect by

building upon Mesos and Marathon and providing detailed manual instructions for upgrading

DC/OS. For the second sub-aspect, DC/OS offers support for all common features except recovery

from network partitions.

 Mesos has the most features for 1 sub-aspect:

1. Persistent volumes

After all, Mesos offers support for both Docker volumes as well as CSI-based volumes.

There are furthermore tied observations for 14 sub-aspects (see Table 15):

1. Configuration management approach. All CO frameworks except Mesos offer support for

declarative configuration management.

2. Architectural patterns. The open-source distributions of Docker Swarm stand-alone,

Docker Swarm integrated mode, Marathon and DC/OS all support automated setup of highly

 61 of 121

available clusters, where Kubernetes only provides support for this feature in particular

commercial versions.

3. Unified container runtime architecture. Docker Swarm stand-alone, Docker Swarm

integrated mode and Kubernetes support the OCI standard, while Mesos-based frameworks

do not yet.

4. Framework design of orchestration engine. Kubernetes, Mesos and DC/OS are the only 3

frameworks that support all common features of this sub-aspect.

5. Plugin architecture for network services. Mesos and DC/OS are the most generic

frameworks as they offer support for both the CNI specification and Docker’s libnetwork. On

the other hand, Docker Swarm stand-alone and Docker Swarm integrated mode offer

support for separation of data and control traffic.

6. Container CPU and mem allocation with support for over-subscription. Docker Swarm

integrated mode and Kubernetes are the only CO frameworks that support over-

subscription of resources. Moreover for CPU, these frameworks offer higher-level

abstractions that hide the complexities of using concepts of the Linux scheduler. Kubernetes

also offer concepts for oversubscription of local ephemeral storage resources.

7. Allocation of other resources. All Mesos-based frameworks offer support for disk limits (in

terms of storage size of persistent volumes) ánd GPU limits (in terms of milliseconds of

GPU).

Table 15. Tied observation for 14 sub-aspects.

Aspects Sub-aspects CO frameworks #ties
between

FWs
 Sa Si Ku Me Au Ma Dc

Cluster architecture and setup 10

 Configuration management approach 6

Architectural patterns 4

CO system customization 6

 Unified container runtime architecture 3

Framework design of orchestration
engine

 3

Container networking 4

 Plugin architecture for network services 4

Container QoS Management 14

 Container CPU and mem allocation
with support for over-subscription

 2

Allocation of other resources 4

Controlling scheduling behavior by
means of placement constraints

 6

Controlling preemptive scheduling and
re-scheduling behaviour

 2

Securing clusters 4

 User identity and access management 4

Securing containers 5

 Protection of sensitive data and
proprietary software

 5

Application and cluster management 7
 Creation, management and inspection

of cluster and applications
 2

Monitoring resource usage and health 3

Logging and debugging of CO
framework and containers

 2

Total tied observations per CO framework 5 7 11 6 5 5 11 50

8. Controlling scheduling behavior by means of placement constraints. All CO frameworks

provide similar support for placement constraints although Mesos-based frameworks offer

complex support for concisely expressing that no two containers of the same service are

deployed on the same node.

 62 of 121

9. Controlling preemptive scheduling and re-scheduling behaviour. Kubernetes and Aurora

offer the most extensive support for different prioritization schemes in order to prevent that

higher-priority containers do not get scheduled or suffer from resource contention at the

node level because of lower-priority containers.

10. User identity and access management. Kubernetes, Mesos and Aurora offer the most

extensive support for authentication and authorization of cluster administrators and

application managers because the open-source distributions of these frameworks offer

support for tenant-aware access control lists. The commercial versions of Docker and DC/OS

also offer support for this feature, though.

11. Protection of sensitive data and proprietary software. All CO frameworks, except Docker

Swarm stand-alone and Aurora, offer support for secrets as well as pulling container images

from a private Docker registry. Docker Swarm stand-alone and Aurora do not offer support

for any of these two features.

12. Creation, management and inspection of cluster and applications. The open-source

distributions of Kubernetes and DC/OS offer the most extensive command-line interfaces and

web-based user interfaces with support for common features such as labels for organizing API

objects and visual inspection of resource usage graphs. The commercial version of Docker also

includes a web-based UI with the same set of features, though.

13. Monitoring resource usage and health. Kubernetes, Mesos and DC/OS all offer support for

monitoring container resource usage, monitoring CO framework resource usage, a framework for

container health checks and a distributed events monitoring system. As main difference, Docker

Swarm and Aurora lack support for monitoring container resource usage.

14. Logging and debugging of containers and CO framework. The open-source distribution of

Kubernetes and DC/OS and the commercial version of Docker Swarm offer support for

integrating existing log aggregation systems.

Figure 7. Radar chart of Docker Swarm integrated mode, Kubernetes and DC/OS to graphically

present in which sub-aspects these CO frameworks support the highest number of common features.

 63 of 121

If we would rank CO frameworks in terms of counting those sub-aspects for which they offer

the most common features as well as those aspects with tied observations where they share the 1st

position with other CO frameworks in terms of highest number of common features, then Kubernetes

ranks highest with 18 sub-aspects, DC/OS with 13 sub-aspects, Docker Swarm integrated mode with

9 sub-aspects, Mesos with 7 sub-aspects and finally Marathon, Docker Swarm stand-alone and

Aurora with 5 sub-aspects. We graphically represent the top 3 CO frameworks using a radar diagram

(see Figure 7).

RQ6. Which functional sub-aspects are best supported by a CO framework in terms of common

features ánd unique features? Kubernetes clearly offers the highest number of unique features (see

Figure 4). When adding up common and unique features, Kubernetes even supports the highest

number of features for all 9 aspects (see Figure 8).

We argue that it is fair to take the large number of unique features of Kubernetes into account when

ranking CO frameworks with respect to genericity. After all, as already stated in Section 1.1, both

Docker EE and DC/OS also offer support for Kubernetes as an alternative orchestrator. Moreover, the

stability assessment of Section 7 will show that only a few unique features of Kubernetes incur a

higher risk of feature deprecation.

Figure 8. The total number of features supported by each of the CO frameworks is shown for the 9

aspects.

Table 16 provides an overview of the total number of features per (sub)-aspect and per CO

framework. We find a more significant differences in ranking between the frameworks when re-

applying the Friedman test for unreplicated designs (p-value=1.729e-10). We also performed a

pairwise comparison between CO frameworks using the Nemenyi multiple comparison test with q

approximation for unreplicated blocked data [135]. Based on the p-values of the Nemenyi test, we

find that Docker Swarm stand-alone and Aurora still differ significantly from both Kubernetes and

DC/OS and these differences are more significantly for Kubernetes but not for DC/OS. Similarly, the

differences between Kubernetes on the one hand and Mesos and Marathon on the other hand has

become also more significant. This can be explained by the fact that Kubernetes introduces the most

unique features of all CO frameworks whereas DC/OS, Mesos and Marathon introduce little to no

unique features.

 64 of 121

Table 16. Overview of the number of total number of features (i.e. common + unique features) per

(sub)-aspect and CO framework. The last column also shows which framework(s) support(s) the

highest number of features per sub-aspect. Unique features of which the development has been

explicitly announced as halted are not included.

Aspects Sub-aspects CO frameworks FW(s) with most
features Sa Si Ku Me Au Ma Dc

Cluster architecture and setup 7.5 9.5 13.5 8 7 9 10.5 Ku

Configuration management
approach

1 1 1 0 1 1 1 All but Me

Architectural patterns 5 5 4.5 3 4 5 5 Sa/Si/Ma/Dc

Installation methods and
deployment tools

1.5 3.5 8 5 2 3 4.5 Ku

CO framework customization 4 5 12 6 5 4 5 Ku

Unified container runtime
architecture

3 3 3 2 2 2 2 Sa/Si/Ku

Framework design of orchestration
engine

1 2 9 4 3 2 3 Ku

Container networks 8 17.5 20.5 11 5 12 16 Ku

Services networking 3 8.5 6 4.5 2 5 8 Si

Host ports conflict management 1 2 1 0.5 1 1 1 Si
Plugin architecture for network
services

3 3 2.5 3 0 3 3 Sa/Si/Me/Ma/Dc

Service discovery and external
access

1 4 11 3 2 3 4 Ku

Application configuration and deployment 14 23 34 13.5 14 18.5 24.5 Ku

Supported workload types 2 4 8.5 1 3 4 5 Ku

Persistent volumes 7 7 11.5 9.5 3 6.5 8.5 Ku

Reusable container configuration 3 5 6 3 3 4 4 Ku
Service upgrades 2 7 8 0 5 4 7 Ku

Resource quota management 0 1 4 3.5 2 1 2 Ku

Container QoS Management 9 11 16 10 11 9 9 Ku

Container CPU and mem
allocation with support for over-
subscription

5 5 5 3 2 2 2 Sa/Si/Ku

Allocation of other resources 0 0 3 4 2 2 2 Me

Controlling scheduling behavior
by means of placement constraints

3 3 3 1 3 3 3 All but Me

Controlling preemptive scheduling
and re-scheduling behavior

1 3 5 2 4 2 2 Ku

Securing clusters 2 8.5 10.5 5 5 2 7 Ku

User identity and access
management

1 2.5 4 3 3 2 3 Ku

Cluster network security 1 6 6.5 2 2 0 4 Si/Ku

Securing containers 3.5 3 9 3 0 2 2 Ku

Protection of sensitive data and
proprietary software

0 2 2 2 0 2 2 Si/Ku/Me/Ma/Dc

Improved security isolation 3.5 1 7 1 0 0 0 Ku

App and cluster management 9.5 15.5 25 16.5 13.5 13 21 Ku

Creation, management and
inspection

3 4 4 3 2.5 3 4 Si/Ku/Dc

Monitoring resource usage and
health

1.5 2.5 5 4 4 3 5 Ku/Dc

Logging and debugging 2.5 2.5 4 2 1 1 3 Ku

Cluster maintenance 1.5 3.5 5.5 4.5 3 4 5 Ku
Multi-cloud deployments 1 3 6.5 3 3 2 4 Ku

Total number of feature implementation
strategies

57.5 94 144.5 76.5 62.5 70.5 97 602.5

In addition to these existing differences, we observe an additional, significant difference between

Docker Swarm integrated mode and Docker Swarm stand-alone. This can be explained by the fact

that the former introduces more unique features than the latter. There are no significant differences

between other CO frameworks.

 65 of 121

However, for 17 sub-aspects there is a specific CO framework that supports the highest number

of common and unique features:

 Kubernetes offers the most features for 15 sub-aspects:

1. Installation methods and deployment tools (1 unique feature)

2. Framework design of orchestration engine (6 unique features)

3. Service discovery and external access (6 unique features)

4. Supported workload types (2 unique feature)

5. Persistent volumes (4 unique features)

6. Reusable container configuration (1 unique feature)

7. Service upgrades (0 unique features)

8. Resource quota management (0 unique features)

9. Controlling preemptive scheduling and re-scheduling behaviour (1 unique feature)

10. User identity and access management (1 unique feature)

11. Cluster network security (2 unique features)

12. Improved security isolation (2 unique features)

13. Logging and debugging (1 unique feature)

14. Cluster maintenance (2 unique features)

15. Multi-cloud deployments (3 unique features minus the halted feature = 2 unique features)

With respect to the first three sub-aspects, Kubernetes is the only framework that offers

Kubernetes-as-a-service on top of major public cloud providers. It also offers 6 unique features

that are relevant for service discovery and external access on top of public cloud providers as

well as 6 unique features for the customizability of the orchestration engine and the master API

and offers.

 Docker Swarm integrated mode loses the 1st rank for the sub-aspect “cluster network security”

to Kubernetes, but still offers the most features for the sub-aspects “services networking” and

“host port conflict management”.

 Mesos does not offer anymore the most features for the sub-aspect “persistent volumes”, which

is now more elaborately supported by Kubernetes. Instead it offers the most features for the sub-

aspect “allocation of other resources”. In particular, Mesos supports network isolation between

containers.

 DC/OS does not anymore offer the absolute most features in any sub-aspect.

Figure. 9 Resulting p-values of the Nemenyi multiple comparison test when counting common and

unique features (see Table 16). For p-values <= 0.05, we can reject the null hypothesis (i.e., there is no

significant difference in overall ranking between a pair of CO frameworks).

Finally, there are tied observations for 9 remaining sub-aspects (see Table 17). If we would rank CO

frameworks in terms of counting those sub-aspects for which they offer the most features as well as

those aspects with tied observations where they share the highest number of features, then

Kubernetes ranks highest with 22 sub-aspects, then Docker Swarm integrated mode with 10 sub-

aspects, then DC/OS with 7 sub-aspects, then Docker Swarm stand-alone with 6 aspects, then

Marathon with 5 aspects, and finally Mesos and Aurora with both 3 sub-aspects. We graphically

present the top 3 CO frameworks using a radar chart (see Figure 10).

 66 of 121

Table 17. Tied observation for 9 sub-aspects when counting common and unique features.

Aspects Sub-aspects CO frameworks #ties
between

FWs
 Sa Si Ku Me Au Ma Dc

Cluster architecture and setup 10

 Configuration management approach 6

Architectural patterns 4

CO system customization 3

 Unified container runtime architecture 3
Container networking 5

 Plugin architecture for network
services

 5

Container QoS Management 9

 Container CPU and mem allocation
with support for over-subscription

 3

Controlling scheduling behavior by
means of placement constraints

 6

Securing containers 5
 Protection of sensitive data and

proprietary software
 5

Application and cluster management 5

 Creation, management and inspection
of cluster and applications

 3

Monitoring resource usage and health 2

Total tied observations per CO framework 6 8 7 2 2 5 7 37

Figure 10. Radar chart of Docker Swarm integrated mode, Kubernetes and DC/OS for common +

unique features.

6. Assessment of Maturity

This section answers research questions RQ7 and RQ8.

RQ7. What is the maturity of a CO framework with respect to a common feature or a functional

(sub)-aspect? For each of the 9 functional aspects, we present a table that maps each common feature

to a timeline that orders CO frameworks according to the time they have released the alpha version

of the common feature. In the supplementary material of this article, we provide tables with direct

 67 of 121

hyperlinks to the documentation about these alpha versions of the features. Sections 5.1-5.9 present

the main findings that can be drawn from these tables.

 Cluster architecture and setup

Table 18 presents the timeline of when the features of the “cluster architecture and setup” aspect

have been introduced by the different CO frameworks. Firstly, it shows that these are basic features

that are released as part of the first versions of the frameworks. Secondly, the implementation strategy

for these features has also rarely been changed except in the “installation methods and tools” sub-

aspect. Finally, as Mesos, Aurora and Marathon have been created earlier, they pioneered in all sub-

aspects of the cluster architecture and setup aspect. One notable exception is in the sub-aspect

installation methods and tools, where Kubernetes is the first CO framework that is offered as a hosted

solution by cloud providers.

 Container orchestration framework customization

Table 19 shows the historical timeline of the features of the “CO framework customization”

aspect. Firstly, with respect to the “unified container runtime” sub-aspect, it shows that despite the

popularity of Docker, it didn’t last long before other container runtimes have been offered by CO

frameworks. However, Docker’s containerd initiative for creating a unified runtime architecture has

been timely and has been pushed by the Cloud Native Computing foundation as de-facto standard

for unified container runtime architecture [36]. Secondly, Mesos clearly pioneered with its highly

modular software architecture of the core orchestration engine, but Kubernetes has also been highly

extensible from the start of the project and this extensibility has been continuously improved (see

Section 4.2.2).

 Container networking

With respect to the “services networking” sub-aspect (see Table 20), networking with global

service ports and host ports found its roots in Mesos v0.20 that added support for network isolation

between containers without relying on a virtual bridge. The network isolation module prevents a

single container from exhausting the available network ports, consuming an unfair share of the

network bandwidth or significantly delaying packet transmission for others. Subsequently, Aurora

v0.8 pioneered with a fully-functioning host port networking approach using the central Mesos-DNS

service as service proxy. Aurora also pioneered in the “host port conflict management” sub-aspect

by supporting dynamic allocation of host ports.

Kubernetes v0.6 pioneered in the integrated design of a routing mesh for service ports and

virtual IP network support for containers with a distributed L4 load balancer. Docker Swarm

integrated mode v1.12 fully adopted this integrated design of two networking approaches with a

distributed load balancer. Marathon v1.0.0 introduced then a centralized L4-L7 load balancer for

global service ports, while DC/OS v1.10 introduced a similar L4-L7 load balancer with support for

load balancing both container-orchestrated services and non-container orchestrated services.

Mesos v0.25 has introduced support for virtual networks as part of its Mesos containerizer

runtime. However, this Mesos feature has never been used by Aurora or Marathon. Later, Mesos

v1.0.0 deprecated this initial support in favor of CNI-based networking.

Marathon v0.14 initially supported an IP-per-container feature, but this feature has been

deprecated and all efforts were spent in adding support for virtual IP addresses for containers to

DC/OS. DC/OS v1.8 introduced separate components for implementing respectively: a virtual

container network, a distributed DNS server, name-based VIPs and a distributed L4 load balancer.

Later in DC/OS v1.11, these different component have been aggregated into a composite dcos-net

component that runs in an Erlang VM. Finally Marathon v1.5.0 again provided support for virtual IP

networks for containers.

 68 of 121

Table 18. Timeline of when each CO framework introduced support for features of the “cluster

architecture and setup” aspect. Rows are features, aggregated by sub-aspect, while columns are

semesters.

With respect to the “network plugin architecture” sub-aspect, Kubernetes v1.0.0 pioneered with

different implementations of its innovating virtual container network model. Very soon thereafter,

Docker Swarm stand-alone v1.0.0 and Docker v1.9 released an innovating network plugin

architecture, libnetwork, for creating and removing virtual container networks at runtime and

installing new network plugins at run-time. Kubernetes v1.2 adopted subsequently the CNI

specification. Then, Mesos v1.0.0 supported both CNI-based and Docker-based network plugins and

this Mesos feature has been made available in DC/OS v1.9 and Marathon v1.5.0.

Cluster
architecture
and setup sub-
aspects

Features

b
e

fo
re

 J
u

n
 1

3

Ju
l 1

3
 –

 D
e

c
1

3

Ja
n

 1
4
–

Ju
n

 1
4

Ju

l 1
4

 –
 D

e
c

1
4

Ja
n

 1
5

 –
 J

u
n

 1
5

Ju
l 1

5
–

D
e

c
1

5

Ja
n

 1
6

 –
 J

u
n

 1
6

Ju
l 1

6
 –

 D
e

c
1

6

Ja
n

 1
7

 –
 J

u
n

 1
7

Ju
l 1

7
 –

 D
e

c
1

7

Ja

n
 1

8
-

Ju
n

 1
8

Configuration
management
approach

Declarative configuration management Ma
Au

 Ku Dc
Sa

Si

Architectural
patterns

Master-Worker architecture Me Ma
Au

 Ku Sa

 Dc Si

Highly-available (HA) master design Me
Au

 Ma

 Sa
Ku

Dc Si

Generic, automated setup of HA masters Au Ma

 Sa Dc Si
Ku

Versioned HTTP API + client libraries Ma Ku Me Dc Sa
Si

Simple, policy-rich scheduling algorithm Ma
Au

 Ku Sa Dc Si

Installation
methods and
tools for
setting up
a cluster

Dockerized CO software Me
Ma

Sa1
Ku1

 Ku2
Sa2

VM images with CO software for local dev Me Ku1 Au Ma Ku2 Dc

Linux packages + CLI for cluster setup Me
Ma

 Au
Dc

Si
Ku

Configuration management tools Me Ku

Cloud-provider tool or platform Ku Sa Si
Dc

Cloud-provider independent tools Dc Ku Si

Microsoft Windows or Windows Server Me Si
Ku

Cell Legend for Tables 18- 27

 Sa: Docker Swarm stand-alone

 Si: Docker Swarm integrated

 Ku: Kubernetes

 Me: Mesos

 Au: Mesos+Aurora

 Ma: Mesos+Marathon

 Dc: DC/OS

 Xx1: 1st version of corresponding feature by CO framework Xx

 Xx2: 2nd version of the corresponding feature by Co framework Xx

 Xx: The CO framework Xx currently has deprecated the corresponding feature in the mean time

 Xx1: The CO framework Xx has superseded the 1st version of the corresponding feature with a

later 2nd version

https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/application-groups.md
https://github.com/apache/aurora/blob/rel/0.5.0-incubating/docs/configuration-tutorial.md
https://github.com/kubernetes/kubernetes/blob/release-0.4/docs/cli.md
https://docs.mesosphere.com/1.7/usage/marathon/application-basics/
https://github.com/docker/swarm/blob/v1.2.0/docs/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose
https://github.com/docker/docker.github.io/blob/v1.13-release/compose/compose-file/index.md
https://github.com/apache/mesos/blob/0.13.0/docs/Mesos-Architecture.md
https://github.com/apache/aurora/blob/rel/0.12.0/docs/images/components.png
https://github.com/kubernetes/kubernetes/blob/release-0.4/docs/architecture.png
https://github.com/docker/swarm/blob/v0.1.0/docs/index.md
https://docs.mesosphere.com/1.7/overview/architecture/
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/how-swarm-mode-works/nodes.md
https://github.com/apache/mesos/blob/0.16.0/docs/high-availability.md
https://github.com/apache/aurora/blob/rel/0.2.0/docs/deploying-aurora-scheduler.md#replicated-log-configuration
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/high-availability.md
https://github.com/docker/swarm/blob/v0.4.0/docs/multi-manager-setup.md
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/admin/high-availability.md
https://docs.mesosphere.com/1.10/overview/high-availability/
https://github.com/docker/docker.github.io/blob/master/swarm/multi-manager-setup.md
https://github.com/apache/aurora/blob/rel/0.2.0/docs/deploying-aurora-scheduler.md#replicated-log-configuration
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/high-availability.md
https://github.com/docker/swarm/blob/v0.4.0/docs/multi-manager-setup.md
https://docs.mesosphere.com/1.10/overview/high-availability/
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/admin_guide.md
https://github.com/kubernetes/website/blob/release-1.6/docs/tasks/administer-cluster/highly-available-master.md
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/rest-api.md
https://github.com/kubernetes/kubernetes/tree/release-1.0/docs/api-reference
https://github.com/apache/mesos/blob/1.0.0/docs/operator-http-api.md
https://docs.mesosphere.com/1.9/api/
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/swarm-api.md
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/constraints.md
https://github.com/apache/aurora/blob/rel/0.5.0-incubating/docs/configuration-reference.md#specifying-scheduling-constraints
https://docs.openshift.org/3.6/admin_guide/scheduling/scheduler.html#generic-scheduler
https://github.com/apache/mesos/blob/1.4.x/docs/reservation.md#dynamic-reservation
https://github.com/docker/swarm/blob/v0.3.0/docs/scheduler/strategy.md
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/services.md#control-service-scale-and-placement
https://github.com/mesosphere/docker-containers/tree/master/mesos
https://hub.docker.com/r/mesosphere/marathon/
https://github.com/docker/swarm/blob/v0.3.0/docs/install-manual.md
https://github.com/kubernetes/kubernetes/blob/release-1.1/docs/getting-started-guides/docker-multinode.md
https://github.com/kubernetes/website/blob/release-1.4/docs/getting-started-guides/kubeadm.md
https://github.com/kubernetes/website/blob/release-1.4/docs/getting-started-guides/kubeadm.md
https://hub.docker.com/r/dockerswarm/dind/
https://github.com/apache/mesos/blob/0.19.0/docs/tools.md
https://github.com/kubernetes/kubernetes/blob/v0.6.0/docs/getting-started-guides/vagrant.md
https://github.com/apache/aurora/blob/rel/0.8.0/docs/vagrant.md
https://github.com/mesosphere/marathon/blob/v0.9.0/docs/docs/developing-vm.md
https://github.com/kubernetes/website/blob/release-1.4/docs/getting-started-guides/minikube.md
https://docs.mesosphere.com/1.9/installing/oss/local/
https://mesosphere.com/blog/mesosphere-package-repositories/
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/index.md
https://github.com/apache/aurora/blob/rel/0.12.0/docs/installing.md
https://docs.mesosphere.com/1.7/administration/installing/oss/custom/cli/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm-tutorial/index.md
https://github.com/kubernetes/website/blob/release-1.4/docs/getting-started-guides/kubeadm.md
https://github.com/apache/mesos/blob/0.19.0/docs/tools.md
https://github.com/kubernetes/kubernetes/blob/release-0.4/docs/salt.md
https://github.com/kubernetes/kubernetes/tree/v0.10.0/docs/getting-started-guides
https://docs.microsoft.com/en-us/azure/container-service/dcos-swarm/container-service-docker-swarm
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/docker.dockerdatacenter?tab=Overview
https://github.com/Azure/acs-engine/blob/master/docs/dcos.md
https://docs.mesosphere.com/1.10/installing/oss/cloud/
https://github.com/kubernetes/kops
https://github.com/docker/docker.github.io/blob/v1.13/docker-cloud/cloud-swarm/index.md
https://github.com/apache/mesos/blob/1.4.x/docs/windows.md
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/swarm-mode
https://github.com/kubernetes/website/blob/release-1.5/docs/getting-started-guides/windows/index.md

 69 of 121

With respect to the sub-aspect “service discovery and external access to services”, Kubernetes

v0.8 pioneered with an internal DNS service and Kubernetes v0.18 pioneered in external access to

services and added later many other unique features. Docker v1.10 and DC/OS v1.7 pioneered with

a distributed DNS for Docker Swarm stand-alone.

Table 19. Timeline of when each CO framework introduced support for features of the “CO

framework customization” aspect.

 Application configuration and deployment

With respect to the “supported workload types” sub-aspect (see Table 21), concepts for

configuring different workload types have been defined quite early during the start of the

Kubernetes, Aurora and Marathon projects and these concepts were also quite similar across the

different frameworks. Exceptions to this are the concept of Pod, which has been introduced first by

Kubernetes, and support for composite applications which has been introduced by Marathon.

The “persistent volumes” sub-aspect counts the highest number of feature implementation

strategies when accumulating the effort done for all frameworks. Kubernetes v0.6 introduced support

for external persistent volumes. During the period of Jul 2015-Dec 2015, Docker v1.7 also documented

support for persistent volumes and Docker v1.8 introduced a plugin architecture for different volume

plugins. A distinguishing feature of this new plugin framework is that plugins could be installed at

any time in a running cluster, while Kubernetes’ volume plugin framework required a rebuild of the

framework software in order to add a new implementation.

By August 2016, Docker’s plugin architecture for volumes has also been supported by Mesos

v1.0.0, Marathon v1.3.0 and DC/OS v1.8. However, in February 2017, Docker v1.13+ redesigned its

plugin framework completely; it’s not clear if this new plugin framework is supported in Mesos-

based framework. In May 2017, Google and Mesosphere, the company behind Mesos, Marathon and

DC/OS, initiated an attempt to define a common specification, named CSI, for exposing container

storage providers to containers at run-time. Alpha support for CSI has been added to Kubernetes v1.9

and DC/OS 1.11 around the end of 2017.

With respect to “the reusable container configuration” and “service upgrades” sub-aspect,

features have been added gradually over the lifetime of the CO frameworks.

CO framework
customization
sub-aspects

Features

b
e

fo
re

 J
u

n
 1

3

Ju
l 1

3
 –

 D
e

c
1

3

Ja
n

 1
4
–

Ju
n

 1
4

Ju

l 1
4

 –
 D

e
c

1
4

Ja
n

 1
5

 –
 J

u
n

 1
5

Ju
l 1

5
–

D
e

c
1

5

Ja
n

 1
6

 –
 J

u
n

 1
6

Ju
l 1

6
 –

 D
e

c
1

6

Ja
n

 1
7

 –
 J

u
n

 1
7

Ju
l 1

7
 –

 D
e

c
1

7

Ja

n
 1

8
-

Ju
n

 1
8

Unified
container
runtime
architecture

Unified container runtime architecture Me
Sa

Si
Au
Ku

Ma
Dc

Support for OCI specifications Sa

Si

 Ku

Other supported container runtimes Me Ku

Sa

 Au
Si

Ma
Dc

Framework
design of
orchestration
engine

External plugin architecture Me Sa1 Ku
Ma

Dc Si1 Sa2
Si2

Plugin-architecture for schedulers
Me

 Ku
Dc

 Ma Au

Modular interceptors Me
Au1

Ku1 Dc Ku2 Au2

https://github.com/apache/mesos/blob/0.28.0/docs/container-image.md
https://github.com/apache/mesos/blob/0.28.0/docs/container-image.md
https://containerd.io/
https://containerd.io/
https://github.com/apache/aurora/blob/rel/0.16.0/docs/features/containers.md#mesos-containerizer
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://github.com/mesosphere/marathon/blob/v1.4.0/docs/docs/native-docker.md
https://docs.mesosphere.com/1.9/deploying-services/containerizers/ucr/
https://www.opencontainers.org/
https://containerd.io/
https://containerd.io/
https://github.com/containerd/cri
https://github.com/apache/mesos/blob/0.21.0/docs/mesos-containerizer.md
https://github.com/kubernetes/kubernetes/tree/release-0.18/docs/getting-started-guides/rkt
https://github.com/opencontainers/runc
https://github.com/apache/aurora/blob/rel/0.16.0/docs/features/containers.md#mesos-containerizer
https://github.com/opencontainers/runc
https://github.com/mesosphere/marathon/blob/v0.9.0/docs/docs/application-basics.md#a-simple-docker-based-application
https://docs.mesosphere.com/1.9/deploying-services/containerizers/ucr/
https://github.com/apache/mesos/blob/0.21.0/docs/modules.md
https://docs.docker.com/v1.8/engine/extend/
https://github.com/kubernetes/website/blob/release-1.4/docs/admin/addons.md
https://github.com/mesosphere/marathon/blob/v0.13.0/docs/docs/plugin.md
https://docs.docker.com/v1.12/engine/extend/
https://github.com/docker/docker.github.io/blob/v1.13/engine/extend/index.md
https://github.com/docker/docker.github.io/blob/v1.13/engine/extend/index.md
https://github.com/apache/mesos/blob/0.13.0/docs/Allocation-module.textile
https://github.com/kubernetes/kubernetes/blob/v1.2.0/docs/design/scheduler_extender.md
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/plugin.md#scheduler
https://github.com/apache/aurora/blob/master/RELEASE-NOTES.md#0200
https://github.com/apache/mesos/blob/0.21.0/docs/modules.md
https://github.com/apache/aurora/blob/rel/0.5.0-incubating/docs/hooks.md
https://github.com/kubernetes/kubernetes/blob/v0.19.0/docs/admission_controllers.md
https://github.com/kubernetes/website/blob/release-1.7/docs/admin/extensible-admission-controllers.md
https://github.com/apache/aurora/blob/master/RELEASE-NOTES.md#0190

 70 of 121

Table 20. Historical timeline of “container networking” features.

Container
networking
sub-aspects

Features

b
e

fo
re

 J
u

n
 1

3

Ju
l 1

3
 –

 D
e

c
1

3

Ja
n

 1
4
–

Ju
n

 1
4

Ju

l 1
4

 –
 D

e
c

1
4

Ja
n

 1
5

 –
 J

u
n

 1
5

Ju
l 1

5
–

D
e

c
1

5

Ja
n

 1
6

 –
 J

u
n

 1
6

Ju
l 1

6
 –

 D
e

c
1

6

Ja
n

 1
7

 –
 J

u
n

 1
7

Ju
l 1

7
 –

 D
e

c
1

7

Ja

n
 1

8
-

Ju
n

 1
8

Services
networking

Routing
mesh for
stable global
service ports

distributed Layer 4 load
balancer(based on ipvs)

 Ku1
(no

ipvs)

 Si
(with
ipvs)

 Ku2
(with
ipvs)

With centralized L4-L7 LB
without ipvs

 Me

 Ma1
Ku

 Si1
Dc1

 Ma2
Dc2

Si2

Virtual IP
network for
containers

L4 distributed LB (with
ipvs support)

 Ku1
(no

ipvs)

 Si
(with
ipvs)

Dc1
(no

ipvs)

Dc2
(with
ipvs)

Ku2
(with
ipvs)

with stable DNS name for
service

 Ku Si

Dc

IP per container Ku Sa
Me1

Ma1

Si
Me2
Dc

 Ma2

Host port
networking

mapping container port to
host port

 Me
Ku

Au Sa
Ma1

Dc1

Si Ma2
Dc2

with stable DNS name for
service

 Me
Au

 Ma
Dc1

Dc2 Si

host mode networking Sa Me Si Ma Dc

Host ports
conflict
management

Dynamic allocation of host ports Au Ma1 Dc Sa Si Ma2

Management of host port conflicts Ku Si

Plugin
architecture
for
network
services

Network plugin architecture Ku1
Sa

Ku2 Me
Si

Dc Ma

Support for CNI specification Ku Me Dc Ma

Support for Docker’s network architecture Sa Me
Si

Dc Ma

Separation of data and control traffic Ku
Sa
Si

Service
discovery
and external
access

Internal DNS
for service
discovery

distributed DNS server on
every node

 Sa
Dc

Si

centralized DNS server Ku

Me Ma
Dc
Au

DNS SRV records (only supported by
centralized DNS server)

 Ku

Me

Ma Dc
Au

Bypassing the L4 service load balancer Ku

Si

Exposing services to external clients
outside the cluster via routing mesh

 Ku Ma Si
Dc

 Dc2

Co-existence of service IPs and global
service ports for a single service

 Ku Si

https://github.com/kubernetes/kubernetes/blob/release-0.18/docs/services.md#type--nodeport
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/networking.md
https://github.com/kubernetes/kubernetes/tree/v1.9.0/pkg/proxy/ipvs
https://github.com/apache/mesos/blob/0.20.0/docs/network-monitoring.md#host-ephemeral-ports-squeeze
https://github.com/mesosphere/marathon/blob/v1.1.0/docs/docs/ports.md#specifying-service-ports
https://github.com/kubernetes/kubernetes/blob/release-1.1/docs/user-guide/ingress.md
https://github.com/docker/docker.github.io/blob/v1.12-release/datacenter/ucp/2.0/guides/configuration/route-hostnames.md
https://docs.mesosphere.com/1.8/usage/service-discovery/marathon-lb/
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#specifying-service-ports
https://docs.mesosphere.com/1.10/networking/#load-balancing
https://docs.docker.com/ee/ucp/interlock/
https://github.com/kubernetes/kubernetes/blob/release-0.4/docs/networking.md
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/networking.md
https://docs.mesosphere.com/1.8/usage/service-discovery/load-balancing-vips/virtual-ip-addresses/
https://docs.mesosphere.com/1.9/networking/load-balancing-vips/
https://github.com/kubernetes/kubernetes/tree/v1.9.0/pkg/proxy/ipvs
https://github.com/kubernetes/kubernetes/blob/release-0.13/docs/services.md#dns
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/networking.md
https://docs.mesosphere.com/1.11/networking/DNS/
https://github.com/kubernetes/kubernetes/blob/v1.0.0/docs/networking.md
https://github.com/docker/swarm/blob/v1.0.0/docs/networking.md
https://github.com/apache/mesos/blob/0.25.0/docs/networking-for-mesos-managed-containers.md
https://github.com/mesosphere/marathon/blob/v0.14.0/docs/docs/ip-per-task.md
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/networking.md
https://github.com/apache/mesos/blob/1.0.0/docs/networking.md
https://docs.mesosphere.com/1.8/usage/service-discovery/load-balancing-vips/virtual-networks/
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#container-networking
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/config-best-practices.md
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/config-best-practices.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#port-aliasing-with-the-announcer-portmap
https://github.com/docker/docker.github.io/blob/v1.13-release/engine/userguide/networking/index.md#default-networks
https://github.com/mesosphere/marathon/blob/v0.9.0/docs/docs/application-basics.md#a-simple-docker-based-application
https://docs.mesosphere.com/1.7/usage/marathon/application-basics/#a-simple-docker-based-application
https://github.com/docker/docker.github.io/blob/v1.13/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#networking-modes
https://docs.mesosphere.com/1.11/networking/#ip-connectivity
https://github.com/mesosphere/mesos-dns/blob/master/docs/docs/http.md#get-v1servicesservice
https://github.com/apache/aurora/blob/rel/0.8.0/docs/configuration-reference.md#port-aliasing-with-the-announcer-portmap
https://github.com/mesosphere/marathon/blob/v1.1.0/docs/docs/service-discovery-load-balancing.md#mesos-dns
https://docs.mesosphere.com/1.7/usage/service-discovery/mesos-dns/http-interface/#get-v1servicesservice
https://docs.mesosphere.com/1.9/networking/dns-overview/#service-discovery-options
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#bypass-the-routing-mesh-for-a-swarm-service
https://github.com/docker/docker.github.io/blob/v17.12/network/host.md
https://github.com/apache/mesos/blob/1.0.0/docs/networking.md
https://github.com/docker/docker.github.io/blob/v17.12/network/host.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#host-networking
https://docs.mesosphere.com/1.11/networking/#host-mode-networking
https://github.com/apache/aurora/blob/rel/0.13.0/docs/features/services.md#ports
https://github.com/mesosphere/marathon/blob/v1.3.0/docs/docs/ports.md#random-port-assignment
https://docs.mesosphere.com/1.7/usage/marathon/ports/#definitions
https://github.com/docker/docker.github.io/blob/v1.12/engine/reference/run.md#expose-incoming-ports
https://github.com/docker/docker.github.io/blob/v1.13/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#port-definition
https://docs.openshift.org/latest/admin_guide/scheduling/scheduler.html#scheduler-sample-policies
https://github.com/docker/docker.github.io/blob/v1.13/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node
https://github.com/kubernetes/kubernetes/blob/v1.0.0/docs/networking.md
https://github.com/docker/swarm/blob/v1.0.0/docs/networking.md
https://github.com/kubernetes/kubernetes/blob/6248939e11a4d5b422da5ffdc7ec52a6c1ded54a/docs/admin/network-plugins.md
https://github.com/apache/mesos/blob/1.0.0/docs/cni.md
https://github.com/docker/libnetwork
https://docs.mesosphere.com/1.9/networking/virtual-networks/
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md
https://github.com/kubernetes/kubernetes/blob/6248939e11a4d5b422da5ffdc7ec52a6c1ded54a/docs/admin/network-plugins.md#cni
https://github.com/apache/mesos/blob/1.0.0/docs/cni.md
https://docs.mesosphere.com/1.9/networking/virtual-networks/
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md
https://github.com/docker/swarm/blob/v1.0.0/docs/networking.md
https://github.com/apache/mesos/blob/1.0.0/docs/networking.md#docker-containerizer
https://github.com/docker/libnetwork
https://docs.mesosphere.com/1.9/networking/virtual-networks/
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md
https://github.com/Intel-Corp/multus-cni#nfv-based-networking-in-kubernetes
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#separate-control-and-data-traffic
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#separate-control-and-data-traffic
https://github.com/moby/moby/blob/v1.10.0/docs/userguide/networking/configure-dns.md
https://docs.mesosphere.com/1.7/overview/design/dns-proxy/
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/userguide/networking/configure-dns.md
https://github.com/kubernetes/kubernetes/blob/release-0.8/docs/dns.md
https://github.com/mesosphere/mesos-dns
https://github.com/mesosphere/marathon/blob/v1.1.0/docs/docs/service-discovery-load-balancing.md#mesos-dns
https://docs.mesosphere.com/1.7/usage/service-discovery/mesos-dns/
https://github.com/apache/aurora/blob/rel/0.13.0/docs/features/service-discovery.md#using-mesos-dns
https://github.com/kubernetes/kubernetes/blob/release-0.10/docs/dns.md#dns-integration-with-kubernetes
https://github.com/mesosphere/mesos-dns/blob/v0.1.0/docs/docs/naming.md#srv-records
https://github.com/mesosphere/marathon/blob/v0.9.0/docs/docs/service-discovery-load-balancing.md#mesos-dns
https://docs.mesosphere.com/1.7/usage/service-discovery/mesos-dns/service-naming/#srv-records
https://github.com/apache/aurora/blob/rel/0.13.0/docs/features/service-discovery.md#using-mesos-dns
https://github.com/kubernetes/kubernetes/blob/release-0.14/docs/services.md#headless-services
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/networking.md#use-dns-round-robin-for-a-service
https://github.com/kubernetes/kubernetes/blob/release-0.18/docs/services.md#external-services
https://github.com/mesosphere/marathon-lb
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/networking.md
https://docs.mesosphere.com/services/marathon-lb/marathon-lb-basic-tutorial/
https://docs.mesosphere.com/1.10/networking/#load-balancing
https://github.com/kubernetes/kubernetes/blob/release-0.18/docs/services.md
https://github.com/mesosphere/training/blob/master/velocity-training-09-2016/dcos-105.md
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/networking.md
https://github.com/mesosphere/training/blob/master/velocity-training-09-2016/dcos-105.md

 71 of 121

Table 21. Historical timeline of the “application configuration and deployment” features.

Application
configuration
and
deployment
sub-aspects

Features

b
e

fo
re

 J
u

n
 1

3

Ju
l 1

3
 –

 D
e

c
1

3

Ja
n

 1
4
–

Ju
n

 1
4

Ju

l 1
4

 –
 D

e
c

1
4

Ja
n

 1
5

 –
 J

u
n

 1
5

Ju
l 1

5
–

D
e

c
1

5

Ja
n

 1
6

 –
 J

u
n

 1
6

Ju
l 1

6
 –

 D
e

c
1

6

Ja
n

 1
7

 –
 J

u
n

 1
7

Ju
l 1

7
 –

 D
e

c
1

7

Ja

n
 1

8
-

Ju
n

 1
8

Supported
workload
types

Pods Ku

 Me Ma
Dc

Container-based jobs Au Ku Dc

Container-based services Ma
Ku

 Au Dc1 Dc2
Si

Elastic scaling of services Ma
Ku1

 Au
Ku2
Sa

Dc
Si

Auto-scaling of services Ku Dc

Global containers Ku1 Ku2 Si

Composite applications Ma Dc Ku1 Sa
Si

Ku2

Persistent
volumes

Local volumes Ku1

 Me
Sa
Au

Ma
Dc

Si Ku2

Automatic (re)scheduling Me
Au

Ma
Dc

 Ku

Shareable volumes between containers Ku

 Sa

 Si
Me

External volumes Ku Au
Sa

 Si
Me
Ma
Dc

Volume plugin architecture Ku

 Sa

 Si
Me
Ma
Dc

Run-time installation of volume plugins Sa Si
Me1
Ma
Dc1

 Ku
Me2

Dc2

Docker Engine Plugin framework
support

 Sa

 Si
Me
Ma
Dc

Common Storage Interface (CSI)
support

 Ku
Me

Dc

Dynamic provisioning of volumes Me
Au

Ma
Dc

Si
Ku

Sa

Reusable
container
configuration

Pass environment variable to container Me
Ma

Sa

Ku
Au

Me2

Si Ma2
Dc2

Self-inspection API Ku Ma
Dc

Separate configuration data from
image

 Ku
Si

Custom ENTRYPOINT Me
Ma

Ku
Sa

Au

Me2

Si
Dc

Ma2
Dc2

Custom CMD Me
Ma

Ku
Sa

Au

Me2

Si
Dc

Ma2
Dc2

Service
upgrades

Rolling upgrades of services Au
Ma

Ku1

Ku2

Dc Si

Monitoring of a rolling upgrade Ma Au Ku Dc Si

Roll back Au Dc Ku Si

Configuration of custom readiness
checks

 Ku Au Ma
Dc

Customizing the rolling upgrade
process

 Ma Ku Dc Si

https://github.com/kubernetes/kubernetes/blob/release-0.4/docs/pods.md
https://github.com/apache/mesos/blob/1.2.0/docs/nested-container-and-task-group.md
https://github.com/mesosphere/marathon/blob/v1.4.0/docs/docs/pods.md
https://docs.mesosphere.com/1.9/deploying-services/pods/
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration-tutorial.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/jobs-run-to-completion.md
https://docs.mesosphere.com/1.8/usage/jobs/
https://github.com/mesosphere/marathon/blob/v0.9.0/docs/docs/application-basics.md
https://github.com/kubernetes/kubernetes/blob/release-0.8/docs/services.md
https://github.com/apache/aurora/blob/rel/0.13.0/docs/features/services.md
https://docs.mesosphere.com/1.7/usage/marathon/application-basics/
https://docs.mesosphere.com/1.8/usage/managing-services/creating-services/
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/services.md
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/application-groups.md#group-scaling
https://github.com/kubernetes/kubernetes/blob/release-0.4/docs/replication-controller.md
https://github.com/apache/aurora/blob/rel/0.13.0/docs/reference/client-commands.md#adding-instances
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/workloads/controllers/replicaset.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/workloads/controllers/replicaset.md
https://github.com/docker/swarm/blob/v1.2.0/docs/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose
https://docs.mesosphere.com/1.11/deploying-services/scale-service/
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/swarm-tutorial/scale-service.md
https://github.com/kubernetes/kubernetes/blob/v1.2.0/docs/design/horizontal-pod-autoscaler.md
https://docs.mesosphere.com/1.11/tutorials/autoscaling/
https://v1-6.docs.kubernetes.io/docs/tasks/administer-cluster/static-pod/
https://github.com/kubernetes/website/blob/release-1.6/docs/concepts/workloads/controllers/daemonset.md
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/services.md#control-service-scale-and-placement
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/application-groups.md
https://docs.mesosphere.com/1.7/usage/cli/command-reference/#dcosmarathon
https://github.com/kubernetes/helm
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/index.md
https://github.com/kubernetes/kompose
https://github.com/kubernetes/kubernetes/blob/v0.6.0/docs/volumes.md#hostdir
https://github.com/apache/mesos/blob/0.23.0/docs/persistent-volume.md
https://github.com/moby/moby/blob/v1.7.0/docs/reference/run.md#volume-shared-filesystems
https://github.com/apache/aurora/blob/rel/0.10.0/docs/configuration-reference.md#docker-parameter-object
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/persistent-volumes.md
https://docs.mesosphere.com/1.7/usage/storage/persistent-volume/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md#start-a-service-with-volumes
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/storage/volumes.md#local
https://github.com/apache/mesos/blob/1.4.x/docs/persistent-volume.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#mesos-object
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/persistent-volumes.md
https://docs.mesosphere.com/1.7/usage/storage/persistent-volume/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/volume-topology-scheduling.md
https://github.com/kubernetes/kubernetes/blob/v0.6.0/docs/volumes.md
https://docs.docker.com/v1.10/engine/userguide/containers/dockervolumes/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md#start-a-service-with-volumes
https://github.com/apache/mesos/blob/1.1.0/docs/shared-resources.md
https://github.com/kubernetes/kubernetes/blob/v0.6.0/docs/volumes.md
https://github.com/apache/aurora/blob/rel/0.10.0/docs/configuration-reference.md#docker-parameter-object
https://docs.docker.com/v1.10/engine/userguide/containers/dockervolumes/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md#start-a-service-with-volumes
https://github.com/apache/mesos/blob/1.0.0/docs/docker-volume.md
https://github.com/mesosphere/marathon/blob/v1.3.0/docs/docs/external-volumes.md
https://docs.mesosphere.com/1.8/usage/storage/external-storage/
https://github.com/kubernetes/kubernetes/tree/release-0.6/pkg/volume
https://github.com/moby/moby/blob/v1.8.0/docs/extend/plugins_volume.md
https://github.com/moby/moby/blob/1.12.x/docs/extend/index.md
https://github.com/apache/mesos/blob/1.0.0/docs/docker-volume.md
https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md
https://docs.mesosphere.com/1.8/usage/storage/external-storage/
https://github.com/moby/moby/blob/v1.8.0/docs/extend/plugins.md#finding-a-plugin
https://github.com/moby/moby/blob/1.12.x/docs/extend/index.md
https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md#pre-conditions
https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md
https://docs.mesosphere.com/1.8/usage/storage/external-storage/
https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/storage/volumes.md#csi
https://github.com/apache/mesos/blob/1.6.x/docs/csi.md
https://docs.mesosphere.com/services/beta-storage/0.1.0-beta/volume-plugins/
https://github.com/moby/moby/blob/v1.8.0/docs/extend/plugins_volume.md
https://github.com/moby/moby/blob/1.12.x/docs/extend/index.md
https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md#pre-conditions
https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md
https://docs.mesosphere.com/1.8/usage/storage/external-storage/
https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/storage/volumes.md#csi
https://github.com/apache/mesos/blob/1.6.x/docs/csi.md
https://docs.mesosphere.com/services/beta-storage/0.1.0-beta/volume-plugins/
https://github.com/apache/mesos/blob/0.23.0/docs/persistent-volume.md
https://github.com/apache/aurora/blob/rel/0.10.0/docs/configuration-reference.md#docker-parameter-object
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/persistent-volumes.md
https://docs.mesosphere.com/1.7/usage/storage/persistent-volume/
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/services.md#configure-mounts
https://github.com/kubernetes/website/blob/release-1.4/docs/user-guide/persistent-volumes/index.md#storageclasses
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md#start-a-container-which-creates-a-volume-using-a-volume-driver
https://github.com/apache/mesos/blob/0.20.0/docs/docker-containerizer.md#commandinfo-to-run-docker-images
https://github.com/mesosphere/marathon/blob/v0.8.0/docs/docs/native-docker.md
https://github.com/moby/moby/blob/v1.7.0/docs/reference/run.md#env-environment-variables
https://github.com/kubernetes/kubernetes/blob/v1.0.0/docs/user-guide/configuring-containers.md#environment-variables-and-variable-expansion
https://github.com/apache/aurora/blob/rel/0.10.0/docs/configuration-reference.md#docker-parameter-object
https://github.com/apache/mesos/blob/0.28.0/docs/mesos-containerizer.md#docker-runtime-isolator
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/services.md#configure-the-runtime-environment
https://github.com/mesosphere/marathon/blob/v1.4.0/docs/docs/pods.md#comprehensive-pod
https://docs.mesosphere.com/1.9/deploying-services/pods/examples/#additional-pod-fields
https://github.com/kubernetes/kubernetes/blob/release-0.16/docs/downward_api.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#downward-api
https://github.com/kubernetes/website/blob/release-1.6/docs/tasks/configure-pod-container/configmap.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/configs.md
https://github.com/apache/mesos/blob/0.20.0/docs/docker-containerizer.md#commandinfo-to-run-docker-images
https://github.com/mesosphere/marathon/blob/v0.8.0/docs/docs/native-docker.md#command-vs-args
https://github.com/kubernetes/kubernetes/blob/release-0.15/docs/containers.md#containers-with-kubernetes
https://github.com/moby/moby/blob/v1.7.0/docs/reference/run.md#overriding-dockerfile-image-defaults
https://github.com/apache/aurora/blob/rel/0.10.0/docs/configuration-reference.md#docker-object
https://github.com/apache/mesos/blob/0.28.0/docs/mesos-containerizer.md#docker-runtime-isolator
https://github.com/moby/moby/blob/1.12.x/docs/reference/commandline/service_create.md
https://github.com/mesosphere/marathon/blob/v1.4.0/docs/docs/pods.md#comprehensive-pod
https://docs.mesosphere.com/1.9/deploying-services/pods/examples/#basic-pod-container-fields.
https://github.com/apache/mesos/blob/0.20.0/docs/docker-containerizer.md#commandinfo-to-run-docker-images
https://github.com/mesosphere/marathon/blob/v0.8.0/docs/docs/native-docker.md#command-vs-args
https://github.com/kubernetes/kubernetes/blob/release-0.15/docs/containers.md#containers-with-kubernetes
https://github.com/moby/moby/blob/v1.7.0/docs/reference/run.md#overriding-dockerfile-image-defaults
https://github.com/apache/aurora/blob/rel/0.10.0/docs/configuration-reference.md#docker-object
https://github.com/apache/mesos/blob/0.28.0/docs/mesos-containerizer.md#docker-runtime-isolator
https://github.com/moby/moby/blob/1.12.x/docs/reference/commandline/service_create.md
https://github.com/mesosphere/marathon/blob/v1.4.0/docs/docs/pods.md#comprehensive-pod
https://docs.mesosphere.com/1.9/deploying-services/pods/examples/#basic-pod-container-fields.
https://github.com/apache/aurora/blob/rel/0.5.0-incubating/docs/user-guide.md#user-content-task-updates
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/deployments.md#rolling-restarts
https://github.com/kubernetes/kubernetes/blob/v0.15.0/docs/kubectl_rolling-update.md
https://github.com/kubernetes/kubernetes/blob/release-1.1/docs/user-guide/deployments.md
https://docs.mesosphere.com/1.7/usage/cli/command-reference/#dcosmarathon
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/swarm-tutorial/rolling-update.md
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/deployments.md#the-v2deployments-endpoint
https://github.com/apache/aurora/blob/rel/0.8.0/docs/client-commands.md#coordinated-job-updates
https://github.com/kubernetes/kubernetes/blob/release-1.1/docs/user-guide/deployments.md#enabling-deployments-on-kubernetes-cluster
https://docs.mesosphere.com/1.7/usage/cli/command-reference/#dcosmarathon
https://github.com/moby/moby/blob/1.12.x/docs/reference/commandline/service_inspect.md
https://github.com/apache/aurora/blob/rel/0.8.0/docs/configuration-reference.md#updateconfig-objects
https://docs.mesosphere.com/1.7/usage/cli/command-reference/#dcos-marathon
https://github.com/kubernetes/website/blob/release-1.4/docs/user-guide/deployments.md#rolling-back-a-deployment
https://docs.docker.com/engine/reference/commandline/service_rollback/
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/pod-states.md#container-probes
https://github.com/apache/aurora/blob/rel/0.8.0/docs/configuration-reference.md#updateconfig-objects
https://github.com/mesosphere/marathon/blob/v1.3.0/docs/docs/readiness-checks.md
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/deployments.md#rolling-restarts
https://github.com/kubernetes/kubernetes/blob/release-1.1/docs/user-guide/deployments.md#strategy
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/swarm-tutorial/rolling-update.md

 72 of 121

 Resource quota management

As shown in Table 22, Aurora and Kubernetes pioneered with the features related to managing

API objects for different user groups and quota limits on computing resources and amount of API

objects. Kubernetes is the only CO framework that offers support for all 5 features of this aspect.

Mesos offers support for partitioning computing resources but across different scheduler frameworks

running on top of a Mesos cluster.

Table 22. Historical time line of the “resource quota management” features.

 Container QoS management

With respect to the sub-aspect “container CPU and memory allocation with support for

oversubscription” (see Table 23), Kubernetes and later Docker Swarm integrated mode offer resource

allocation policies for CPU and memory that support oversubscription and that hide the complexity

of using cpu-shares, which are relative weights. So these two frameworks are the preferred choice

when optimal server consolidation is important.

With respect to the “allocation of other resources” sub-aspect, Mesos-based frameworks

pioneered with both disk limits and GPU limits.

With respect to the sub-aspect “controlling scheduling behavior by means of placement

constraints”, Mesos-based frameworks also pioneered in supporting various types of expressive

placement preferences. Note that Kubernetes has been the most actively developed framework with

respect to supporting various types of expressive placement preferences.

Finally, with respect to the sub-aspect “controlling preemptive scheduling and re-scheduling

behavior”, Mesos-based frameworks, in particular Aurora, has pioneered in supporting preemptive

scheduling while Docker Swarm integrated mode has pioneered in redistributing un-balanced

services.

 Securing clusters

With respect to the “user identity and access management” sub-aspect (see Table 24), Mesos-

based frameworks and Kubernetes took the forefront in developing user authentication and

authorization with respect to their respective master API. Kubernetes pioneered with tenant-aware

access control.

Support for performing canary
deployments

 Ku Dc
Au

In-place updates of app configurations Ku Sa
Dc

Si

Non-disruptive, in-place updates Sa Ku Si

Resource
quota
management
aspect

Features

b
e

fo
re

 J
u

n
 1

3

Ju
l 1

3
 –

 D
e

c
1

3

Ja
n

 1
4
–

Ju
n

 1
4

Ju

l 1
4

 –
 D

e
c

1
4

Ja
n

 1
5

 –
 J

u
n

 1
5

Ju
l 1

5
–

D
e

c
1

5

Ja
n

 1
6

 –
 J

u
n

 1
6

Ju
l 1

6
 –

 D
e

c
1

6

Ja
n

 1
7

 –
 J

u
n

 1
7

Ju
l 1

7
 –

 D
e

c
1

7

Ja

n
 1

8
-

Ju
n

 1
8

Resource
quota
management

Partitioning API objects in user groups Au
Ku

 Me Dc Si

CPU and memory quota per user group Ku
Au

 Me1 Me2

Disk quota per user group Au Me1 Ku Me2
Me3

Object count quota limits per user group Ku Me

Reserving resources for the CO framework Ku Ma
Dc

https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/managing-deployments.md#canary-deployments
https://github.com/mesosphere/marathon/blob/v1.3.0/docs/docs/blue-green-deploy.md
https://github.com/apache/aurora/blob/rel/0.13.0/docs/features/job-updates.md#canary-deployments
https://github.com/kubernetes/kubernetes/blob/release-1.1/docs/user-guide/deployments.md#updating-a-deployment
https://github.com/moby/moby/blob/v1.10.0/docs/reference/api/docker_remote_api_v1.22.md#update-a-container
https://docs.mesosphere.com/1.7/usage/cli/command-reference/#dcos-marathon
https://github.com/moby/moby/blob/v1.12.0/docs/reference/api/docker_remote_api_v1.24.md#update-a-service
https://github.com/moby/moby/blob/v1.10.0/docs/reference/api/docker_remote_api_v1.22.md#update-a-container
https://github.com/kubernetes/website/blob/release-1.4/docs/user-guide/deployments.md#updating-a-deployment
https://docs.docker.com/v1.13/engine/reference/commandline/service_update/
https://github.com/apache/aurora/blob/rel/0.5.0-incubating/docs/tutorial.md#creating-the-job
https://github.com/kubernetes/kubernetes/blob/v0.6.0/docs/namespaces.md
https://github.com/apache/mesos/blob/0.26.0/docs/roles.md
https://docs.mesosphere.com/1.8/overview/concepts/#dcos-service-group
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/manage-access-with-collections.md
https://github.com/kubernetes/kubernetes/blob/v0.17.0/docs/resource_quota_admin.md#compute-resource-quota
https://github.com/apache/aurora/blob/rel/0.13.0/docs/features/multitenancy.md#preemption
https://github.com/apache/mesos/blob/0.27.0/docs/quota.md
http://mesos.apache.org/blog/mesos-1-5-0-released/#quota-guarantee-improvements
https://github.com/apache/aurora/blob/rel/0.13.0/docs/features/multitenancy.md#preemption
https://github.com/apache/mesos/blob/0.27.0/docs/quota.md
https://github.com/kubernetes/website/blob/release-1.5/docs/concepts/policy/resource-quotas.md#compute-resource-quota
http://mesos.apache.org/blog/mesos-1-5-0-released/#quota-guarantee-improvements
https://issues.apache.org/jira/browse/MESOS-7235
https://github.com/kubernetes/kubernetes/blob/v0.17.0/docs/resource_quota_admin.md#object-count-quota
https://github.com/apache/mesos/blob/1.4.x/docs/operator-http-api.md#get_roles
https://github.com/kubernetes/kubernetes/blob/v1.2.0/docs/proposals/node-allocatable.md
https://github.com/mesosphere/marathon/blob/v1.4.0/docs/docs/pods.md#executor-resources
https://docs.mesosphere.com/1.9/deploying-services/pods/technical-overview/#executor-resources

 73 of 121

With respect to the “cluster network security” sub-aspect, Mesos and Aurora pioneered

respectively with authentication of worker nodes with the Mesos master and authentication of

Executors with the scheduler of Aurora. The first release of Docker Swarm integrated mode contained

several innovating features related to automated bootstrap of a secure cluster when installing the

cluster and adding new nodes to the cluster.

 Securing containers

With respect to the “protection of sensitive data and proprietary software” sub-aspect,

Kubernetes v0.20 is the first framework to provide support for all features of this aspect (see Table

25). Support for secrets has been added much later by the other frameworks.

Table 23. Historical timeline of the “Container QoS management” features.

Also, with respect to the sub-aspect “Improved security isolation”, Kubernetes and Docker

pioneered by adding support for different access control mechanism of the Linux kernel. Kubernetes

pioneered also by adding policy-based management for aggregating sets of access control rules and

applying them at different levels of granularity: both at the level of individual containers as well as

at the level of user groups (see Section 4.8.2).

 Application and cluster management

Container QoS
management
sub-aspects

Features

b
e

fo
re

 J
u

n
 1

3

Ju
l 1

3
 –

 D
e

c
1

3

Ja
n

 1
4
–

Ju
n

 1
4

Ju

l 1
4

 –
 D

e
c

1
4

Ja
n

 1
5

 –
 J

u
n

 1
5

Ju
l 1

5
–

D
e

c
1

5

Ja
n

 1
6

 –
 J

u
n

 1
6

Ju
l 1

6
 –

 D
e

c
1

6

Ja
n

 1
7

 –
 J

u
n

 1
7

Ju
l 1

7
 –

 D
e

c
1

7

Ja

n
 1

8
-

Ju
n

 1
8

Container CPU
and memory
allocation with
support for
oversubscription

Minimum guarantees for CPU Me

Sa Ma
Ku

Au

 Si
Dc

Abstraction of CPU-shares for CPU
guarantees

 Ku Si

Minimum guarantees for memory Ku Si Sa

Maximum limits for CPU Me1 Ku Si
Me2

Sa

Maximum limits for memory Me1

Sa Ma
Ku

Au Si
Dc

Me2

Allocation of
other resources

Limits for NVIDIA GPU Me
Au
Ma

Dc
Ku

Limits for disk resources Me

Ma
Au

 Dc Ku

Controlling
scheduling
behavior by
means of
placement
constraints

Evaluate over node labels/attributes Ma Ku
Au

Sa

 Si
Dc

Define custom node labels/attributes Me

Ma Ku
Au

Sa

 Si

Dc

More expressive constraints Ma Au Sa

 Ku1 Ku2
Ku3
Dc

Si

Controlling
preemptive
scheduling and
re-scheduling
behavior

Preemptive scheduling Au Ku1 Ku2

Container eviction when out-of-
resource

 Au Ku1 Ku2

Container eviction on node failure Me

Ma

Au Ku

Dc
Sa

 Si

Container lifecycle handling Me Ma Au
Ku

 Dc

Si

https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-cpu.md
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-cpu.md
https://github.com/moby/moby/blob/v1.7.0/docs/reference/run.md#runtime-constraints-on-resources
https://github.com/mesosphere/marathon/blob/v0.9.0/docs/docs/application-basics.md#a-simple-docker-based-application
https://github.com/kubernetes/kubernetes/blob/release-0.21/docs/design/resources.md
https://github.com/apache/aurora/blob/rel/0.10.0/docs/resources.md#cpu-isolation
https://github.com/moby/moby/blob/1.12.x/docs/reference/commandline/service_create.md
https://docs.mesosphere.com/1.9/deploying-services/pods/examples/#basic-pod-container-fields-
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-cpu.md
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-cpu.md
https://github.com/kubernetes/kubernetes/blob/release-0.21/docs/design/resources.md
https://github.com/moby/moby/blob/1.12.x/docs/reference/commandline/service_create.md
https://github.com/kubernetes/kubernetes/blob/release-0.21/docs/design/resources.md
https://github.com/moby/moby/blob/1.12.x/docs/reference/commandline/service_create.md
https://github.com/docker/docker.github.io/blob/v17.03-release/compose/compose-file/compose-file-v2.md#cpu_count-cpu_percent-cpu_shares-cpu_quota-cpus-cpuset-domainname-hostname-ipc-mac_address-mem_limit-memswap_limit-mem_swappiness-mem_reservation-oom_score_adj-privileged-read_only-shm_size-stdin_open-tty-user-working_dir
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-cpu.md
https://github.com/kubernetes/kubernetes/blob/release-0.21/docs/design/resources.md
https://github.com/moby/moby/blob/1.12.x/docs/reference/commandline/service_create.md
https://github.com/apache/mesos/blob/1.2.0/docs/posix_rlimits.md
https://github.com/docker/docker.github.io/blob/v17.03-release/compose/compose-file/compose-file-v2.md#cpu_count-cpu_percent-cpu_shares-cpu_quota-cpus-cpuset-domainname-hostname-ipc-mac_address-mem_limit-memswap_limit-mem_swappiness-mem_reservation-oom_score_adj-privileged-read_only-shm_size-stdin_open-tty-user-working_dir
https://github.com/apache/mesos/blob/0.21.0/docs/mesos-containerizer.md
https://github.com/docker/docker.github.io/blob/v1.13-release/compose/compose-file/compose-file-v2.md#cpu_shares-cpu_quota-cpuset-domainname-hostname-ipc-mac_address-mem_limit-memswap_limit-mem_swappiness-oom_score_adj-privileged-read_only-restart-shm_size-stdin_open-tty-user-working_dir
https://github.com/mesosphere/marathon/blob/v0.9.0/docs/docs/application-basics.md#a-simple-docker-based-application
https://github.com/kubernetes/kubernetes/blob/release-0.21/docs/design/resources.md
https://github.com/apache/aurora/blob/rel/0.10.0/docs/resources.md#memory-isolation
https://github.com/moby/moby/blob/1.12.x/docs/reference/commandline/service_create.md
https://docs.mesosphere.com/1.9/deploying-services/pods/examples/#basic-pod-container-fields-
https://github.com/apache/mesos/blob/1.2.0/docs/posix_rlimits.md
https://github.com/apache/mesos/blob/1.1.0/docs/gpu-support.md
https://github.com/apache/aurora/blob/rel/0.16.0/docs/features/resource-isolation.md#gpu-isolation
https://github.com/mesosphere/marathon/blob/v1.3.0/docs/docs/rest-api/public/api/v2/schema/AppDefinition.json
https://docs.mesosphere.com/1.9/deploying-services/pods/examples/#basic-pod-container-fields
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.6/docs/tasks/manage-gpus/scheduling-gpus.md
https://github.com/apache/mesos/blob/0.22.0/docs/mesos-containerizer.md#posix-disk-isolator
https://github.com/mesosphere/marathon/blob/v0.13.0/docs/docs/rest-api/public/api/v2/schema/AppDefinition.json
https://github.com/apache/aurora/blob/rel/0.10.0/docs/resources.md#disk-space
https://docs.mesosphere.com/1.9/deploying-services/pods/examples/#basic-pod-container-fields
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md#local-ephemeral-storage-alpha-feature
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/constraints.md#cluster-operator
https://github.com/kubernetes/kubernetes/tree/release-1.0/docs/user-guide/node-selection
https://github.com/apache/aurora/blob/rel/0.5.0-incubating/docs/configuration-reference.md#specifying-scheduling-constraints
https://github.com/docker/swarm/blob/v0.3.0/docs/scheduler/filter.md
https://github.com/moby/moby/blob/1.12.x/docs/reference/commandline/service_create.md
https://docs.mesosphere.com/1.8/usage/managing-services/rest-api/#/apps/V2AppsByAppId1
https://github.com/apache/mesos/blob/0.20.0/docs/attributes-resources.md
https://github.com/mesosphere/marathon/blob/v0.8.0/docs/docs/constraints.md#attribute-field
https://github.com/kubernetes/kubernetes/tree/release-1.0/docs/user-guide/node-selection#step-one-attach-label-to-the-node
https://github.com/apache/aurora/blob/rel/0.13.0/docs/features/constraints.md#mesos-attributes
https://github.com/docker/swarm/blob/v0.3.0/docs/scheduler/filter.md#constraint-filter
https://docs.docker.com/v1.12/engine/reference/commandline/node_update/
https://docs.mesosphere.com/1.9/installing/oss/faq/#q-how-to-add-mesos-attributes-to-nodes-to-use-marathon-constraints
https://github.com/mesosphere/marathon/blob/v0.8.0/docs/docs/constraints.md#operators
https://github.com/apache/aurora/blob/rel/0.5.0-incubating/docs/configuration-reference.md#specifying-scheduling-constraints
https://github.com/docker/swarm/blob/v0.3.0/docs/scheduler/filter.md
https://github.com/kubernetes/kubernetes/blob/release-1.2/docs/user-guide/node-selection/pod-with-node-affinity.yaml
https://github.com/kubernetes/website/blob/release-1.4/docs/user-guide/node-selection/index.md#inter-pod-affinity-and-anti-affinity-alpha-feature
https://github.com/kubernetes/website/blob/release-1.4/docs/user-guide/node-selection/index.md#inter-pod-affinity-and-anti-affinity-alpha-feature
https://github.com/kubernetes/website/blob/release-1.6/docs/concepts/configuration/assign-pod-node.md#taints-and-tolerations-beta-feature
https://docs.mesosphere.com/1.8/usage/managing-services/rest-api/#/apps/V2AppsByAppId1
https://github.com/docker/docker.github.io/blob/v17.03-release/engine/swarm/services.md#specify-service-placement-preferences---placement-pref
https://github.com/apache/aurora/blob/rel/0.13.0/docs/features/multitenancy.md#preemption
https://github.com/kubernetes/website/blob/release-1.6/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/configuration/pod-priority-preemption.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/resource_constraints.md#understand-the-risks-of-running-out-of-memory
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md#configuration-tiers
https://github.com/kubernetes/kubernetes/blob/release-1.3/docs/design/resource-qos.md
https://github.com/kubernetes/website/blob/release-1.6/docs/tasks/administer-cluster/out-of-resource.md
https://github.com/apache/mesos/blob/0.16.0/docs/slave-recovery.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/command-line-flags.md#optional-flags
https://github.com/apache/aurora/blob/rel/0.5.0-incubating/docs/user-guide.md#pending-to-running-states
https://github.com/kubernetes/website/blob/release-1.4/docs/admin/node.md#node-controller
https://docs.mesosphere.com/1.9/deploying-services/task-handling/#non-terminal-states
https://github.com/docker/swarm/blob/v1.2.0/docs/scheduler/rescheduling.md
https://www.slideshare.net/Docker/using-docker-swarm-mode-to-deploy-service-without-loss-by-dongluo-chen-nishant-totla
https://github.com/apache/mesos/blob/1.5.x/docs/task-state-reasons.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/task-handling.md
https://github.com/apache/aurora/blob/rel/0.5.0-incubating/docs/user-guide.md#job-lifecycle
https://github.com/kubernetes/kubernetes/blob/release-0.4/docs/pod-states.md
https://docs.mesosphere.com/1.9/deploying-services/task-handling/
https://github.com/docker/docker.github.io/blob/master/engine/swarm/how-swarm-mode-works/swarm-task-states.md

 74 of 121

With respect to the “creation, management and inspection of cluster and applications” sub-

aspect (see Table 26), basic CLI and Web UI features are part of the first release of each CO framework.

Kubernetes pioneered with the features for organizing API objects by means of labels and

visualization of resource usage graphs.

With respect to the “monitoring resource usage and health” sub-aspect, Kubernetes pioneered

in support for monitoring container resource usage, while Aurora pioneered in monitoring resource

usage by the CO framework itself. Marathon pioneered in a framework for health checks and

distributed event monitoring.

Table 24. Historical timeline of the “securing clusters” features.

With respect to the “logging and debugging of CO framework and containers” sub-aspect,

logging of containers and logging of CO framework components are part of the first release of each

CO framework, except Marathon.

Table 25. Historical timeline of the “securing containers” features.

Securing
clusters sub-
aspects

Features

b
e

fo
re

 J
u

n
 1

3

Ju
l 1

3
 –

 D
e

c
1

3

Ja
n

 1
4
–

Ju
n

 1
4

Ju

l 1
4

 –
 D

e
c

1
4

Ja
n

 1
5

 –
 J

u
n

 1
5

Ju
l 1

5
–

D
e

c
1

5

Ja
n

 1
6

 –
 J

u
n

 1
6

Ju
l 1

6
 –

 D
e

c
1

6

Ja
n

 1
7

 –
 J

u
n

 1
7

Ju
l 1

7
 –

 D
e

c
1

7

Ja

n
 1

8
-

Ju
n

 1
8

User identity
and access
management

Authentication of users with master API Me1

Me2

Ma
Ku1

Au Sa
Dc

Si Ku2

Authorization of users with master API Me
Ku

Au Ma Dc Si

Tenant- aware ACLs Ku Au Me Dc
Si

Cluster
network
security

Authentication of worker nodes with
master API

 Me

 Sa
Au
Dc

Si
Ku

Automated bootstrap of worker tokens Si Ku

Authorization of CO agents on workers Au Me Ku

Encryption of control messages Si
Ku

Dc

Encryption of application messages Ku Si

Dc

Restricting access to service ports Dc Si Ku

Securing
containers
sub-aspects

Features

b
e

fo
re

 J
u

n
 1

3

Ju
l 1

3
 –

 D
e

c
1

3

Ja
n

 1
4
–

Ju
n

 1
4

Ju

l 1
4

 –
 D

e
c

1
4

Ja
n

 1
5

 –
 J

u
n

 1
5

Ju
l 1

5
–

D
e

c
1

5

Ja
n

 1
6

 –
 J

u
n

 1
6

Ju
l 1

6
 –

 D
e

c
1

6

Ja
n

 1
7

 –
 J

u
n

 1
7

Ju
l 1

7
 –

 D
e

c
1

7

Ja

n
 1

8
-

Ju
n

 1
8

Protection of
sensitive data
and software

Storage of sensitive-data as secrets Ku Si
Dc

Me
Ma

Pull image from a private Docker registry Me
Ku

Ma Si Dc

Improved
security
isolation

Setting Linux capabilities per container Ku Sa Me Si

Setting SELinux labels per container Ku Sa Si

Setting AppArmor profiles per container Sa Ku Si

Setting seccomp profiles per container Sa Ku Si

Higher-level aggregate objects Ku Sa
Si

https://github.com/apache/mesos/blob/0.24.0/docs/authentication.md
https://github.com/apache/mesos/blob/0.24.0/docs/authentication.md
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/ssl-basic-access-authentication.md
https://github.com/kubernetes/kubernetes/blob/release-0.6/docs/authentication.md
https://github.com/apache/aurora/blob/rel/0.8.0/docs/security.md#authentication
https://github.com/docker/swarm/blob/v1.1.0/docs/secure-swarm-tls.md
https://docs.mesosphere.com/1.7/administration/id-and-access-mgt/
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/security/https.md
https://github.com/kubernetes/website/blob/master/content/en/docs/reference/access-authn-authz/authentication.md#client-go-credential-plugins
https://github.com/apache/mesos/blob/0.20.0/docs/authorization.md
https://github.com/kubernetes/kubernetes/blob/release-0.6/docs/authorization.md
https://github.com/apache/aurora/blob/rel/0.8.0/docs/security.md#authorization
https://github.com/mesosphere/marathon/blob/v0.13.0/docs/docs/plugin.md#security
https://docs.mesosphere.com/1.7/administration/id-and-access-mgt/
https://github.com/moby/moby/blob/1.12.x/docs/extend/legacy_plugins.md
https://github.com/kubernetes/kubernetes/blob/release-0.6/docs/authorization.md
https://github.com/apache/aurora/blob/rel/0.8.0/docs/security.md#implementing-a-custom-realm
https://github.com/apache/mesos/blob/1.0.0/docs/authorization.md#local-authorizer
https://docs.mesosphere.com/1.9/security/ent/restrict-service-access/
https://docs.docker.com/v17.06/datacenter/ucp/2.2/guides/access-control/
https://github.com/apache/mesos/blob/0.24.0/docs/authentication.md
https://github.com/docker/swarm/blob/v1.1.0/docs/configure-tls.md
https://github.com/apache/aurora/blob/rel/0.14.0/docs/operations/security.md#announcer-authentication
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/how-swarm-mode-works/pki.md
https://github.com/kubernetes/website/blob/release-1.5/docs/admin/kubelet-tls-bootstrapping.md
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/swarm-tutorial/create-swarm.md
https://github.com/kubernetes/website/blob/release-1.6/docs/admin/bootstrap-tokens.md
https://github.com/apache/aurora/blob/rel/0.14.0/docs/operations/security.md#announcer-authentication
https://github.com/apache/mesos/blob/1.0.0/docs/authorization.md#authorizable-actions
https://github.com/kubernetes/website/blob/release-1.7/docs/admin/authorization/node.md
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/userguide/networking/overlay-security-model.md
https://github.com/kubernetes/website/blob/release-1.4/docs/admin/master-node-communication.md
https://docs.mesosphere.com/1.9/networking/tls-ssl/
https://github.com/weaveworks/weave/blob/1.4/site/how-it-works.md#crypto
https://github.com/docker/docker.github.io/blob/v1.12/engine/userguide/networking/overlay-security-model.md
https://docs.mesosphere.com/1.9/networking/tls-ssl/
https://docs.mesosphere.com/1.7/overview/security/
https://github.com/moby/moby/blob/17.05.x/docs/reference/commandline/swarm_init.md#--listen-addr
https://github.com/kubernetes/features/issues/539
https://github.com/kubernetes/kubernetes/blob/release-0.15/docs/secrets.md
https://github.com/docker/docker.github.io/blob/v1.13-release/engine/swarm/secrets.md
https://docs.mesosphere.com/1.9/security/ent/secrets/
https://github.com/apache/mesos/blob/1.4.x/docs/secrets.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/secrets.md
https://github.com/apache/mesos/blob/0.20.0/docs/docker-containerizer.md#private-docker-repository
https://github.com/kubernetes/kubernetes/blob/release-0.20/docs/images.md#specifying-imagepullsecrets-on-a-pod
https://github.com/mesosphere/marathon/blob/v0.11.0/docs/docs/native-docker-private-registry.md
https://github.com/moby/moby/blob/1.12.x/docs/reference/commandline/service_create.md/
https://docs.mesosphere.com/1.9/deploying-services/private-docker-registry/
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/security-context.md
https://github.com/moby/moby/blob/v1.10.0/docs/security/security.md#linux-kernel-capabilities
https://github.com/apache/mesos/blob/1.2.0/docs/linux_capabilities.md
https://github.com/moby/libentitlement
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/security-context.md
https://github.com/moby/moby/blob/v1.10.0/docs/security/security.md#other-kernel-security-features
https://github.com/moby/libentitlement
https://github.com/moby/moby/blob/v1.10.0/docs/security/apparmor.md
https://github.com/kubernetes/website/blob/release-1.5/docs/tutorials/clusters/apparmor.md
https://github.com/moby/libentitlement
https://github.com/moby/moby/blob/v1.10.0/docs/security/seccomp.md
https://github.com/kubernetes/features/issues/135
https://github.com/moby/libentitlement
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/security-context.md
https://github.com/moby/libentitlement
https://github.com/moby/libentitlement

 75 of 121

With respect to the “cluster maintenance” sub-aspects, Mesos-based frameworks have

pioneered in all features of the sub-aspect.

Finally, with respect to the “multi-cloud support” aspect, Mesos-based frameworks have

pioneered in installing a single cluster across multiple availability zones that can handle and recover

from network partitions as well as multi-zone deployments of services of which the services are

spread across different availability zones. Kubernetes has pioneered installing and managing

multiple clusters across different availability zones and federating these clusters using a separate

authentication and control plane.

Table 26. Historical timeline of the “application and cluster management” features.

RQ8. Which functional sub-aspects are mature enough to consider them as part of the stable

foundation of the overall domain? Which CO frameworks have pioneered in what sub-aspect? In

Application
and cluster
management
sub-aspects

Features

b
e

fo
re

 J
u

n
 1

3

Ju
l 1

3
 –

 D
e

c
1

3

Ja
n

 1
4
–

Ju
n

 1
4

Ju

l 1
4

 –
 D

e
c

1
4

Ja
n

 1
5

 –
 J

u
n

 1
5

Ju
l 1

5
–

D
e

c
1

5

Ja
n

 1
6

 –
 J

u
n

 1
6

Ju
l 1

6
 –

 D
e

c
1

6

Ja
n

 1
7

 –
 J

u
n

 1
7

Ju
l 1

7
 –

 D
e

c
1

7

Ja

n
 1

8
-

Ju
n

 1
8

Creation,
management
and inspection
of cluster and
applications

Command-line interface (CLI) Ma Au Me
Ku

Sa

 Dc Si

Web UI Au Me Ma Ku
Dc

Sa
Si

Labels for organizing API objects Ku

Sa
Me

Ma Dc Si

Inspection of resource usage graphs Ku
Dc

 Sa
Si

 Au

Monitoring
resource usage
and health

Monitoring container resource usage Ku1 Me Dc Ku2

Monitoring CO framework resource

usage

 Au Me

Ma
Dc

 Ku

 Sa
Si

Framework for container health checks Ma Au Ku

 Me Sa
Si
Dc

Distributed event monitoring Ma Dc Me
Au

Ku
Si

Logging and
debugging of
CO framework
and containers

Logging of containers Sa Ku Me Si Dc

Logging of CO framework components Me Ku

Sa
Ma1

Au

 Si Dc Ma2

Integration with log aggregator
frameworks

 Sa
Si
Ku

Dc

Cluster
maintenance

Cluster state backup and recovery Me Au Si Ma
Dc

Ku

Official cluster upgrade documentation Me Ku

Ma

 Au
Dc

Upgrade does not affect running

containers

 Me Ma Sa
Si

 Ku
Au
Dc

Draining a node for maintenance Me Si
Ku

Dc Ma

Garbage collection of containers and
images

 Dc1
Ku

 Me
Dc2

Multi-cloud
support

One cluster across availability zones Me
Au

 Ma

 Ma Sa Au
Si

Ku
Dc

Recovering from network partitions Me Au

Management of multiple clusters Ku Si Dc

Federated authentication Ku Dc

https://github.com/mesosphere/marathon/tree/marathon-0.1.0/#example-api-usage
https://github.com/apache/aurora/blob/rel/0.5.0-incubating/docs/client-commands.md
https://github.com/mesosphere/mesos-cli
https://github.com/kubernetes/kubernetes/blob/release-0.4/docs/cli.md
https://github.com/docker/swarm/blob/v1.2.0/docs/reference/index.md
https://docs.mesosphere.com/1.7/usage/cli/
https://github.com/moby/moby/blob/1.12.x/docs/reference/commandline/index.md#swarm-node-commands
https://github.com/apache/aurora/blob/rel/0.5.0-incubating/docs/tutorial.md#watching-the-job-run
https://www.packtpub.com/mapt/book/big_data_and_business_intelligence/9781783288762/1/ch01lvl1sec14/mesos-web-ui
https://github.com/mesosphere/marathon-ui/tree/v0.9.0
https://github.com/kubernetes/dashboard/tree/v1.0.0
https://docs.mesosphere.com/1.7/usage/webinterface/
https://github.com/docker/docker.github.io/blob/v1.12-release/datacenter/ucp/2.0/guides/index.md
https://github.com/docker/docker.github.io/blob/v1.12-release/datacenter/ucp/2.0/guides/index.md
https://github.com/kubernetes/kubernetes/blob/release-0.4/docs/labels.md
https://github.com/moby/moby/blob/v1.7.0/docs/userguide/labels-custom-metadata.md
https://mesosphere.com/blog/mesos-0-22-0-released/
https://github.com/mesosphere/marathon/blob/v0.13.0/docs/docs/rest-api/public/api/v2/schema/AppDefinition.json
https://docs.mesosphere.com/1.9/tutorials/task-labels/
https://github.com/moby/moby/blob/1.12.x/docs/userguide/labels-custom-metadata.md
https://github.com/kubernetes/dashboard/releases/tag/v1.1.0
https://docs.mesosphere.com/1.8/usage/webinterface/
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/index.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/index.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/observer-configuration.md
https://github.com/kubernetes/kubernetes/blob/v1.0.0/docs/monitoring.md
https://github.com/apache/mesos/blob/1.0.0/docs/endpoints/slave/monitor/statistics.md
https://docs.mesosphere.com/1.9/metrics/
https://kubernetes.io/docs/tasks/debug-application-cluster/core-metrics-pipeline/
https://github.com/apache/aurora/blob/rel/0.6.0-incubating/docs/monitoring.md
https://github.com/apache/mesos/blob/0.23.0/docs/monitoring.md
https://github.com/mesosphere/marathon/blob/v0.16.0-RC3/docs/docs/metrics.md
https://docs.mesosphere.com/1.7/administration/monitoring/performance-monitoring/
https://github.com/kubernetes/website/blob/release-1.7/docs/concepts/cluster-administration/controller-metrics.md
https://github.com/docker/docker.github.io/blob/v17.12/config/thirdparty/prometheus.md
https://github.com/docker/docker.github.io/blob/v17.12/config/thirdparty/prometheus.md
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/health-checks.md
https://github.com/apache/aurora/blob/rel/0.5.0-incubating/docs/user-guide.md#http-health-checking-and-graceful-shutdown
https://github.com/kubernetes/kubernetes/tree/release-1.0/docs/user-guide/liveness
https://github.com/apache/mesos/blob/1.2.0/docs/health-checks.md
https://github.com/docker/docker.github.io/blob/v1.13-release/compose/compose-file/compose-file-v2.md#healthcheck
https://github.com/docker/docker.github.io/blob/v1.13-release/compose/compose-file/index.md#healthcheck
https://docs.mesosphere.com/1.9/deploying-services/creating-services/health-checks/
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/event-bus.md
https://github.com/apache/mesos/blob/1.0.0/docs/operator-http-api.md#events
https://github.com/apache/aurora/blob/rel/0.14.0/docs/features/webhooks.md
https://github.com/kubernetes/website/blob/release-1.7/docs/tasks/debug-application-cluster/events-stackdriver.md
https://docs.docker.com/v17.06/engine/reference/commandline/events/
https://github.com/moby/moby/blob/v1.8.0/docs/reference/commandline/logs.md
https://github.com/kubernetes/kubernetes/blob/release-0.20/docs/logging.md
https://github.com/apache/mesos/blob/0.27.0/docs/logging.md#containers
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/admin/logging/view_container_logs.md
https://docs.mesosphere.com/1.9/monitoring/logging/#service-task-and-node-logs
https://github.com/apache/mesos/blob/0.16.0/docs/logging-and-debugging.md
https://github.com/kubernetes/kubernetes/blob/release-0.6/docs/logging.md
http://man7.org/linux/man-pages/man8/systemd-journald.service.8.html
https://github.com/mesosphere/chaos#current-users
https://github.com/apache/aurora/blob/rel/0.11.0/docs/configuration-reference.md#logger
http://man7.org/linux/man-pages/man8/systemd-journald.service.8.html
https://docs.mesosphere.com/1.9/monitoring/logging/#system-logs
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/rest-api/public/api/general/logging.raml
https://github.com/moby/moby/blob/v1.10.0/docs/admin/logging/index.md
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/admin/logging/overview.md
https://docs.mesosphere.com/1.9/monitoring/logging/aggregating/
https://github.com/apache/mesos/blob/0.28.0/docs/replicated-log-internals.md
https://github.com/apache/aurora/blob/rel/0.6.0-incubating/docs/storage-config.md#recovering-from-a-scheduler-backup
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/admin_guide.md#back-up-the-swarm-state
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/backup-restore.md
https://docs.mesosphere.com/1.10/administering-clusters/backup-and-restore/
https://github.com/mhausenblas/reshifter
https://github.com/apache/mesos/blob/0.14.0/docs/Upgrades.md
https://github.com/kubernetes/kubernetes/blob/v0.17.0/docs/cluster_management.md
https://github.com/mesosphere/marathon/blob/v0.11.0/docs/docs/upgrade/index.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/upgrades.md
https://docs.mesosphere.com/1.9/installing/oss/upgrading/
https://github.com/apache/mesos/blob/0.14.0/docs/Slave-Recovery.md
https://github.com/mesosphere/marathon/blob/v0.11.0/docs/docs/upgrade/index.md
https://github.com/docker/docker.github.io/blob/v17.12/config/containers/live-restore.md
https://github.com/docker/docker.github.io/blob/v17.12/config/containers/live-restore.md
https://github.com/kubernetes/website/blob/release-1.7/docs/tasks/administer-cluster/kubeadm-upgrade-1-7.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/upgrades.md
https://docs.mesosphere.com/1.9/installing/oss/upgrading/
https://github.com/apache/mesos/blob/0.25.0/docs/maintenance.md
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/swarm-tutorial/drain-node.md
https://github.com/kubernetes/website/blob/release-1.5/docs/tasks/administer-cluster/safely-drain-node.md
https://docs.mesosphere.com/1.9/administering-clusters/update-a-node/
https://github.com/mesosphere/marathon/blob/v1.6.322/docs/docs/maintenance-mode.md
https://docs.mesosphere.com/1.9/overview/architecture/components/#docker-gc
https://github.com/kubernetes/website/blob/release-1.6/docs/concepts/cluster-administration/kubelet-garbage-collection.md
https://github.com/apache/mesos/blob/1.5.x/docs/container-image.md#garbage-collect-unused-container-images
https://docs.mesosphere.com/1.11/deploying-services/containerizers/
https://github.com/apache/mesos/blob/0.16.0/docs/high-availability.md
https://github.com/apache/aurora/blob/rel/0.2.0/docs/deploying-aurora-scheduler.md#replicated-log-configuration
https://github.com/mesosphere/marathon/blob/v0.7.0/docs/docs/high-availability.md
https://github.com/mesosphere/marathon/blob/master/docs/docs/high-availability.md
https://github.com/docker/swarm/blob/v1.1.0/docs/plan-for-production.md#multiple-clouds
https://github.com/apache/aurora/blob/rel/0.2.0/docs/deploying-aurora-scheduler.md#replicated-log-configuration
https://github.com/docker/docker.github.io/blob/v1.12-release/engine/swarm/admin_guide.md#distribute-manager-nodes
https://cloud.google.com/kubernetes-engine/docs/concepts/multi-zone-and-regional-clusters
https://docs.mesosphere.com/1.9/installing/high-availability/multi-zone/
https://github.com/apache/mesos/blob/0.27.0/docs/high-availability-framework-guide.md
https://github.com/apache/aurora/blob/rel/0.20.0/docs/reference/configuration.md#job-objects
https://github.com/kubernetes/kubernetes/blob/v1.3.0/docs/design/control-plane-resilience.md
https://github.com/docker/docker.github.io/blob/v1.13-release/docker-cloud/cloud-swarm/index.md
https://docs.mesosphere.com/1.10/cli/multi-cluster-cli/
https://github.com/kubernetes/website/blob/release-1.6/docs/tasks/federation/set-up-cluster-federation-kubefed.md#basic-and-token-authentication-support
https://docs.mesosphere.com/1.11/administering-clusters/multiple-clusters/cluster-links/

 76 of 121

this section we aim to rank different sub-aspects by their overall maturity by determining the time

when support for a sub-aspect has been consolidated7 by a pioneering CO framework for the first

time. A sub-aspect is considered to be consolidated when a comprehensive subset of the common

features from this sub-aspect has been implemented by a pioneering framework.

Figure 11 shows an overall timeline that ranks sub-aspects with respect to their maturity. For

each sub-aspect, the figure shows which CO framework has pioneered in consolidating the sub-

aspect. We define a sub-aspect as being consolidated when a coherent subset of the common features

of that sub-aspect has been established by the pioneering framework.

With respect to identifying those sub-aspects that are considered mature and well-understood,

we are guided by the criteria that (i) the sub-aspect has been consolidated by the pioneering

framework at least two traditional release cycles of 18 months [130] ago8, (ii) the corresponding

feature implementation strategies of the pioneering framework have at least reached beta-stage in

the meantime and (iii) there are no deprecation or removal events of important features in the latest

traditional release cycle.

Figure 11. Timeline of when support for a sub-aspect have been consolidated by a CO framework.

This leads us to the observation that 15 out of 27 sub-aspects can be considered mature and well-

understood (see green rectangle in Figure 11). Some sub-aspects that have been consolidated at least

36 months ago are not yet considered mature because they fail to meet the other two criteria:

 The sub-aspect “monitoring resource usage and health” is still in flux as Kubernetes’ monitoring

service (Heapster) has recently been completely replaced by two new monitoring services.

 Host port conflict management is expected to evolve due to the growing importance of

supporting service networking in true host mode.

7 i.e., a comprehensive subset of the common features from this sub-aspect has been implemented.

8 These two release cycles are needed for letting other CO framework adopt and develop similar features.

 77 of 121

 Improved security isolation support by Kubernetes has not been substantially adopted by other

orchestration frameworks; instead security isolation is becoming a customizable property of

container runtimes themselves.

 Logging support has remained very basic in all frameworks. Instead many third-party

companies have already offered commercial solutions for centralized log management.

 The network plugin architecture of Kubernetes has remained in alpha-stage, while Docker’s

network plugin architecture is also expected to evolve because Docker EE supports Kubernetes

as an alternative orchestrator.

 Inspection of cluster applications is expected to evolve towards a fully reflective interface so that

it becomes possible to support application-specific instrumentation of different types of

container orchestration functionality. This evolution already has happened at the level of

container runtimes (e.g. crictl9) but is expected to extend towards orchestration framework

functionality as well. Examples of relevant instrumentation scenarios include customizations to

service load balancing, fault tolerance extensions to service identity to support global

checkpointing of services and enactment customization of rolling upgrades.

 Cluster maintenance, especially cluster upgrades, remains poorly automated.

Figure 11 also presents the creativity of CO frameworks by showing on the left which CO

frameworks pioneered in consolidating a sub-aspect, i.e. establishing a coherent subset of the

common features of that sub-aspect. Kubernetes has pioneered in 12 of the 27 sub-aspects.

Mesos+Marathon in 10 of these sub-aspects, Docker Swarm in 4 sub-aspects, and Aurora in 1 sub-

aspect. As such, the Kubernetes project has been the most creative in terms of pioneering new features

despite being a younger project than Mesos, Marathon and Aurora.

7. Qualitative assessment with respect to stability

This sections answers research questions R9 and R10.

RQ9. What are the relevant standardization initiatives and which CO frameworks align with these

initiatives? The stability of a CO framework software depends among other factors on its alignment

with standardization initiatives. Increased openness to such standardization initiatives also creates

more potential for researchers and entrepreneurs to contribute innovating technology that can be

integrated in multiple CO frameworks.

In Section 4, we have identified several standardization initiatives towards common

specifications to improve the plug-ability of various components including container runtimes,

container networking services and storage drivers for external persistent volumes. Table 27 gives an

overview of these standardization initiatives and by which CO frameworks they are adopted.

Table 27. Overview of existing standardization initiatives and their support.

9 https://github.com/kubernetes-sigs/cri-tools/blob/release-1.11/docs/crictl.md

 78 of 121

The OCI specification for pluggable container runtimes has been accepted by Docker EE and

Kubernetes, although Mesos has announced to add support for OCI soon.

Different standards for container networking (CNI, libnetwork) and persistent storage (CSI,

Docker volumes) are not compatible across respectively Kubernetes and Docker Swarm. In

opposition, DC/OS, provides encompassing support for all initiatives:

 DC/OS supports both CNI-based network plugins and Docker’s libnetwork architecture.

 Moreover it supports both Docker volumes as well as the CSI specification for persistent

volumes.

As such with respect to networking and storage plugins, DC/OS and Mesos-based frameworks

in general are the most open frameworks. With respect to container runtimes, Kubernetes and Docker

Swarm are the most open frameworks.

In general we can state that DC/OS is the most interesting platform for prototyping novel

techniques for container networking and persistent volumes because DC/OS’ adherence to all

relevant specifications in these two areas maximizes the potential to deploy these techniques in

Docker Swarm and Kubernetes as well. Docker or Kubernetes are best fit for prototyping innovating

container runtimes.

However, a widespread adoption of Kubernetes by cloud providers and cloud orchestration

platforms10 has also occurred after he Cloud Native Computing Foundation pushed Kubernetes as

de-facto standard in container orchestration and launched a certification programme for production-

grade commercial Kubernetes offerings [37]. As a result, Docker volumes and Docker’s libnetwork

architecture, which are not supported by Kubernetes, may face the risk of not being further developed

or halted. We estimate this risk to be low however because Docker offers its volume and networking

architecture as separate building blocks that are relatively loosely coupled from its orchestrator

Swarm.

RQ10. What is the risk that common or unique features might become deprecated in the future? If

a particular CO framework halts the development of a particular feature or even deprecates the

feature without offering a replacing feature update, then the development of company products or

research prototypes that heavily rely on those features might also get compromised. Also t

10 Cloud orchestration platforms such as Rancher [625] and Juju [626] that in the past allowed to manage

different CO frameworks on multiple cloud providers, nowadays only support Kubernetes.

 79 of 121

 In this section we will assess the risk that development of features will be halted in the future

or features are even deprecated. With respect to common features, we have studied the volatility of

features in the past by counting the number of feature additions versus the number of feature

deprecations in Section 4.9.2. Surprisingly, we have found very little volatility in terms of feature

being deprecated without a replacing feature update. We recorded in total 626 feature additions; 48

out of these 626 additions comprised an update of an existing feature without deprecating the existing

implementation strategy of the feature; finally only 9 out of 626 feature additions comprised a feature

update with deprecation or removal of the old implementation strategy of the feature. As such, if we

assume that the past is good indicator for the future, the risk that a common feature will be

deprecated by a CO framework without being replaced with an alternative new feature

implementation strategy is less than 2%.

With respect to unique features, we assume that the risk may be higher. After all, if the team

developing a specific unique features faces even small problems, there is less incentive to resolve

these problems in comparison to common features that are supported by other CO frameworks as

well. This risk should be taken into account by research and development projects that consider

relying on those unique features.

Table 28 summarizes the 54 unique features found across the 7 CO frameworks, as presented in

Section 4. These unique features are again organized according to the 27 sub-aspects.

Table 28. Unique features of Docker Swarm, Kubernetes, Mesos, Aurora, Marathon and DC/OS.

Container
orchestration aspects
and sub-aspects

Sw
ar

m
 s

ta
n

`d
-a

lo
n

e

Sw

ar
m

 in
te

gr
at

e
d

K
u

b
er

n
e

te
s

M
es

o
s

M
es

o
s

+
 A

u
ro

ra

M
es

o
s

+
 M

ar
at

h
o

n

D
C

/O
S

Cluster architecture
and setup

Sa Si Ku Me Au Ma Dc

Configuration
management approach

Architectural patterns

Installation methods
and tools for setting up
a cluster

 Kubernetes-
as-a-Service

 GUI-based
installation

wizard

CO framework
customization

Sa Si Ku Me Au Ma Dc

Unified container
runtime architecture

Framework design of
orchestration engine

 install plugins
as global
Swarm
services

cloud-
provider

plugin

custom API
objects

Resource
provider

abstraction to
customize

how Mesos
Agent

synchronizes

custom
worker agent

software

Column Legend:

 Sa: Docker Swarm stand-alone

 Si: Docker Swarm integrated

 Ku: Kubernetes
 Me: Mesos
 Au: Mesos+Aurora
 Ma: Mesos+Marathon
 Dc: DC/OS

https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/setup/pick-right-solution.md#hosted-solutions
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/setup/pick-right-solution.md#hosted-solutions
https://docs.mesosphere.com/1.8/administration/installing/oss/custom/gui/
https://docs.mesosphere.com/1.8/administration/installing/oss/custom/gui/
https://docs.mesosphere.com/1.8/administration/installing/oss/custom/gui/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/manage-nodes.md#install-plugins-on-swarm-nodes
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/manage-nodes.md#install-plugins-on-swarm-nodes
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/manage-nodes.md#install-plugins-on-swarm-nodes
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/manage-nodes.md#install-plugins-on-swarm-nodes
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/architecture/cloud-controller.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/architecture/cloud-controller.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/architecture/cloud-controller.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/api-extension/custom-resources.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/api-extension/custom-resources.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/custom-executors.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/custom-executors.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/custom-executors.md

 80 of 121

aggregation
of additional

APIs

annotations
to API objects

discovery of a
node’s

hardware
features

dynamic
worker agent
reconfiguratio

n

with the
Mesos Master

about
available

resources and
operations on

those
resources

Container networking Sa Si Ku Me Au Ma Dc

Services networking SCTP protocol
support

 load
balancing of

non-
container-

based
services

Host ports conflict
management

Plugin architecture for
network services

Service discovery and
external access

 Exposing
service via LB

of cloud
provider

synchronize
exposed

services with
external DNS

providers

hide Pod’s
virtual IP

behind Node
IP

override DNS
lookup with

custom
/etc/hosts

entries in Pod

override
name server
with custom
/etc/resolv in

Pod

install
another DNS

server in
cluster

App
configuration/deploy
ment

Sa Si Ku Me Au Ma Dc

Supported workload
types

 initialization
containers

vertical pod
auto-scaler

Persistent volumes deploying and
managing
stateful
services

raw block
volumes

dynamically
grow volume

size

dynamic
maximum

volume count

local volume
can be shared

between
tasks from
different

frameworks

 tools and
libraries for
integration

with and
deployment
of stateful
services

https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/overview/working-with-objects/annotations.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/overview/working-with-objects/annotations.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/reconfigure-kubelet.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/reconfigure-kubelet.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/reconfigure-kubelet.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/reconfigure-kubelet.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/docker/docker.github.io/blob/master/network/overlay.md#publish-ports
https://github.com/docker/docker.github.io/blob/master/network/overlay.md#publish-ports
https://docs.mesosphere.com/1.11/networking/#edge-lb-enterprise
https://docs.mesosphere.com/1.11/networking/#edge-lb-enterprise
https://docs.mesosphere.com/1.11/networking/#edge-lb-enterprise
https://docs.mesosphere.com/1.11/networking/#edge-lb-enterprise
https://docs.mesosphere.com/1.11/networking/#edge-lb-enterprise
https://docs.mesosphere.com/1.11/networking/#edge-lb-enterprise
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/access-application-cluster/create-external-load-balancer.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/access-application-cluster/create-external-load-balancer.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/access-application-cluster/create-external-load-balancer.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/access-application-cluster/create-external-load-balancer.md
https://github.com/kubernetes-incubator/external-dns
https://github.com/kubernetes-incubator/external-dns
https://github.com/kubernetes-incubator/external-dns
https://github.com/kubernetes-incubator/external-dns
https://github.com/kubernetes-incubator/external-dns
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/ip-masq-agent.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/ip-masq-agent.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/ip-masq-agent.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/ip-masq-agent.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/add-entries-to-pod-etc-hosts-with-host-aliases.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/add-entries-to-pod-etc-hosts-with-host-aliases.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/add-entries-to-pod-etc-hosts-with-host-aliases.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/add-entries-to-pod-etc-hosts-with-host-aliases.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/add-entries-to-pod-etc-hosts-with-host-aliases.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/services-networking/dns-pod-service.md#pods-dns-config
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/services-networking/dns-pod-service.md#pods-dns-config
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/services-networking/dns-pod-service.md#pods-dns-config
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/services-networking/dns-pod-service.md#pods-dns-config
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/services-networking/dns-pod-service.md#pods-dns-config
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/coredns.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/coredns.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/coredns.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/coredns.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/pods/init-containers.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/pods/init-containers.md
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/workloads/controllers/statefulset.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/workloads/controllers/statefulset.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/workloads/controllers/statefulset.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/workloads/controllers/statefulset.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/raw-block-pv.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/raw-block-pv.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#expanding-persistent-volumes-claims
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#expanding-persistent-volumes-claims
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#expanding-persistent-volumes-claims
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/storage-limits.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/storage-limits.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/storage-limits.md
https://github.com/apache/mesos/blob/1.4.x/docs/shared-resources.md
https://github.com/apache/mesos/blob/1.4.x/docs/shared-resources.md
https://github.com/apache/mesos/blob/1.4.x/docs/shared-resources.md
https://github.com/apache/mesos/blob/1.4.x/docs/shared-resources.md
https://github.com/apache/mesos/blob/1.4.x/docs/shared-resources.md
https://github.com/apache/mesos/blob/1.4.x/docs/shared-resources.md
https://github.com/mesosphere/dcos-commons/
https://github.com/mesosphere/dcos-commons/
https://github.com/mesosphere/dcos-commons/
https://github.com/mesosphere/dcos-commons/
https://github.com/mesosphere/dcos-commons/
https://github.com/mesosphere/dcos-commons/
https://github.com/mesosphere/dcos-commons/

 81 of 121

Reusable container
configuration

 Run a simple
service

initiation
system inside
a container

injection of
configs at Pod
creation time

Service upgrades Customizing
the

enactment of
the rollback
of a service

Resource quota
management

Sa Si Me Au Ma Dc

 request rate
limiting of

Mesos
frameworks

Container QoS
management

Sa Si Ku Me Au Ma Dc

Container CPU and
`memory allocation
with support for
oversubscription

updating
resource

reservations
and limits
without

restarting
the container

Allocation of other
resources

 define custom
node

resources of
random kind

scheduling of
huge pages

network
performanc
e isolation
between

containers
for routing

mesh
networks

network
performanc
e isolation
between

containers
for virtual
networks

Controlling scheduling
behavior

Controlling preemptive
scheduling and re-
scheduling

 Pods with
cpu-cache

affinity
cannot be

evicted from
a node once
CPUs have

been
allocated

Securing clusters Sa Si Ku Me Au Ma Dc

User identity and
access management

 audit of
master API

requests

Cluster network
security

 encryption of
master/mana

ger logs

access control
of the kubelet

worker
agent’s HTTP
endpoint on
each node

network
policies for
regulating

communicatio
n of Pods

Securing containers Sa Si Ku Me Au Ma Dc

Protection of sensitive
data and proprietary
software

https://docs.docker.com/compose/compose-file/#init
https://docs.docker.com/compose/compose-file/#init
https://docs.docker.com/compose/compose-file/#init
https://docs.docker.com/compose/compose-file/#init
https://docs.docker.com/compose/compose-file/#init
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/podpreset.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/podpreset.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/podpreset.md
https://docs.docker.com/engine/reference/commandline/service_update/#roll-back-to-the-previous-version-of-a-service
https://docs.docker.com/engine/reference/commandline/service_update/#roll-back-to-the-previous-version-of-a-service
https://docs.docker.com/engine/reference/commandline/service_update/#roll-back-to-the-previous-version-of-a-service
https://docs.docker.com/engine/reference/commandline/service_update/#roll-back-to-the-previous-version-of-a-service
https://docs.docker.com/engine/reference/commandline/service_update/#roll-back-to-the-previous-version-of-a-service
https://github.com/apache/mesos/blob/1.4.x/docs/framework-rate-limiting.md
https://github.com/apache/mesos/blob/1.4.x/docs/framework-rate-limiting.md
https://github.com/apache/mesos/blob/1.4.x/docs/framework-rate-limiting.md
https://github.com/apache/mesos/blob/1.4.x/docs/framework-rate-limiting.md
https://docs.docker.com/engine/api/v1.37/#operation/ContainerUpdate
https://docs.docker.com/engine/api/v1.37/#operation/ContainerUpdate
https://docs.docker.com/engine/api/v1.37/#operation/ContainerUpdate
https://docs.docker.com/engine/api/v1.37/#operation/ContainerUpdate
https://docs.docker.com/engine/api/v1.37/#operation/ContainerUpdate
https://docs.docker.com/engine/api/v1.37/#operation/ContainerUpdate
https://docs.docker.com/engine/api/v1.37/#operation/ContainerUpdate
https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/configuration/manage-compute-resources-container.md#extended-resources
https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/configuration/manage-compute-resources-container.md#extended-resources
https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/configuration/manage-compute-resources-container.md#extended-resources
https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/configuration/manage-compute-resources-container.md#extended-resources
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/manage-hugepages/scheduling-hugepages.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/manage-hugepages/scheduling-hugepages.md
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-net-cls.md
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-net-cls.md
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-net-cls.md
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-net-cls.md
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-net-cls.md
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-net-cls.md
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-net-cls.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/audit.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/audit.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/audit.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm_manager_locking.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm_manager_locking.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm_manager_locking.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/reference/command-line-tools-reference/kubelet-authentication-authorization.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/reference/command-line-tools-reference/kubelet-authentication-authorization.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/reference/command-line-tools-reference/kubelet-authentication-authorization.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/reference/command-line-tools-reference/kubelet-authentication-authorization.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/reference/command-line-tools-reference/kubelet-authentication-authorization.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/reference/command-line-tools-reference/kubelet-authentication-authorization.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/network-policies.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/network-policies.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/network-policies.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/network-policies.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/network-policies.md

 82 of 121

Improved security
isolation

 Customize a
service

isolation
mode in

Windows

Run-time
verification

and
enforcement

of system-
wide Pod
security

policies for
governing
privileges,
capabilities
and access

control
profiles of
containers

support for
configuring
Linux kernel

parameters at
run-time[

App and cluster
management

Sa Si Ku Me Au Ma Dc

Creation, management
and inspection of
cluster and
applications

 command-
line auto-

completion

Monitoring resource
usage and health

 auto-scaling
of cluster

 SLA metrics
on Aurora’s

performance

 custom node
and cluster

health checks

Logging and debugging
of CO framework and
containers

 debug
running Pod
from local

work station

Cluster maintenance disruption
budget to

minimize the
number of
disruptions

due to
maintenance

automated
upgrade of

the
Kubernetes
Engine on

Google Cloud

Multi-cloud support API for using
externally
managed
services

federated API
with

federated
instantiations
of Kubernetes

API objects

service
discovery of
the closest

healthy
service shards

For some unique features, it is fairly obvious that the risk of being halted or deprecated is low:

 As Mesos is an underlying framework for multiple scheduler frameworks, all common and

unique features of Mesos stem from requirements of multiple scheduler frameworks. Therefore,

the unique features of Mesos are assets that have a low risk of becoming halted or deprecated

without a replacing feature update because multiple scheduler framework depend on them.

 In the “resource quota management” aspect there is only 1 unique feature from Mesos, which

that has a low risk of being halted or deprecated as noted above.

https://github.com/docker/docker.github.io/blob/v17.12/engine/swarm/services.md#customize-a-services-isolation-mode
https://github.com/docker/docker.github.io/blob/v17.12/engine/swarm/services.md#customize-a-services-isolation-mode
https://github.com/docker/docker.github.io/blob/v17.12/engine/swarm/services.md#customize-a-services-isolation-mode
https://github.com/docker/docker.github.io/blob/v17.12/engine/swarm/services.md#customize-a-services-isolation-mode
https://github.com/docker/docker.github.io/blob/v17.12/engine/swarm/services.md#customize-a-services-isolation-mode
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.8/docs/concepts/policy/pod-security-policy.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/sysctl-cluster.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/sysctl-cluster.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/sysctl-cluster.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/sysctl-cluster.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/sysctl-cluster.md
https://github.com/docker/docker.github.io/blob/v17.09-release/compose/completion.md
https://github.com/docker/docker.github.io/blob/v17.09-release/compose/completion.md
https://github.com/docker/docker.github.io/blob/v17.09-release/compose/completion.md
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/sla-metrics.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/sla-metrics.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/sla-metrics.md
https://docs.mesosphere.com/1.10/installing/ent/custom/node-cluster-health-check/
https://docs.mesosphere.com/1.10/installing/ent/custom/node-cluster-health-check/
https://docs.mesosphere.com/1.10/installing/ent/custom/node-cluster-health-check/
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/access-application-cluster/port-forward-access-application-cluster.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/access-application-cluster/port-forward-access-application-cluster.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/access-application-cluster/port-forward-access-application-cluster.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/access-application-cluster/port-forward-access-application-cluster.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/run-application/configure-pdb.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/run-application/configure-pdb.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/run-application/configure-pdb.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/run-application/configure-pdb.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/run-application/configure-pdb.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/run-application/configure-pdb.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/run-application/configure-pdb.md
https://cloud.google.com/kubernetes-engine/docs/how-to/upgrading-a-container-cluster
https://cloud.google.com/kubernetes-engine/docs/how-to/upgrading-a-container-cluster
https://cloud.google.com/kubernetes-engine/docs/how-to/upgrading-a-container-cluster
https://cloud.google.com/kubernetes-engine/docs/how-to/upgrading-a-container-cluster
https://cloud.google.com/kubernetes-engine/docs/how-to/upgrading-a-container-cluster
https://cloud.google.com/kubernetes-engine/docs/how-to/upgrading-a-container-cluster
https://kubernetes.io/docs/concepts/service-catalog/
https://kubernetes.io/docs/concepts/service-catalog/
https://kubernetes.io/docs/concepts/service-catalog/
https://kubernetes.io/docs/concepts/service-catalog/
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/cluster-administration/federation.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/cluster-administration/federation.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/cluster-administration/federation.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/cluster-administration/federation.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/cluster-administration/federation.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/cluster-administration/federation.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.11/content/en/docs/tasks/federation/federation-service-discovery.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.11/content/en/docs/tasks/federation/federation-service-discovery.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.11/content/en/docs/tasks/federation/federation-service-discovery.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.11/content/en/docs/tasks/federation/federation-service-discovery.md
https://github.com/kubernetes/kubernetes.github.io/blob/release-1.11/content/en/docs/tasks/federation/federation-service-discovery.md

 83 of 121

 The “container QoS Management” aspect counts just 3 unique features. Kubernetes introduces

2 unique features for improving performance management for memory- and CPU-bound

workloads. Docker Swarm stand-alone allows adjusting resource allocation policies of

containers at run-time. These are all useful in their own right.

 All unique features in aspects “securing clusters” and “securing containers” are useful additions.

Moreover, as these aspects are not well supported by many CO frameworks, we expect that

improving security is an important future work that still needs to be done. Unique features in

these CO frameworks will certainly not be deprecated without introducing a replacing feature

update with similar, but improved functionality.

For the remaining unique features, we discuss whether or not they run the risk of being halted

or deprecated.

 Cluster architecture and setup

There are only 2 unique features in the sub-aspect “installation methods and deployment tools”.

Installation methods and deployments tools. Kubernetes is the only framework with certified

commercial Kubernetes-as-a-Service [111] offerings that fully automate the setup and management

of Kubernetes clusters. At the moment, at least a dozen of public cloud providers provide uch

certified offerings. This certification programme is created by the Cloud Native Computing

Foundation that pushes Docker engine and Kubernetes as de-facto standards for container runtimes,

container orchestration, respectively. As such we believe this feature will certainly be further

developed and strengthened to consolidation the position of Kubernetes across public cloud

providers.

 CO framework customization

There are no unique features for the sub-aspect “unified container runtime architecture”. As

such we only discuss the other sub-aspect.

Framework design of the orchestration engine. Kubernetes supports several novel types of

extension points that are non-existent in other CO frameworks.

1. Extensibility of the API which includes support for extending existing API objects with

annotations, adding custom API objects, and even adding entire new APIs.

2. Cloud controller management concept that enables cloud provider specific code and the

Kubernetes core to evolve independently

3. Support for custom computing resources (see the “container QoS management” aspect) and

corresponding plugins for automated detection of the existence of that hardware on a node.

Clearly, the first two features are assets of Kubernetes because the extensibility of the API is a

major enabler for portability because customers can create specific APIs for themselves that abstract

Kubernetes-specific APIs. The third feature on the other hand is too limited at the moment as it only

allows to specify resource quantities as integers. This implies that a single instance of a custom

resource cannot be shared among containers. For example, GPUs can only be allocated as a whole,

which means that a GPU cannot be shared by multiple Pods. We expect that this third extension point

to be further improved or halted.

 Container networking

There are only unique features in the sub-aspects “services networking” and “service discovery

and external access”.

Services networking. Docker Swarm offers support for applications of cellular networks. As shown

in the quantitative analysis, Docker Swarm offers the most common features for the services

networking aspect where it is possible to dynamically add multiple networking plugins that can co-

 84 of 121

exist. As such, giving this strong foundation for service networking, we might see Docker Swarm

being used in specific technology segments such as cellular networks, cyber-physical systems, and

connected and autonomous vehicles. Of course, performance overhead introduced by the service

networking approach [58] is the main obstacle that needs to be tackled first.

Service discovery and external access. Kubernetes is clearly positioned as the best framework to

expose container orchestrated services that run on public cloud providers such as AWS, Google

Cloud and Microsoft Azure. We don’t expect that other frameworks can compete here. Indeed

Kubernetes offers a huge number of features for enabling external access to container orchestrated

services such as automated integration with the load balancing service of a cloud provider and

automated synchronization with external DNS providers. So indeed, we believe these unique

features are assets of Kubernetes that will be further developed to further strengthen the position of

Kubernetes as main CO framework for public cloud providers.

 Application configuration and deployment

The unique features of the sub-aspects “reusable container configuration” and “service

upgrades” are all very useful additions. We believe these unique features may be adopted by other

CO frameworks.

However, the risk of being halted or deprecated is less clear for the unique features of the sub-

aspects “persistent volumes” and “supported workload types”.

Persistent volumes. With respect to persistent volumes, Kubernetes v.1.10 [617] and Kubernetes

v1.11 [618] has added several additional unique features so that its StatefulSet concept for automated

management of database clusters meets the requirements for production environments.

First, performance improvements have been made. Kubernetes has added support for raw block

storage that is often required by databases to attain their full performance capacity. Moreover it has

added support for dynamic volume count limits that can be configured on a per node basis. Second, to

ensure that fluctuations in actual disk usage versus expected disk usage can be efficiently handled,

Kubernetes has added support for resizing existing volumes.

DC/OS takes a completely different approach on automated deployment of stateful applications

such as database clusters. Namely it runs stateful services in a separate scheduler framework that

interacts with the central Mesos scheduler to place instances of stateful services across nodes. DC/OS

also offers a library and associated SDK [342] for user-friendly development and performance tuning

of such scheduler framework. An on-line service catalog [619] with default available services, e.g.

various databases such as Cassandra, streaming frameworks such as Kafka, continuous integration

frameworks such as Jenkins, and machine learning frameworks such as TensorFlow. Note that the

scheduler frameworks for database clusters do not have to use containers for installing the stateful

services, but instead rely on traditional configuration management tools that directly install the

services from Linux packages. An interesting question is whether the aforementioned performance

overheads of CO frameworks for running databases can be avoided in the non-containerized

approach of DC/OS.

Kubernetes and DC/OS are definitively two camps of opposite approaches. We believe that

when high-performance database workloads must be targeted where database Pods must run close

to the physical data storage location in the data center, DC/OS’ database services might be the

preferred choice because they have native performance and Mesos’ protocol for allocation and

reservation of local disk resources is very mature.

On the other hand, DC/OS’ strategy to offer a separate Mesos framework for running databases

increases the risk of vendor lock-in. A relevant remark here is that DC/OS’ Edge-lb load balancer

offers integrated support for load balancing container-orchestrated and non-container-orchestrated

workloads which includes the abovementioned stateful services.

Supported workload types. With respect to auto-scaling concepts, Kubernetes provides besides the

Horizontal Pod Autoscaler [259] (HPA) also the Vertical Pod Autoscaler [334] (VPA). These

autoscalers are primarily meant to dynamically optimize the required resources for an application in

 85 of 121

accordance with fluctuations in the workload of customer requests. These autoscalers are generic in

the sense that the offered configuration concepts and mechanisms can support autoscaling of

different types of applications such as ReplicaSets as well as StatefulSets.

With the increasing focus of recent Kubernetes releases to improve QoS management, the

question arises if these auto-scaling concepts can also be configured to meet service-level objectives

(SLOs). However, we have demonstrated in previous research that the Horizontal Pod Autoscaler is

too simplistic for meeting service level objectives (SL0s) of database clusters. We handled this

problem by developing a tailored auto-scaler component that is customized to the type of database

cluster [58]. Unless the HPA for StatefulSets can be tailored via Kubernetes’ annotations and modular

interceptors, the HPA for StatefulSets will need to be redeveloped by relying on a framework or library

where custom auto-scaling policies and complex event monitoring policies can be specified and

enforced.

DC/OS takes another approach to horizontal auto-scaling: it only offers third party

tutorials [260] for building various types of auto-scalers. As stated above, DC/OS already offers a

library and SDK [342] for configuring and deploying stateful services. Logically, this is the right layer

for adding dedicated auto-scaling features for databases.

The Kubernetes’ VPA concept is promising but there is one big disadvantage with respect to

SLO compliance: adjusting resource allocation policies of Pods requires killing these Pods and

waiting till the scheduler assigns a new Pod with the adjusted allocation policies. Obviously, this

operation needs to be performed at run-time without restarting containers in order to avoid

temporary performance degradation with SLO violations. Ironically, although run-time adjustment

of container resource allocation policies is by default supported in Docker engine, they are not

supported by any CO framework except Docker stand-alone. Indeed recent research presents a

middleware for vertical scaling of containers that is implemented on top of Docker engine exactly

because the presented middleware requires adjusting resource allocation policies without restarting

containers [134].

In summary, existing auto-scalers of Kubernetes are not ready for managing performance SLOs.

This lack is also the main reason why we have not grouped these auto-scaling features under the

“Container QoS Management” aspect.

 Application and cluster management

Most unique features found in this aspect, except those from the sub-aspect “multi-cloud

support”, are useful additions of functionality that are orthogonal to the core of the CO frameworks.

As such we don’t see any reason why these features will be deprecated in the long-term future. As

such, we assess the features of the multi-cloud support sub-aspect below.

Multi-cloud support. Kubernetes has developed an extensive Federation API and associated

command line interface for managing and federating multiple container clusters that are possibly

located in separate cloud availability zones. A unique feature of Kubernetes is that this Federation

API offers many federated instantiations of various API objects such as deployments and

namespaces. However, the development of the Federation API has been put on hold and a new effort

to build a dedicated federation API apart from the Kubernetes API is planned [621]. This is of course

not good news for those companies that have already built their software products on top of the

federation API. Note that this does not mean that the other unique features of Kubernetes in that sub-

aspect have also a higher risk of being halted.

In opposition, Docker Swarm and all Mesos-based systems have invested most of their effort in

building extensive support for running a single container cluster in high availability mode where

multiple masters are spread across different cloud availability zones. This kind of multi-zone cluster

does not require federated instantiations of existing API objects. Support for such an automated HA

cluster across multiple availability zones is not supported by the open-source contribution of

Kubernetes; it is only supported by the commercial Kubernetes-as-a-Service offerings on top of AWS

and Google cloud.

 86 of 121

 Summary of findings

In this section we have studied to which extent unique features have a risk of being halted or

deprecated without a replacing feature update because a competing framework offers a better

alternative. The following three features of Kubernetes might incur an increasingly higher risk:

 If the performance overhead of StatefulSets for running database clusters cannot be resolved,

DC/OS’ approach to offer a user-friendly software development kit for generating custom

scheduler frameworks for specific database may be the better approach.

 Horizontal and vertical Pod autoscalers are not fit to meet SLOs for complex stateful applications

like databases. The generic design of these autoscalers will need to be sacrificed so that

application managers can develop custom auto-scalers for particular workloads. As such there

is a substantial chance that the generic autoscaler will be replaced by different types of auto-

scalers.

 The development of the federation API for managing multiple Kubernetes clusters across cloud

availability zones has been halted; instead a new API is being planned but there is no consistent

effort into this direction. Most likely the federation API will replaced by a simplified API where

some existing federated instantiations of Kubernetes API objects such as federated namespaces will

be deprecated.

8. Conclusions

We first discuss in Section 8.1 the threats to validity of our results and the limitations of the

overall study. Thereafter, in Section 8.2 we present the main insights that can be drawn from the

findings of the study. Finally, in Section 8.3 we outline likely further evolutions in the technology

domain in the short term.

 Threats to validity and limitations of study

In essence, we present in this article a descriptive study based on expert reviews and expert

assessments and therefore the main results are qualitative. All quantitative results are based on the

identified features in the qualitative part of the study, which is inherently subjective to some extent.

We have thus not used variations of dependent and independent variables with different subject

groups. Neither have we used automated metrics such as NLP-based processing of documentation,

or amount of code/documentation.

As consequence, a large part of the standard threats to internal and external validity in

experiment design are not relevant to this study. As a reminder, threats to internal validity

compromise our confidence in stating that the found differences between CO frameworks are correct.

Threats to external validity compromise our confidence in stating that the study’s results are

applicable to other CO frameworks.

As we don’t make claims about other CO frameworks, only the following internal validity

threats remain relevant:

 Selection bias, i.e. the decision what CO framework to select and the selection of the different

features and the overarching (sub)-aspects may be determined subjectively. Thus, we may have

missed features or interpreted feature implementation strategies inappropriately.

 Experimenter bias, i.e. unconscious preferences for certain CO frameworks that influence

interpretation of documentation; e.g., whether a feature is partially or fully supported by a

framework.

 Selection bias.

We have tried to manage selection bias in our research method by means of three complementary

approaches that have been explained in detail in Section 3. Firstly, we have applied a systematic

approach and used existing methods if possible; for example, we have applied commonality and

 87 of 121

variability analysis in feature modelling to find common features (see Section 3.1.2) and we have

applied card sorting to group features in usable aspects (see Section 3.1.3).

Secondly, we improved the accuracy of the description of the features and feature

implementation strategies by means of an iterative approach. For example, we have first performed

a pair-wise comparison of titles of documentation pages and thereafter a detailed review of the

documentation pages in full detail. Then, we have asked customers and platform developers to

review different versions of this article with respect to the question whether the set of identified

features and their comparison makes sense and is complete (see Section 3.5).

Thirdly, we have continuously elaborated our practical experience of CO frameworks by not

only testing specific features but also conducting performance evaluation research [58], [59]. This

practical experience helps to make better interpretations of documentation.

 Experimenter bias

It has been challenging to manage experimenter bias because container technology is currently at its

peak of inflated expectations according to the Gartner hype cycle, has evolved quickly in the past,

and Kubernetes has been adopted by Docker EE and DC/OS and all major public cloud providers.

To stay objective in the mid of such inflated expectations, we have consciously scoped the study to

research questions with respect to software qualities that can be objectively measured using simple

arithmetic: (i) genericity (in terms of number of supported features) and (ii) maturity (i.e., mapping

features to development history on GitHub). To find evidence for overall significant differences

between the CO frameworks with respect to genericity, we have used the Friedman and Nemenyi

tests due to their effectiveness in un-replicated experimental designs for checking overall ranking of

multiple systems with respect to different treatments [135]; in our research, treatments correspond

with the 27 sub-aspects and systems with the CO frameworks.

 Limitations of the study

Besides the above threats to internal validity in experimental design, the study has the following

limitations:

 We have only studied the documentation of CO frameworks, not the actual code. We have not

used any automated methods for mining features/aspects from code. As such features that can

only be extracted from code are not covered in this study.

 Any claims about performance or scalability of a certain CO framework’s feature

implementation strategy are based on actual performance evaluation of Kubernetes and Docker

Swarm integrated mode in the context of the aforementioned publications [58], [59]. Projections

of these claims towards performance and scalability of similar feature implementation strategies

in Mesos-based frameworks are speculative however.

 The study does not provide findings about the robustness of the CO frameworks such as or the

ratio of bugs per line of code, or the number of bug reports per user.

 Lessons learned

We organize the main conclusions from this study according to the three aforementioned software

qualities, and thereafter we summarize the highlights for each of the frameworks

 Genericity

 The ratio of common features over unique features is relatively large and most common features

are supported by at least 50% of the CO frameworks. Such a high ratio of common features

allows for direct comparison of the CO frameworks with respect to non-functional requirements

such as scalability and performance of feature implementation strategies.

 Features in the sub-aspects “improved security isolation” and “allocation of other resources” are

only supported by two or three CO frameworks

 88 of 121

o Although Kubernetes consolidated a full feature set for container isolation policies almost

36 months ago, there is little uptake of these features by the other CO frameworks.

o Mesos-based support for allocating GPU and disk resources to co-located containers is only

marginally supported by Kubernetes and not supported by Docker Swarm.

 Kubernetes offers the highest number of common features and the highest number of unique

features. When adding up both common and unique features, Kubernetes even offers the highest

number of features for all 9 aspects and it offers the highest number of features for 15 sub-

aspects.

 Significant differences in genericity with Docker EE and DC/OS have however not been found.

After all, when taking into account only common features, Kubernetes offers the absolute

highest number of common features for 7 sub-aspects, whereas Docker Swarm integrated mode

offers the highest number of common features for the sub-aspects “services networking”, “host

port conflict management” and “cluster network security”. Mesos offers the most common

features for the sub-aspect “persistent volumes” and DC/OS offers the most common features of

the sub-aspects “cluster maintenance” and “multi-cloud deployments”.

 In the sub-aspects “services networking” and “host port conflict management”, Docker Swarm

integrated mode and DC/OS offer support for the features host mode services networking, stable

DNS name for services and dynamic allocation of host ports. We have found that the other approaches

to services networking such as routing meshes and virtual IP networks introduce quite a

substantial performance overhead in comparison to running Docker containers in host mode.

As such, a host mode service networking approach with appropriate host port conflict

management is a viable alternative for high-performance applications.

 Maturity

 The 15 sub-aspects identified by the green rectangle in Figure 11 shape a mature foundation for

the overall technology domain as these sub-aspects are well-understood by now and little

feature deprecations have been found in these sub-aspects.

 Figure 11 further indicates that Kubernetes is the most mature project in terms of pioneering

common features despite being a younger project than Mesos, Aurora and Marathon.

 Stability

 Mesos is the most interesting platforms for prototyping novel techniques for (i) container

networking and (ii) persistent volumes because Mesos’ adherence to all relevant standardization

initiatives in these two areas maximizes the potential to deploy these techniques in Docker

Swarm and Kubernetes as well. Docker or Kubernetes are best fit for prototyping innovating

techniques for container runtimes.

 The overall rate of feature deprecations among common features in the past is about 2% of the

total number of feature updates (i.e., feature additions, feature replacements, and feature

deprecations).

 Only one unique feature of Kubernetes, federated instantiations of the Kubernetes API objects, has

been halted and will probably be deprecated without a replacing feature update.

 Main insights with respect to Docker Swarm

Although Docker Swarm is the youngest and also least generic framework among the three main

vendors, Docker Swarm has clearly contributed an innovative services networking approach and

networking plugin architecture.

Docker has actually separated services networking support from Docker Swarm. As such we

believe Docker’s networking architecture is here to stay. Docker has also recently released an

enterprise edition with support for deploying and managing Kubernetes clusters next to Swarm

clusters. While the current release does not show any strong integration between Docker and

 89 of 121

Kubernetes, support for Docker’s networking architecture in Kubernetes is a likely future feature

request.

 90 of 121

 Main insights with respect to Kubernetes

Kubernetes is the most generic orchestration framework for 7 out of 27 of sub-aspects. Yet, in

many sub-aspects the absolute differences in number of supported features is small with respect to

the two main other vendors Docker EE and DC/OS.

Kubernetes has also the most unique features. This may be a higher source of vendor lock-in on

the one hand, but mainly constitutes a competitive edge. Our analysis of genericity has shown that

many unique features of Kubernetes are much stronger a source for increased genericity than a source

of vendor lock-in. When taking into account the total of common and unique features of Kubernetes,

it counts the highest number of features of 15 sub-aspects.

Kubernetes is also the most mature container orchestration framework as it has pioneered 12 out

of the 27 sub-aspects.

Kubernetes is in particular unique by its support for integrating with public cloud platform’s

load-balancing tier and offering a wide range of external service discovery options. As a result, a

large number of public cloud providers have offered a hosted solution or even a Kubernetes-as-a-

Service offering.

A weakness of the open source distribution of Kubernetes is that it does not offer support for

automated installation of a highly-available cluster with multiple master nodes.

 Main insights with respect to Mesos and DC/OS

DC/OS, an extended Mesos+Marathon distribution is the second most generic framework.

Mesos+Marathon has pioneered also 10 out of the 27 aspects. A strength of Mesos is that it allows

fine-grained sharing of cluster resources across multiple scheduler frameworks, which include not

only CO frameworks but also non-CO frameworks like Hadoop, Kafka and NoSQL databases. Mesos

or DC/OS may also be a viable alternative to companies who seek to setup a highly available cluster

in a private cloud with the broadest range of possibilities to integrate container-based applications

with non-container based applications. After all, DC/OS offers support for load balancing non-

container orchestrated workloads such as databases or high-performance computing applications.

 Main insights with respect to Docker Swarm alone and Apache Aurora

Docker Swarm stand-alone and Apache Aurora are relatively small CO frameworks that do

differ significantly in terms of genericity from DC/OS and Kubernetes. Indeed, Aurora is specifically

designed for running long-running jobs and cron jobs, while Docker Swarm stand-alone is also a

more simplified framework with substantial less automated management.

We only recommend Docker Swarm stand-alone as a possible starting point for developing one’s

own CO framework. This is a relevant direction because 28% of surveyed users in the most recent

OpenStack survey [4], responded that they have built their own CO framework instead of using

existing CO frameworks (see also Figure 1). We make such recommendation because the API of

Docker Swarm stand-alone is the least restrictive in terms of the range of offered options for common

commands such as creating, updating and stopping a container. For example, Docker Swarm stand-

alone is the only framework that allows to dynamically change resource limits without restarting

containers. Such less restrictive API is a more flexible starting point for implementing a custom

developed CO framework.

 Further evolution in the short term.

Likely areas for further evolution and innovation include system support for cluster network

security and container security, performance isolation of GPU, disk and network resources and

network plugin architectures.

As stated above, Kubernetes is the only framework that offers rich support for container security

isolation whereas Mesos and DC/OS offer very limited support and Docker EE uses another approach

so that security isolation policies in Kubernetes are not easy to migrate to Docker. It is expected that

 91 of 121

research is needed to better understand this evolution and how lower-level system security

guarantees can be designed and verified uniformly.

A weakness of Kubernetes is its limited support for performance isolation of GPU and disk

resources and its lack of support for network isolation. Improved support for persistent volumes as

part of the Container Storage Interface (CSI) specification effort has been the main focus of the most

recent releases of Kubernetes. Network isolation features have also been subject to recent research. It

is expected that thus in the near future these features will be considerably improved.

Finally, network plugin architectures themselves will change considerably. Although the

Container Network Interface (CNI) specification has been adopted by Kubernetes and Mesos for

several years now, the development of such CNI-based network plugin architectures has halted and

is still in the alpha stage in Kubernetes. Docker’s libnetwork is in particular very dynamic and new

features are continuously being added. Better support for high-performance network function

virtualization (NFV) without sacrificing automated management is currently also a main focus of

current systems research. It is expected that these innovations will trigger similar improvements in

virtual networking architectures for containers.

Author Contributions: Conceptualization, Eddy Truyen and Dimitri Van Landuyt; Data curation, Eddy Truyen;

Funding acquisition, Bert Lagaisse and Wouter Joosen; Investigation, Eddy Truyen; Methodology, Eddy Truyen;

Project administration, Bert Lagaisse; Software, Eddy Truyen; Supervision, Bert Lagaisse and Wouter Joosen;

Validation, Eddy Truyen and Dimitri Van Landuyt; Visualization, Eddy Truyen; Writing – original draft, Eddy

Truyen; Writing – review & editing, Eddy Truyen, Dimitri Van Landuyt and Davy Preuveneers.

Funding: “This research was funded by the Agency for Innovation and Entrepreneurship IWT, grant

DeCoMAdS, grant number 179K2315, and the Research Fund KU Leuven.

Acknowledgments: We thank Bert Robben for his feedback and reviews of drafts of this article. We thank the

developers of the CO frameworks, especially the technical writers for the excellent documentation. Finally we

thank GitHub for offering the documentation of the CO frameworks in versioned format.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the

study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to

publish the results.

References

[1] M. G. Xavier, I. C. De Oliveira, F. D. Rossi, R. D. Dos Passos, K. J. Matteussi, and C. A. F. De Rose, “A

Performance Isolation Analysis of Disk-Intensive Workloads on Container-Based Clouds,” 2015 23rd

Euromicro Int. Conf. Parallel, Distrib. Network-Based Process., pp. 253–260, 2015.

[2] E. Truyen, D. Van Landuyt, V. Reniers, A. Rafique, B. Lagaisse, and W. Joosen, “Towards a container-

based architecture for multi-tenant SaaS applications,” in ARM 2016 Proceedings of the 15th International

Workshop on Adaptive and Reflective Middleware, 2016.

[3] N. Kratzke, “A Lightweight Virtualization Cluster Reference Architecture Derived from Open Source

PaaS Platforms,” Open J. Mob. Comput. Cloud Comput., vol. 1, no. 2, pp. 17–30, 2014.

[4] OpenStack, “User Survey -- A snapshot of the OpenStack users’ attitudes and deployments,” 2017.

[5] “Openstack user survey,” 2016. [Online]. Available:

https://www.openstack.org/assets/survey/October2016SurveyReport.pdf. [Accessed: 27-Oct-2016].

[6] OpenStack, “OpenStack User Survey Report November 2017.” 2017, [Online]. Available:

https://www.openstack.org/assets/survey/OpenStack-User-Survey-Nov17.pdf. [Accessed: 22-Nov-

2016]

[7] Red Hat, “Overview - Core Concepts | Architecture | OpenShift Container Platform 3.11.” [Online].

Available: https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/index.html.

[Accessed: 09-Nov-2018].

[8] Cloud Foundry, “Powered by Kubernetes - Container Runtime | Cloud Foundry.” [Online]. Available:

https://www.cloudfoundry.org/container-runtime/. [Accessed: 09-Nov-2018].

[9] “Kubernetes home page.” [Online]. Available: https://kubernetes.io/. [Accessed: 09-Nov-2018].

[10] Docker Inc., “Docker Swarm | Docker Documentation.” [Online]. Available:

https://docs.docker.com/swarm/. [Accessed: 09-Nov-2018].

[11] Docker Inc., “Swarm mode overview | Docker Documentation.” [Online]. Available:

https://docs.docker.com/engine/swarm/. [Accessed: 09-Nov-2018].

https://www.openstack.org/assets/survey/October2016SurveyReport.pdf
https://www.openstack.org/assets/survey/OpenStack-User-Survey-Nov17.pdf
https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/index.html
https://www.cloudfoundry.org/container-runtime/
https://kubernetes.io/
https://docs.docker.com/swarm/
https://docs.docker.com/engine/swarm/

 92 of 121

[12] B. Hindman, A. Konwinski, A. Platform, F.-G. Resource, and M. Zaharia, “Mesos: A platform for fine-

grained resource sharing in the data center,” in Proceedings of the 8th USENIX conference on Networked

systems design and implementation (NSDI 2011), 2011.

[13] Mesosphere, “Apache Mesos.” [Online]. Available: http://mesos.apache.org/. [Accessed: 09-Nov-2018].

[14] Apache, “Apache Aurora.” [Online]. Available: http://aurora.apache.org/. [Accessed: 09-Nov-2018].

[15] Mesosphere, “Marathon: A container orchestration platform for Mesos and DC/OS.” [Online]. Available:

https://mesosphere.github.io/marathon/. [Accessed: 09-Nov-2018].

[16] Mesosphere, “The Definitive Platform for Modern Apps | DC/OS.” [Online]. Available: https://dcos.io/.

[Accessed: 09-Nov-2018].

[17] Mesosphere, “mesos/docker-containerizer.md at 0.20.0 · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/0.20.0/docs/docker-containerizer.md. [Accessed: 09-Nov-2018].

[18] Mesosphere, “Running Docker Containers on Marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v0.8.0/docs/docs/native-docker.md. [Accessed: 09-Nov-

2018].

[19] Pieter Noordhuis et al., “Kubernetes.” [Online]. Available:

https://github.com/kubernetes/kubernetes/blob/release-0.4/README.md. [Accessed: 09-Nov-2018].

[20] “kubernetes/networking.md at v0.6.0 · kubernetes/kubernetes.” [Online]. Available:

https://github.com/kubernetes/kubernetes/blob/v0.6.0/docs/networking.md. [Accessed: 09-Nov-2018].

[21] “kubernetes/pods.md at release-0.4 · kubernetes/kubernetes.” [Online]. Available:

https://github.com/kubernetes/kubernetes/blob/release-0.4/docs/pods.md. [Accessed: 09-Nov-2018].

[22] “kubernetes/volumes.md at v0.6.0 · kubernetes/kubernetes.” [Online]. Available:

https://github.com/kubernetes/kubernetes/blob/v0.6.0/docs/volumes.md. [Accessed: 09-Nov-2018].

[23] Docker Inc., “Manage data in containers.” [Online]. Available:

https://docs.docker.com/v1.10/engine/userguide/containers/dockervolumes/. [Accessed: 09-Nov-2018].

[24] Mesosphere, “mesos/docker-volume.md at 1.0.0 · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.0.0/docs/docker-volume.md. [Accessed: 09-Nov-2018].

[25] Mesosphere, “marathon/external-volumes.md at v1.3.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.3.0/docs/docs/external-volumes.md. [Accessed: 09-

Nov-2018].

[26] Mesosphere, “External Persistent Volumes - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.8/usage/storage/external-storage/. [Accessed: 09-Nov-2018].

[27] Mesosphere, “mesos/networking-for-mesos-managed-containers.md at 0.25.0 · apache/mesos.”

[Online]. Available: https://github.com/apache/mesos/blob/0.25.0/docs/networking-for-mesos-

managed-containers.md. [Accessed: 09-Nov-2018].

[28] Mesosphere, “marathon/ip-per-task.md at v0.14.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v0.14.0/docs/docs/ip-per-task.md. [Accessed: 09-Nov-

2018].

[29] Docker Inc., “swarm/networking.md at v1.0.0 · docker/swarm.” [Online]. Available:

https://github.com/docker/swarm/blob/v1.0.0/docs/networking.md. [Accessed: 09-Nov-2018].

[30] ClusterHQ, “ClusterHQ/flocker: Container data volume manager for your Dockerized application.”

[Online]. Available: https://github.com/ClusterHQ/flocker/. [Accessed: 09-Nov-2018].

[31] F. Lardinois, “ClusterHQ Raises $12M Series A Round To Expand Its Container Data Management

Service,” techcrunch.com, 2015. [Online]. Available: https://techcrunch.com/2015/02/05/clusterhq-raises-

12m-series-a-round-to-help-developers-run-databases-in-docker-containers/. [Accessed: 27-Mar-2018].

[32] ClusterHQ, “Flocker Integrations.” [Online]. Available: https://flocker.readthedocs.io/en/latest/.

[Accessed: 09-Nov-2018].

[33] F. Lardinois, “ClusterHQ, an early player in the container ecosystem, calls it quits,” techcrunch.com, 2016.

[Online]. Available: https://techcrunch.com/2016/12/22/clusterhq-hits-the-deadpool/. [Accessed: 27-

Mar-2018].

[34] “containerd – An industry-standard container runtime with an emphasis on simplicity, robustness and

portability.” [Online]. Available: https://containerd.io/. [Accessed: 09-Nov-2018].

[35] “Open Container Initiative.” [Online]. Available: https://github.com/opencontainers/. [Accessed: 09-

Nov-2018].

[36] “General Availability of containerd 1.0 is Here!,” The Cloud Native Computing Foundation, 2017. [Online].

Available: https://www.cncf.io/blog/2017/12/05/general-availability-containerd-1-0/. [Accessed: 27-Mar-

2018].

[37] “Cloud Native Computing Foundation Launches Certified Kubernetes Program with 32 Conformant

Distributions and Platforms,” The Cloud Native Computing Foundation, 2017. [Online]. Available:

https://www.cncf.io/announcement/2017/11/13/cloud-native-computing-foundation-launches-certified-

http://mesos.apache.org/
http://aurora.apache.org/
https://mesosphere.github.io/marathon/
https://dcos.io/
https://github.com/apache/mesos/blob/0.20.0/docs/docker-containerizer.md
https://github.com/mesosphere/marathon/blob/v0.8.0/docs/docs/native-docker.md
https://github.com/kubernetes/kubernetes/blob/release-0.4/README.md
https://github.com/kubernetes/kubernetes/blob/v0.6.0/docs/networking.md
https://github.com/kubernetes/kubernetes/blob/release-0.4/docs/pods.md
https://github.com/kubernetes/kubernetes/blob/v0.6.0/docs/volumes.md
https://docs.docker.com/v1.10/engine/userguide/containers/dockervolumes/
https://github.com/apache/mesos/blob/1.0.0/docs/docker-volume.md
https://github.com/mesosphere/marathon/blob/v1.3.0/docs/docs/external-volumes.md
https://docs.mesosphere.com/1.8/usage/storage/external-storage/
https://github.com/apache/mesos/blob/0.25.0/docs/networking-for-mesos-managed-containers.md
https://github.com/apache/mesos/blob/0.25.0/docs/networking-for-mesos-managed-containers.md
https://github.com/mesosphere/marathon/blob/v0.14.0/docs/docs/ip-per-task.md
https://github.com/docker/swarm/blob/v1.0.0/docs/networking.md
https://github.com/ClusterHQ/flocker/
https://techcrunch.com/2015/02/05/clusterhq-raises-12m-series-a-round-to-help-developers-run-databases-in-docker-containers/
https://techcrunch.com/2015/02/05/clusterhq-raises-12m-series-a-round-to-help-developers-run-databases-in-docker-containers/
https://flocker.readthedocs.io/en/latest/
https://techcrunch.com/2016/12/22/clusterhq-hits-the-deadpool/
https://containerd.io/
https://github.com/opencontainers/
https://www.cncf.io/blog/2017/12/05/general-availability-containerd-1-0/
https://www.cncf.io/announcement/2017/11/13/cloud-native-computing-foundation-launches-certified-kubernetes-program-32-conformant-distributions-platforms/

 93 of 121

kubernetes-program-32-conformant-distributions-platforms/. [Accessed: 27-Mar-2018].

[38] OpenStack, “OPENSTACK USER SURVEY : A snapshot of OpenStack users ’ attitudes and

deployments,” Openstack.org, no. October, 2015.

[39] GitHub, “The State of the Octoverse 2017 -- Ten most-discussed repositories.” 2018.

[40] Mesosphere, “Kubernetes - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/kubernetes/. [Accessed: 09-Nov-2018].

[41] Docker Inc., “Run Swarm and Kubernetes Interchangeably | Docker.” [Online]. Available:

https://www.docker.com/products/orchestration. [Accessed: 09-Nov-2018].

[42] Amazon Web Services (AWS), “Amazon EKS - Managed Kubernetes Service.” [Online]. Available:

https://aws.amazon.com/eks/. [Accessed: 09-Nov-2018].

[43] S. Soltesz, S. Soltesz, H. Pötzl, H. Pötzl, M. E. Fiuczynski, M. E. Fiuczynski, A. Bavier, A. Bavier, L.

Peterson, and L. Peterson, “Container-based operating system virtualization: a scalable, high-

performance alternative to hypervisors,” SIGOPS Oper. Syst. Rev., vol. 41, pp. 275–287, 2007.

[44] M. G. Xavier, M. V Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. a F. De Rose, “Performance

Evaluation of Container-based Virtualization for High Performance Computing Environments,” Proc.

2013 21st Euromicro Int. Conf. Parallel, Distrib. Network-Based Process., pp. 233–240, 2013.

[45] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs Containerization to Support PaaS,” in 2014 IEEE

International Conference on Cloud Engineering, 2014, pp. 610–614.

[46] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance comparison of virtual

machines and Linux containers,” 2015 IEEE Int. Symp. Perform. Anal. Syst. Softw., pp. 171–172, 2015.

[47] A. Tosatto, P. Ruiu, and A. Attanasio, “Container-Based Orchestration in Cloud: State of the Art and

Challenges,” Complex, Intelligent, Softw. Intensive Syst. (CISIS), 2015 Ninth Int. Conf., pp. 70–75, 2015.

[48] E. Casalicchio, “Autonomic Orchestration of Containers: Problem Definition and Research Challenges,”

in Proceedings of the 10th EAI International Conference on Performance Evaluation Methodologies and Tools,

2017.

[49] P. Heidari, Y. Lemieux, and A. Shami, “QoS Assurance with Light Virtualization - A Survey,” in 2016

IEEE International Conference on Cloud Computing Technology and Science (CloudCom), 2016, pp. 558–563.

[50] B. Jennings and R. Stadler, “Resource Management in Clouds: Survey and Research Challenges,” J. Netw.

Syst. Manag., vol. 23, no. 3, pp. 567–619, 2014.

[51] S. Costache, D. Dib, N. Parlavantzas, and C. Morin, “Resource management in cloud platform as a

service systems: Analysis and opportunities,” J. Syst. Softw., vol. 132, pp. 98–118, 2017.

[52] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-scale cluster

management at Google with Borg,” in Eurosys, 2015.

[53] C. Pahl, “Containerisation and the PaaS Cloud,” IEEE Cloud Comput., vol. 2, no. 3, pp. 24–31, 2015.

[54] N. Kratzke and R. Peinl, “ClouNS-a Cloud-Native Application Reference Model for Enterprise

Architects,” Proc. - IEEE Int. Enterp. Distrib. Object Comput. Work. EDOCW, vol. 2016–Septe, no. October

2017, pp. 198–207, 2016.

[55] N. Kratzke, “Smuggling Multi-cloud Support into Cloud-native Applications using Elastic Container

Platforms,” Proc. 7th Int. Conf. Cloud Comput. Serv. Sci., vol. 2017, no. April, pp. 57–70, 2017.

[56] N. Kratzke and P. Quint, “Preliminary Technical Report of Project CloudTRANSIT - Transfer Cloud-

native Applications at Runtime Project CloudTRANSIT,” vol. 2017, no. February, 2018.

[57] “DeCoMAdS: Deployment and configuration middleware for adaptive Software-as-a-Service,” 2015.

[Online]. Available: https://distrinet.cs.kuleuven.be/research/projects/DeCoMAdS. [Accessed: 09-Nov-

2018].

[58] E. Truyen, M. Bruzek, D. Van Landuyt, B. Lagaisse, and W. Joosen, “Evaluation of container

orchestration systems for deploying and managing NoSQL database clusters,” in Cloud Computing

(CLOUD), 2018 IEEE 11th International Conference on, 2018.

[59] W. Delnat, E. Truyen, A. Rafique, D. Van Landuyt, and W. Joosen, “K8-Scalar: a workbench to compare

autoscalers for container-orchestrated database clusters,” 13th Int. Symp. Softw. Eng. Adapt. Self-Managing

Syst. (SEAMS 2018), pp. 33–39, 2018.

[60] H. Mei, W. Zhang, and F. Gu, “A feature oriented approach to modeling and reusing requirements of

software product lines,” Proc. 27th Annu. Int. Comput. Softw. Appl. Conf. COMPAC 2003, pp. 250–256,

2003.

[61] K. C. Kang, S. G. Cohen, J. a Hess, W. E. Novak, and a S. Peterson, “Feature-Oriented Domain Analysis

(FODA) Feasibility Study,” 1990.

[62] D. Spencer and J. J. Garrett, Card sorting : designing usable categories. Rosenfeld Media, 2009.

[63] E. Truyen, D. Van Landuyt, B. Lagaisse, and W. Joosen, “A comparison between popular open-source

container orchestration frameworks,” 2017. [Online]. Available:

https://docs.google.com/document/d/19ozfDwmbeeBmwuAemCxNtKO1OFm7FsXyMioYjUJwZVo.

https://www.cncf.io/announcement/2017/11/13/cloud-native-computing-foundation-launches-certified-kubernetes-program-32-conformant-distributions-platforms/
https://docs.mesosphere.com/services/kubernetes/
https://www.docker.com/products/orchestration
https://aws.amazon.com/eks/
https://distrinet.cs.kuleuven.be/research/projects/DeCoMAdS
https://docs.google.com/document/d/19ozfDwmbeeBmwuAemCxNtKO1OFm7FsXyMioYjUJwZVo

 94 of 121

[64] U. Breitenbücher, T. Binz, O. Kopp, K. Képes, F. Leymann, and J. Wettinger, “Hybrid TOSCA

Provisioning Plans: Integrating Declarative and Imperative Cloud Application Provisioning

Technologies,” Springer International Publishing, 2016, pp. 239–262.

[65] Docker Inc., “docker.github.io/deploy-app.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/swarm/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose.

[Accessed: 09-Nov-2018].

[66] “docker.github.io/index.md at v17.06-release · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/index.md.

[Accessed: 09-Nov-2018].

[67] Cloud Native Computing Foundation, “website/overview.md at release-1.11 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/configuration/overview.md. [Accessed: 09-Nov-2018].

[68] Apache, “Apache Aurora Configuration Reference.” [Online]. Available:

http://aurora.apache.org/documentation/latest/reference/configuration/. [Accessed: 09-Nov-2018].

[69] Mesosphere, “Marathon REST API.” [Online]. Available: https://mesosphere.github.io/marathon/api-

console/index.html. [Accessed: 09-Nov-2018].

[70] Mesosphere, “Creating Services - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/deploying-services/creating-services/. [Accessed: 09-Nov-2018].

[71] Docker Inc., “docker.github.io/nodes.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/how-swarm-

mode-works/nodes.md. [Accessed: 09-Nov-2018].

[72] Kubernetes, “Kubernetes components.” 2017.

[73] Mesosphere, “mesos/architecture.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/architecture.md. [Accessed: 09-Nov-2018].

[74] Apache, “aurora/overview.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/getting-started/overview.md. [Accessed: 09-

Nov-2018].

[75] Mesosphere, “Marathon: New Core Architecture.” [Online]. Available:

https://mesosphere.github.io/marathon/docs/core-architecture.html. [Accessed: 09-Nov-2018].

[76] Mesosphere, “Architecture - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/overview/architecture/. [Accessed: 09-Nov-2018].

[77] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica, “Dominant Resource

Fairness : Fair Allocation of Multiple Resource Types Maps Reduces,” NSDI 2011, 2011.

[78] Mesosphere, “mesos/reservation.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/reservation.md#offeroperationreserve. [Accessed: 09-

Nov-2018].

[79] Mesosphere, “mesos/architecture.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/architecture.md#example-of-resource-offer.

[Accessed: 09-Nov-2018].

[80] Mesosphere, “mesos/executor-http-api.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/executor-http-api.md. [Accessed: 09-Nov-2018].

[81] Mesosphere, “mesos/reservation.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/reservation.md#offeroperationunreserve. [Accessed:

09-Nov-2018].

[82] Mesosphere, “marathon/high-availability.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/high-availability.md. [Accessed: 09-

Nov-2018].

[83] Mesosphere, “mesos/reconciliation.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/reconciliation.md. [Accessed: 09-Nov-2018].

[84] Docker Inc., “docker.github.io/admin_guide.md at v17.06 · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/admin_guide.md.

[Accessed: 09-Nov-2018].

[85] Apache, “aurora/configuration.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/configuration.md#replicated-log-

configuration. [Accessed: 09-Nov-2018].

[86] Mesosphere, “High Availability - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/overview/high-availability/. [Accessed: 09-Nov-2018].

[87] Docker Inc., “docker.github.io/multi-manager-setup.md at v17.06-release · docker/docker.github.io.”

https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/index.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/overview.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/overview.md
http://aurora.apache.org/documentation/latest/reference/configuration/
https://mesosphere.github.io/marathon/api-console/index.html
https://mesosphere.github.io/marathon/api-console/index.html
https://docs.mesosphere.com/1.10/deploying-services/creating-services/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/how-swarm-mode-works/nodes.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/how-swarm-mode-works/nodes.md
https://github.com/apache/mesos/blob/1.4.x/docs/architecture.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/getting-started/overview.md
https://mesosphere.github.io/marathon/docs/core-architecture.html
https://docs.mesosphere.com/1.10/overview/architecture/
https://github.com/apache/mesos/blob/1.4.x/docs/reservation.md#offeroperationreserve
https://github.com/apache/mesos/blob/1.4.x/docs/architecture.md#example-of-resource-offer
https://github.com/apache/mesos/blob/1.4.x/docs/executor-http-api.md
https://github.com/apache/mesos/blob/1.4.x/docs/reservation.md#offeroperationunreserve
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/high-availability.md
https://github.com/apache/mesos/blob/1.4.x/docs/reconciliation.md
https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/admin_guide.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/configuration.md#replicated-log-configuration
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/configuration.md#replicated-log-configuration
https://docs.mesosphere.com/1.10/overview/high-availability/

 95 of 121

[Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/multi-

manager-setup.md. [Accessed: 09-Nov-2018].

[88] Cloud Native Computing Foundation, “website/highly-available-master.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/administer-cluster/highly-available-master.md. [Accessed: 09-Nov-2018].

[89] Google LLC, “Google Kubernetes Engine | Kubernetes Engine | Google Cloud.” [Online]. Available:

https://cloud.google.com/kubernetes-engine/. [Accessed: 09-Nov-2018].

[90] Canonical, “Kubernetes | Ubuntu.” [Online]. Available: https://www.ubuntu.com/kubernetes.

[Accessed: 09-Nov-2018].

[91] CoreOS, “coreos/tectonic-installer: Install a Kubernetes cluster the CoreOS Tectonic Way: HA, self-

hosted, RBAC, etcd Operator, and more.” [Online]. Available: https://github.com/coreos/tectonic-

installer. [Accessed: 09-Nov-2018].

[92] Mesosphere, “mesos/scheduler-http-api.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/scheduler-http-api.md. [Accessed: 09-Nov-2018].

[93] Cloud Native Computing Foundation, “website/client-libraries.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/reference/using-api/client-libraries.md. [Accessed: 09-Nov-2018].

[94] Mesosphere, “mesosphere/marathon: Deploy and manage containers (including Docker) on top of

Apache Mesos at scale.” [Online]. Available: https://github.com/mesosphere/marathon#marathon-

clients. [Accessed: 09-Nov-2018].

[95] Docker Inc., “docker.github.io/index.md at master · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/master/develop/sdk/index.md. [Accessed: 09-Nov-

2018].

[96] Mesosphere, “Master Routes - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/api/master-routes/. [Accessed: 09-Nov-2018].

[97] I. Gog, M. Schwarzkopf, A. Gleave, R. N. M. Watson, and S. Hand, “Firmament: Fast, Centralized Cluster

Scheduling at Scale Firmament: fast, centralized cluster scheduling at scale,” Osdi, pp. 99–115, 2016.

[98] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and QoS-aware cluster management,” …

19Th Int. Conf. …, vol. 42, no. 1, pp. 127-127-144–144, 2014.

[99] C. Delimitrou and C. Kozyrakis, “QoS-Aware scheduling in heterogeneous datacenters with paragon,”

ACM Trans. Comput. Syst., vol. 31, no. 4, pp. 1–34, 2013.

[100] S. Abdu, “Morpheus: Towards Automated SLAs for Enterprise Clusters.”

[101] A. Grillet, “Comparison of container schedulers,” 2016. [Online]. Available:

https://medium.com/@ArmandGrillet/comparison-of-container-schedulers-c427f4f7421. [Accessed: 31-

Oct-2017].

[102] Docker Inc., “docker.github.io/strategy.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/swarm/scheduler/strategy.md. [Accessed: 09-Nov-2018].

[103] Docker Inc., “docker.github.io/services.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/swarm/services.md#control-service-scale-and-placement. [Accessed: 09-Nov-2018].

[104] Red Hat, “Default Scheduling - Scheduling | Cluster Administration | OKD 3.6.” [Online]. Available:

https://docs.okd.io/3.6/admin_guide/scheduling/scheduler.html#generic-scheduler. [Accessed: 09-Nov-

2018].

[105] RedHat, “Default Scheduling - Scheduling | Cluster Administration | OKD Latest.” [Online]. Available:

https://docs.okd.io/latest/admin_guide/scheduling/scheduler.html#default-scheduler-policy.

[Accessed: 09-Nov-2018].

[106] Apache, “aurora/constraints.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/constraints.md. [Accessed: 09-Nov-

2018].

[107] Mesosphere, “marathon/constraints.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/constraints.md#operators. [Accessed:

09-Nov-2018].

[108] Docker Inc., “docker.github.io/index.md at v17.06 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/swarm-tutorial/index.md.

[Accessed: 09-Nov-2018].

[109] Cloud Native Computing Foundation, “website/create-cluster-kubeadm.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/setup/independent/create-cluster-kubeadm.md. [Accessed: 09-Nov-2018].

https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/multi-manager-setup.md
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/multi-manager-setup.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/highly-available-master.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/highly-available-master.md
https://cloud.google.com/kubernetes-engine/
https://www.ubuntu.com/kubernetes
https://github.com/coreos/tectonic-installer
https://github.com/coreos/tectonic-installer
https://github.com/apache/mesos/blob/1.4.x/docs/scheduler-http-api.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/using-api/client-libraries.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/using-api/client-libraries.md
https://github.com/mesosphere/marathon#marathon-clients
https://github.com/mesosphere/marathon#marathon-clients
https://github.com/docker/docker.github.io/blob/master/develop/sdk/index.md
https://docs.mesosphere.com/1.10/api/master-routes/
https://medium.com/@ArmandGrillet/comparison-of-container-schedulers-c427f4f7421
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/scheduler/strategy.md
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/scheduler/strategy.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#control-service-scale-and-placement
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#control-service-scale-and-placement
https://docs.okd.io/3.6/admin_guide/scheduling/scheduler.html#generic-scheduler
https://docs.okd.io/latest/admin_guide/scheduling/scheduler.html#default-scheduler-policy
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/constraints.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/constraints.md#operators
https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/swarm-tutorial/index.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/setup/independent/create-cluster-kubeadm.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/setup/independent/create-cluster-kubeadm.md

 96 of 121

[110] Mesosphere, “Production Installation - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/installing/production/deploying-dcos/installation/. [Accessed: 09-

Nov-2018].

[111] Cloud Native Computing Foundation, “website/pick-right-solution.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/setup/pick-right-solution.md#hosted-solutions. [Accessed: 09-Nov-2018].

[112] Microsoft, “Azure Kubernetes Service (AKS) | Microsoft Azure.” [Online]. Available:

https://azure.microsoft.com/en-us/services/kubernetes-service/. [Accessed: 09-Nov-2018].

[113] Mesosphere, “GUI DC/OS Installation Guide - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.8/administration/installing/oss/custom/gui/. [Accessed: 09-Nov-2018].

[114] Cloud Native Computing Foundation, “community/container-runtime-interface.md at master ·

kubernetes/community.” [Online]. Available:

https://github.com/kubernetes/community/blob/master/contributors/devel/container-runtime-

interface.md. [Accessed: 09-Nov-2018].

[115] Cloud Native Computing Foundation, “containerd/cri: Containerd Plugin for Kubernetes Container

Runtime Interface.” [Online]. Available: https://github.com/containerd/cri. [Accessed: 09-Nov-2018].

[116] Mesosphere, “mesos/container-image.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/container-image.md. [Accessed: 09-Nov-2018].

[117] Docker Inc., “moby/v1.md at master · moby/moby.” [Online]. Available:

https://github.com/moby/moby/blob/master/image/spec/v1.md. [Accessed: 09-Nov-2018].

[118] “spec/SPEC.md at v0.8.11 · appc/spec.” [Online]. Available:

https://github.com/appc/spec/blob/v0.8.11/SPEC.md. [Accessed: 09-Nov-2018].

[119] Cloud Native Computing Foundation, “Home - Open Containers Initiative.” [Online]. Available:

https://www.opencontainers.org/. [Accessed: 09-Nov-2018].

[120] Cloud Native Computing Foundation, “kubernetes-sigs/cri-o: Open Container Initiative-based

implementation of Kubernetes Container Runtime Interface.” [Online]. Available:

https://github.com/kubernetes-sigs/cri-o/. [Accessed: 09-Nov-2018].

[121] Mesosphere, “[MESOS-5011] Support OCI image spec. - ASF JIRA.” [Online]. Available:

https://issues.apache.org/jira/browse/MESOS-5011. [Accessed: 09-Nov-2018].

[122] Cloud Native Computing Foundation, “opencontainers/runc: CLI tool for spawning and running

containers according to the OCI specification.” [Online]. Available:

https://github.com/opencontainers/runc. [Accessed: 09-Nov-2018].

[123] Cloud Native Computing Foundation, “website/components.md at release-1.11 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/overview/components.md#container-runtime. [Accessed: 09-Nov-2018].

[124] Mesosphere, “mesos/containerizers.md at 1.5.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.5.x/docs/containerizers.md. [Accessed: 09-Nov-2018].

[125] Mesosphere, “mesos/mesos-containerizer.md at 1.7.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.7.x/docs/mesos-containerizer.md#isolators. [Accessed: 09-

Nov-2018].

[126] Mesosphere, “mesos/cgroups-devices.md at 1.7.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.7.x/docs/isolators/cgroups-devices.md. [Accessed: 09-Nov-

2018].

[127] Mesosphere, “mesos/linux-devices.md at 1.7.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.7.x/docs/isolators/linux-devices.md. [Accessed: 09-Nov-2018].

[128] Cloud Native Computing Foundation, “community/scheduler_extender.md at master ·

kubernetes/community.” [Online]. Available:

https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/scheduling/scheduler_extender.md. [Accessed: 09-Nov-2018].

[129] Mesosphere, “mesos/allocation-module.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/allocation-module.md#writing-a-custom-allocator.

[Accessed: 09-Nov-2018].

[130] Apache, “aurora/RELEASE-NOTES.md at master · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/master/RELEASE-NOTES.md#0200. [Accessed: 09-Nov-2018].

[131] Apache, “aurora/scheduler-configuration.md at rel/0.20.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.20.0/docs/reference/scheduler-configuration.md.

[Accessed: 09-Nov-2018].

[132] Mesosphere, “marathon/plugin.md at v1.6.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/plugin.md#scheduler. [Accessed: 09-

https://docs.mesosphere.com/1.11/installing/production/deploying-dcos/installation/
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/setup/pick-right-solution.md#hosted-solutions
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/setup/pick-right-solution.md#hosted-solutions
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://docs.mesosphere.com/1.8/administration/installing/oss/custom/gui/
https://github.com/kubernetes/community/blob/master/contributors/devel/container-runtime-interface.md
https://github.com/kubernetes/community/blob/master/contributors/devel/container-runtime-interface.md
https://github.com/containerd/cri
https://github.com/apache/mesos/blob/1.4.x/docs/container-image.md
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://github.com/appc/spec/blob/v0.8.11/SPEC.md
https://www.opencontainers.org/
https://github.com/kubernetes-sigs/cri-o/
https://issues.apache.org/jira/browse/MESOS-5011
https://github.com/opencontainers/runc
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/overview/components.md#container-runtime
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/overview/components.md#container-runtime
https://github.com/apache/mesos/blob/1.5.x/docs/containerizers.md
https://github.com/apache/mesos/blob/1.7.x/docs/mesos-containerizer.md#isolators
https://github.com/apache/mesos/blob/1.7.x/docs/isolators/cgroups-devices.md
https://github.com/apache/mesos/blob/1.7.x/docs/isolators/linux-devices.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/scheduler_extender.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/scheduler_extender.md
https://github.com/apache/mesos/blob/1.4.x/docs/allocation-module.md#writing-a-custom-allocator
https://github.com/apache/aurora/blob/master/RELEASE-NOTES.md#0200
https://github.com/apache/aurora/blob/rel/0.20.0/docs/reference/scheduler-configuration.md
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/plugin.md#scheduler

 97 of 121

Nov-2018].

[133] Cloud Native Computing Foundation, “website/configure-multiple-schedulers.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/tasks/administer-cluster/configure-multiple-schedulers.md. [Accessed: 09-Nov-

2018].

[134] Cloud Native Computing Foundation, “website/admission-controllers.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/reference/access-authn-authz/admission-controllers.md. [Accessed: 12-Nov-2018].

[135] Cloud Native Computing Foundation, “website/extensible-admission-controllers.md#initializers at

release-1.11 · kubernetes/website.” [Online]. Available:

https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-

authz/extensible-admission-controllers.md#initializers. [Accessed: 12-Nov-2018].

[136] Cloud Native Computing Foundation, “website/extensible-admission-controllers.md#admission

webhooks at release-1.11 · kubernetes/website.” [Online]. Available:

https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-

authz/extensible-admission-controllers.md#admission-webhooks. [Accessed: 12-Nov-2018].

[137] Mesosphere, “mesos/modules.md#hook at 1.6.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.6.x/docs/modules.md#hook. [Accessed: 12-Nov-2018].

[138] Mesosphere, “aurora/client-hooks.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/client-hooks.md. [Accessed: 12-Nov-

2018].

[139] Apache, “aurora/RELEASE-NOTES.md at master · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/master/RELEASE-NOTES.md#0190. [Accessed: 12-Nov-2018].

[140] Apache, “Apache Thrift - Home.” [Online]. Available: https://thrift.apache.org/. [Accessed: 12-Nov-

2018].

[141] Docker Inc., “docker.github.io/manage-nodes.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/manage-

nodes.md#install-plugins-on-swarm-nodes. [Accessed: 12-Nov-2018].

[142] Cloud Native Computing Foundation, “website/extend-cluster.md at release-1.11 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/extend-kubernetes/extend-cluster.md. [Accessed: 12-Nov-2018].

[143] Cloud Native Computing Foundation, “website/cloud-controller.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/architecture/cloud-controller.md. [Accessed: 12-Nov-2018].

[144] Cloud Native Computing Foundation, “website/custom-resources.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/extend-kubernetes/api-extension/custom-resources.md. [Accessed: 12-

Nov-2018].

[145] Cloud Native Computing Foundation, “Custom Resource Definition Versioning · Issue #544 ·

kubernetes/enhancements.” [Online]. Available:

https://github.com/kubernetes/enhancements/issues/544. [Accessed: 12-Nov-2018].

[146] Cloud Native Computing Foundation, “community/customresources-subresources.md at master ·

kubernetes/community.” [Online]. Available:

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-

machinery/customresources-subresources.md. [Accessed: 12-Nov-2018].

[147] Cloud Native Computing Foundation, “website/apiserver-aggregation.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation.md. [Accessed:

12-Nov-2018].

[148] Cloud Native Computing Foundation, “website/annotations.md at release-1.11 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/overview/working-with-objects/annotations.md. [Accessed: 12-Nov-

2018].

[149] Cloud Native Computing Foundation, “website/apparmor.md at release-1.11 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/tutorials/clusters/apparmor.md#restricting-profiles-with-the-podsecuritypolicy.

[Accessed: 12-Nov-2018].

[150] Cloud Native Computing Foundation, “website/reconfigure-kubelet.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/configure-multiple-schedulers.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/configure-multiple-schedulers.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/admission-controllers.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/admission-controllers.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/extensible-admission-controllers.md#initializers
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/extensible-admission-controllers.md#initializers
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/extensible-admission-controllers.md#admission-webhooks
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/extensible-admission-controllers.md#admission-webhooks
https://github.com/apache/mesos/blob/1.6.x/docs/modules.md#hook
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/client-hooks.md
https://github.com/apache/aurora/blob/master/RELEASE-NOTES.md#0190
https://thrift.apache.org/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/manage-nodes.md#install-plugins-on-swarm-nodes
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/manage-nodes.md#install-plugins-on-swarm-nodes
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/extend-cluster.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/extend-cluster.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/architecture/cloud-controller.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/architecture/cloud-controller.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/api-extension/custom-resources.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/api-extension/custom-resources.md
https://github.com/kubernetes/enhancements/issues/544
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/customresources-subresources.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/customresources-subresources.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/overview/working-with-objects/annotations.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/overview/working-with-objects/annotations.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tutorials/clusters/apparmor.md#restricting-profiles-with-the-podsecuritypolicy
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tutorials/clusters/apparmor.md#restricting-profiles-with-the-podsecuritypolicy
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/reconfigure-kubelet.md

 98 of 121

1.11/content/en/docs/tasks/administer-cluster/reconfigure-kubelet.md. [Accessed: 12-Nov-2018].

[151] Cloud Native Computing Foundation, “website/device-plugins.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins.md. [Accessed:

12-Nov-2018].

[152] Mesosphere, “mesos/resource-provider.md at 1.7.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md. [Accessed: 12-Nov-2018].

[153] Apache, “aurora/custom-executors.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/custom-executors.md. [Accessed: 12-

Nov-2018].

[154] Linux Virtual Server project, “IPVS Software - Advanced Layer-4 Switching.” [Online]. Available:

http://www.linuxvirtualserver.org/software/ipvs.html. [Accessed: 12-Nov-2018].

[155] Docker Inc., “docker.github.io/networking.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/networking.md.

[Accessed: 12-Nov-2018].

[156] Cloud Native Computing Foundation, “website/service.md at release-1.9 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/services-

networking/service.md. [Accessed: 12-Nov-2018].

[157] Docker Inc., “Layer 7 routing overview | Docker Documentation.” [Online]. Available:

https://docs.docker.com/ee/ucp/interlock/. [Accessed: 12-Nov-2018].

[158] Cloud Native Computing Foundation, “website/ingress.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-

networking/ingress.md#ingress-controllers. [Accessed: 12-Nov-2018].

[159] G. Duan, “How Docker Swarm Container Networking Works -- Under the Hood.” [Online]. Availabe:

https://neuvector.com/network-security/docker-swarm-container-networking. [Accessed: 20/11/2018]

[160] Cloud Native Computing Foundation, “kubernetes/pkg/proxy/ipvs at release-1.11 ·

kubernetes/kubernetes.” [Online]. Available: https://github.com/kubernetes/kubernetes/tree/release-

1.11/pkg/proxy/ipvs. [Accessed: 12-Nov-2018].

[161] Mesosphere, “marathon/networking.md at v1.6.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/networking.md#specifying-service-

ports. [Accessed: 12-Nov-2018].

[162] Mesosphere, “mesosphere/marathon-lb: Marathon-lb is a service discovery & load balancing tool for

DC/OS.” [Online]. Available: https://github.com/mesosphere/marathon-lb. [Accessed: 12-Nov-2018].

[163] Mesosphere, “Networking - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/#layer-7. [Accessed: 12-Nov-2018].

[164] Mesosphere, “marathon/networking.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#specifying-service-

ports. [Accessed: 12-Nov-2018].

[165] Mesosphere, “mesos/port-mapping-isolator.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md. [Accessed: 12-Nov-2018].

[166] Mesosphere, “Networking - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/. [Accessed: 12-Nov-2018].

[167] Docker Inc., “docker.github.io/overlay-standalone.swarm.md at v17.12 · docker/docker.github.io.”

[Online]. Available: https://github.com/docker/docker.github.io/blob/v17.12/network/overlay-

standalone.swarm.md. [Accessed: 12-Nov-2018].

[168] Docker Inc., “docker.github.io/ipv6.md at v17.09-release · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.09-

release/engine/userguide/networking/default_network/ipv6.md. [Accessed: 12-Nov-2018].

[169] Docker Inc., “docker.github.io/configure-dns.md at v17.09-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.09-

release/engine/userguide/networking/configure-dns.md. [Accessed: 12-Nov-2018].

[170] Cloud Native Computing Foundation, “website/create-cluster-kubeadm.md at release-1.9 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.9/docs/setup/independent/create-cluster-kubeadm.md#24-initializing-your-master. [Accessed: 12-

Nov-2018].

[171] Project Calico, “Enable IPv6 on Kubernetes with Project Calico | Project Calico.” [Online]. Available:

https://www.projectcalico.org/enable-ipv6-on-kubernetes-with-project-calico/. [Accessed: 12-Nov-

2018].

[172] Mesosphere, “marathon/networking.md at v1.6.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/reconfigure-kubelet.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/custom-executors.md
http://www.linuxvirtualserver.org/software/ipvs.html
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/networking.md
https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/services-networking/service.md
https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/services-networking/service.md
https://docs.docker.com/ee/ucp/interlock/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/ingress.md#ingress-controllers
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/ingress.md#ingress-controllers
https://neuvector.com/network-security/docker-swarm-container-networking
https://github.com/kubernetes/kubernetes/tree/release-1.11/pkg/proxy/ipvs
https://github.com/kubernetes/kubernetes/tree/release-1.11/pkg/proxy/ipvs
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/networking.md#specifying-service-ports
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/networking.md#specifying-service-ports
https://github.com/mesosphere/marathon-lb
https://docs.mesosphere.com/1.11/networking/#layer-7
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#specifying-service-ports
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#specifying-service-ports
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://docs.mesosphere.com/1.11/networking/
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay-standalone.swarm.md
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay-standalone.swarm.md
https://github.com/docker/docker.github.io/blob/v17.09-release/engine/userguide/networking/default_network/ipv6.md
https://github.com/docker/docker.github.io/blob/v17.09-release/engine/userguide/networking/default_network/ipv6.md
https://github.com/docker/docker.github.io/blob/v17.09-release/engine/userguide/networking/configure-dns.md
https://github.com/docker/docker.github.io/blob/v17.09-release/engine/userguide/networking/configure-dns.md
https://github.com/kubernetes/website/blob/release-1.9/docs/setup/independent/create-cluster-kubeadm.md#24-initializing-your-master
https://github.com/kubernetes/website/blob/release-1.9/docs/setup/independent/create-cluster-kubeadm.md#24-initializing-your-master
https://www.projectcalico.org/enable-ipv6-on-kubernetes-with-project-calico/

 99 of 121

https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/networking.md#container-

networking. [Accessed: 12-Nov-2018].

[173] Mesosphere, “Using Virtual IP Addresses - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/load-balancing-vips/virtual-ip-addresses/. [Accessed:

12-Nov-2018].

[174] Mesosphere, “Load Balancing and Virtual IPs (VIPs) - Mesosphere DC/OS Documentation.” [Online].

Available: https://docs.mesosphere.com/1.11/networking/load-balancing-vips/. [Accessed: 12-Nov-

2018].

[175] Mesosphere, “DC/OS Domain Name Service - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/DNS/. [Accessed: 12-Nov-2018].

[176] Mesosphere, “DC/OS Domain Name Service - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/DNS/#mygroupmyappmarathonl4lbthisdcosdirectory.

[Accessed: 12-Nov-2018].

[177] Mesosphere, “Networking - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/#dcos-dns. [Accessed: 12-Nov-2018].

[178] Mesosphere, “Software Defined Networks - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/SDN/#ipv6-support-for-docker-containers. [Accessed:

12-Nov-2018].

[179] Mesosphere, “DC/OS Domain Name Service - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/DNS/#myapp-

mygroupmarathonautoipdcosthisdcosdirectory. [Accessed: 12-Nov-2018].

[180] Mesosphere, “dcos-net/dcos_dns.md at master · dcos/dcos-net.” [Online]. Available:

https://github.com/dcos/dcos-net/blob/master/docs/dcos_dns.md#http-interface. [Accessed: 12-Nov-

2018].

[181] Mesosphere, “mesos-dns/http.md at master · mesosphere/mesos-dns.” [Online]. Available:

https://github.com/mesosphere/mesos-dns/blob/master/docs/docs/http.md#get-v1servicesservice.

[Accessed: 12-Nov-2018].

[182] Mesosphere, “Mesos-DNS - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/DNS/mesos-dns/. [Accessed: 12-Nov-2018].

[183] C. Daboo and C. Daboo, “Use of SRV Records for Locating Email Submission/Access Services,” [[Internet

Engineering Task Force|IETF]], Mar. 2011.

[184] Docker Inc., “docker.github.io/network-tutorial-host.md at v17.12 · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.12/network/network-tutorial-host.md.

[Accessed: 12-Nov-2018].

[185] Docker Inc., “docker.github.io/bridge.md at v17.12 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.12/network/bridge.md. [Accessed: 12-Nov-2018].

[186] Docker Inc., “docker.github.io/host.md at v17.12 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.12/network/host.md. [Accessed: 12-Nov-2018].

[187] Docker Inc., “Docker Trusted Registry overview | Docker Documentation.” [Online]. Available:

https://docs.docker.com/ee/dtr/. [Accessed: 12-Nov-2018].

[188] Cloud Native Computing Foundation, “website/overview.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/overview.md#services. [Accessed: 12-Nov-2018].

[189] Cloud Native Computing Foundation, “plugins/plugins/meta/portmap at master ·

containernetworking/plugins.” [Online]. Available:

https://github.com/containernetworking/plugins/tree/master/plugins/meta/portmap. [Accessed: 12-

Nov-2018].

[190] Docker Inc., “docker.github.io/overlay.md at v17.12 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#bypass-the-routing-

mesh-for-a-swarm-service. [Accessed: 12-Nov-2018].

[191] Apache, “aurora/service-discovery.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/service-discovery.md#using-mesos-

dns. [Accessed: 12-Nov-2018].

[192] Mesosphere, “marathon/service-discovery-load-balancing.md at v1.6.0 · mesosphere/marathon.”

[Online]. Available: https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/service-discovery-

load-balancing.md#mesos-dns. [Accessed: 12-Nov-2018].

[193] Mesosphere, “mesos/networking.md at 1.5.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.5.x/docs/networking.md#docker-containerizer. [Accessed: 12-

Nov-2018].

https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/networking.md#container-networking
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/networking.md#container-networking
https://docs.mesosphere.com/1.11/networking/load-balancing-vips/virtual-ip-addresses/
https://docs.mesosphere.com/1.11/networking/load-balancing-vips/
https://docs.mesosphere.com/1.11/networking/DNS/
https://docs.mesosphere.com/1.11/networking/DNS/#mygroupmyappmarathonl4lbthisdcosdirectory
https://docs.mesosphere.com/1.11/networking/#dcos-dns
https://docs.mesosphere.com/1.11/networking/SDN/#ipv6-support-for-docker-containers
https://docs.mesosphere.com/1.11/networking/DNS/#myapp-mygroupmarathonautoipdcosthisdcosdirectory
https://docs.mesosphere.com/1.11/networking/DNS/#myapp-mygroupmarathonautoipdcosthisdcosdirectory
https://github.com/dcos/dcos-net/blob/master/docs/dcos_dns.md#http-interface
file:///C:/Users/eddy/Documents/DistriNetProjects/Decomads/middleware-architecture-for-adaptive-saas/Task2.1%20-%20Overall%20architecture/Research%20Targets%20and%20Questions/Internet%20Computing/http.md%20at%20master%20·%20mesosphere/mesos-dns
file:///C:/Users/eddy/Documents/DistriNetProjects/Decomads/middleware-architecture-for-adaptive-saas/Task2.1%20-%20Overall%20architecture/Research%20Targets%20and%20Questions/Internet%20Computing/http.md%20at%20master%20·%20mesosphere/mesos-dns
https://docs.mesosphere.com/1.11/networking/DNS/mesos-dns/
https://github.com/docker/docker.github.io/blob/v17.12/network/network-tutorial-host.md
https://github.com/docker/docker.github.io/blob/v17.12/network/bridge.md
https://github.com/docker/docker.github.io/blob/v17.12/network/host.md
https://docs.docker.com/ee/dtr/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/overview.md#services
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/overview.md#services
https://github.com/containernetworking/plugins/tree/master/plugins/meta/portmap
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#bypass-the-routing-mesh-for-a-swarm-service
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#bypass-the-routing-mesh-for-a-swarm-service
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/service-discovery.md#using-mesos-dns
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/service-discovery.md#using-mesos-dns
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/service-discovery-load-balancing.md#mesos-dns
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/service-discovery-load-balancing.md#mesos-dns
https://github.com/apache/mesos/blob/1.5.x/docs/networking.md#docker-containerizer

 100 of 121

[194] Mesosphere, “marathon/networking.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#host-networking.

[Accessed: 12-Nov-2018].

[195] Mesosphere, “Networking - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/#host-mode-networking. [Accessed: 12-Nov-2018].

[196] Docker Inc., “docker.github.io/services.md at master · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/master/engine/swarm/services.md#publish-a-

services-ports-directly-on-the-swarm-node. [Accessed: 12-Nov-2018].

[197] Apache, “aurora/services.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/services.md#ports. [Accessed: 12-Nov-

2018].

[198] Mesosphere, “marathon/ports.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/ports.md#random-port-assignment.

[Accessed: 12-Nov-2018].

[199] Docker Inc., “docker.github.io/services.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node. [Accessed:

12-Nov-2018].

[200] RedHat, “Default Scheduling - Scheduling | Cluster Administration | OKD Latest.” [Online]. Available:

https://docs.okd.io/latest/admin_guide/scheduling/scheduler.html#scheduler-sample-policies.

[Accessed: 12-Nov-2018].

[201] Docker Inc., “docker.github.io/filter.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/scheduler/filter.md.

[Accessed: 12-Nov-2018].

[202] Mesosphere, “marathon/constraints.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/constraints.md. [Accessed: 12-Nov-

2018].

[203] Mesosphere, “marathon/host-port.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/host-port.md. [Accessed: 12-Nov-

2018].

[204] Cloud Native Computing Foundation, “containernetworking/cni: Container Network Interface -

networking for Linux containers.” [Online]. Available: https://github.com/containernetworking/cni.

[Accessed: 12-Nov-2018].

[205] Cloud Native Computing Foundation, “website/network-plugins.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/cluster-administration/network-plugins.md#cni. [Accessed: 12-Nov-2018].

[206] Mesosphere, “mesos/cni.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/cni.md. [Accessed: 12-Nov-2018].

[207] Mesosphere, “CNI Plugin Support - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/networking/virtual-networks/cni-plugins/. [Accessed: 12-Nov-2018].

[208] Cloud Native Computing Foundation, “CNI Plugins Should allow hairpin traffic · Issue #476 ·

containernetworking/cni.” [Online]. Available: https://github.com/containernetworking/cni/issues/476.

[Accessed: 12-Nov-2018].

[209] Docker Inc., “docker/libnetwork: Docker Networking.” [Online]. Available:

https://github.com/docker/libnetwork. [Accessed: 12-Nov-2018].

[210] Mesosphere, “mesos/networking.md at 1.5.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.5.x/docs/networking.md. [Accessed: 12-Nov-2018].

[211] Mesosphere, “Virtual Networks - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/networking/virtual-networks/. [Accessed: 12-Nov-2018].

[212] Mesosphere, “DC/OS Overlay - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/SDN/dcos-overlay/#replacing-or-adding-new-virtual-

networks. [Accessed: 12-Nov-2018].

[213] Mesosphere, “mesos/networking.md at 1.5.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.5.x/docs/networking.md#limitations-of-docker-containerizer.

[Accessed: 12-Nov-2018].

[214] Docker Inc., “docker.github.io/overlay.md at v17.12 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#separate-control-and-

data-traffic. [Accessed: 12-Nov-2018].

[215] Intel, “intel/multus-cni: Multi-homed pod cni.” [Online]. Available: https://github.com/intel/multus-cni.

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#host-networking
https://docs.mesosphere.com/1.11/networking/#host-mode-networking
https://github.com/docker/docker.github.io/blob/master/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node
https://github.com/docker/docker.github.io/blob/master/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/services.md#ports
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/ports.md#random-port-assignment
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node
https://docs.okd.io/latest/admin_guide/scheduling/scheduler.html#scheduler-sample-policies
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/scheduler/filter.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/constraints.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/host-port.md
https://github.com/containernetworking/cni
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/network-plugins.md#cni
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/network-plugins.md#cni
https://github.com/apache/mesos/blob/1.4.x/docs/cni.md
https://docs.mesosphere.com/1.10/networking/virtual-networks/cni-plugins/
https://github.com/containernetworking/cni/issues/476
https://github.com/docker/libnetwork
https://github.com/apache/mesos/blob/1.5.x/docs/networking.md
https://docs.mesosphere.com/1.10/networking/virtual-networks/
https://docs.mesosphere.com/1.11/networking/SDN/dcos-overlay/#replacing-or-adding-new-virtual-networks
https://docs.mesosphere.com/1.11/networking/SDN/dcos-overlay/#replacing-or-adding-new-virtual-networks
https://github.com/apache/mesos/blob/1.5.x/docs/networking.md#limitations-of-docker-containerizer
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#separate-control-and-data-traffic
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#separate-control-and-data-traffic
https://github.com/intel/multus-cni

 101 of 121

[Accessed: 12-Nov-2018].

[216] Cloud Native Computing Foundation, “website/dns-pod-service.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/services-networking/dns-pod-service.md. [Accessed: 12-Nov-2018].

[217] Cloud Native Computing Foundation, “website/dns-pod-service.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/services-networking/dns-pod-service.md#srv-records. [Accessed: 12-Nov-2018].

[218] Mesosphere, “Service Naming - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/DNS/mesos-dns/service-naming/#srv-records.

[Accessed: 12-Nov-2018].

[219] Cloud Native Computing Foundation, “website/service.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-

networking/service.md#headless-services. [Accessed: 12-Nov-2018].

[220] Mesosphere, “Edge-LB - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/edge-lb/. [Accessed: 13-Nov-2018].

[221] Mesosphere, “Service Docs - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/. [Accessed: 12-Nov-2018].

[222] Cloud Native Computing Foundation, “website/create-external-load-balancer.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/access-application-cluster/create-external-load-balancer.md. [Accessed: 12-Nov-2018].

[223] Docker Inc., “docker.github.io/services.md at v17.09-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.09-release/engine/swarm/services.md.

[Accessed: 13-Nov-2018].

[224] Docker Inc., “Support SCTP port mapping (bump up API to v1.37) by ishidawataru · Pull Request #33922

· moby/moby.” [Online]. Available: https://github.com/moby/moby/pull/33922. [Accessed: 12-Nov-

2018].

[225] N. Mehta, Introduction to Diameter Protocol - What is Diameter Protocol? Sun Microsystems, 2009.

[226] Docker Inc., “docker.github.io/network-tutorial-overlay.md at v17.12 · docker/docker.github.io.”

[Online]. Available: https://github.com/docker/docker.github.io/blob/v17.12/network/network-tutorial-

overlay.md#use-an-overlay-network-for-standalone-containers. [Accessed: 12-Nov-2018].

[227] Docker Inc., “docker.github.io/overlay.md at master · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/master/network/overlay.md#publish-ports.

[Accessed: 12-Nov-2018].

[228] Mesosphere, “Networking - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/#edge-lb-enterprise. [Accessed: 13-Nov-2018].

[229] Cloud Native Computing Foundation, “kubernetes/pkg/cloudprovider/providers at v1.8.0 ·

kubernetes/kubernetes.” [Online]. Available:

https://github.com/kubernetes/kubernetes/tree/v1.8.0/pkg/cloudprovider/providers/. [Accessed: 12-

Nov-2018].

[230] Cloud Native Computing Foundation, “website/service.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-

networking/service.md#type-loadbalancer. [Accessed: 12-Nov-2018].

[231] Cloud Native Computing Foundation, “kubernetes-incubator/external-dns: Configure external DNS

servers (AWS Route53, Google CloudDNS and others) for Kubernetes Ingresses and Services.” [Online].

Available: https://github.com/kubernetes-incubator/external-dns. [Accessed: 12-Nov-2018].

[232] Cloud Native Computing Foundation, “website/ip-masq-agent.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-

cluster/ip-masq-agent.md. [Accessed: 12-Nov-2018].

[233] Cloud Native Computing Foundation, “website/add-entries-to-pod-etc-hosts-with-host-aliases.md at

release-1.8 · kubernetes/website.” [Online]. Available:

https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/add-

entries-to-pod-etc-hosts-with-host-aliases.md. [Accessed: 12-Nov-2018].

[234] Cloud Native Computing Foundation, “website/dns-pod-service.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/services-networking/dns-pod-service.md#pods-dns-config. [Accessed:

12-Nov-2018].

[235] Cloud Native Computing Foundation, “website/dns-custom-nameservers.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/tasks/administer-cluster/dns-custom-nameservers.md#configuring-coredns-

https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/services-networking/dns-pod-service.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/services-networking/dns-pod-service.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/dns-pod-service.md#srv-records
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/dns-pod-service.md#srv-records
https://docs.mesosphere.com/1.11/networking/DNS/mesos-dns/service-naming/#srv-records
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/service.md#headless-services
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/service.md#headless-services
https://docs.mesosphere.com/services/edge-lb/
https://docs.mesosphere.com/services/
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/access-application-cluster/create-external-load-balancer.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/access-application-cluster/create-external-load-balancer.md
https://github.com/docker/docker.github.io/blob/v17.09-release/engine/swarm/services.md
https://github.com/moby/moby/pull/33922
https://github.com/docker/docker.github.io/blob/v17.12/network/network-tutorial-overlay.md#use-an-overlay-network-for-standalone-containers
https://github.com/docker/docker.github.io/blob/v17.12/network/network-tutorial-overlay.md#use-an-overlay-network-for-standalone-containers
https://github.com/docker/docker.github.io/blob/master/network/overlay.md#publish-ports
https://docs.mesosphere.com/1.11/networking/#edge-lb-enterprise
https://github.com/kubernetes/kubernetes/tree/v1.8.0/pkg/cloudprovider/providers/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/service.md#type-loadbalancer
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/service.md#type-loadbalancer
https://github.com/kubernetes-incubator/external-dns
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/ip-masq-agent.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/ip-masq-agent.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/add-entries-to-pod-etc-hosts-with-host-aliases.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/add-entries-to-pod-etc-hosts-with-host-aliases.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/services-networking/dns-pod-service.md#pods-dns-config
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/services-networking/dns-pod-service.md#pods-dns-config
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/dns-custom-nameservers.md#configuring-coredns-config-coredns
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/dns-custom-nameservers.md#configuring-coredns-config-coredns

 102 of 121

config-coredns. [Accessed: 12-Nov-2018].

[236] Docker Inc., “swarmkit/task_model.md at master · docker/swarmkit.” [Online]. Available:

https://github.com/docker/swarmkit/blob/master/design/task_model.md. [Accessed: 12-Nov-2018].

[237] Cloud Native Computing Foundation, “website/pod.md at release-1.8 · kubernetes/website.” [Online].

Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/pods/pod.md. [Accessed: 12-Nov-2018].

[238] Mesosphere, “mesos/nested-container-and-task-group.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/nested-container-and-task-group.md. [Accessed: 12-

Nov-2018].

[239] Mesosphere, “marathon/pods.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md. [Accessed: 12-Nov-2018].

[240] Mesosphere, “Pods - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/deploying-services/pods/. [Accessed: 13-Nov-2018].

[241] Mesosphere, “mesos/mesos-containerizer.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/mesos-containerizer.md#posix-disk-isolator.

[Accessed: 12-Nov-2018].

[242] Cloud Native Computing Foundation, “website/jobs-run-to-completion.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/controllers/jobs-run-to-completion.md. [Accessed: 12-Nov-2018].

[243] Apache, “aurora/configuration-tutorial.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration-tutorial.md. [Accessed:

12-Nov-2018].

[244] Cloud Native Computing Foundation, “website/cron-jobs.md at release-1.11 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/workloads/controllers/cron-jobs.md. [Accessed: 12-Nov-2018].

[245] Apache, “aurora/cron-jobs.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/cron-jobs.md. [Accessed: 12-Nov-2018].

[246] Cloud Native Computing Foundation, “website/service.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-

networking/service.md. [Accessed: 12-Nov-2018].

[247] Cloud Native Computing Foundation, “website/replicaset.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/controllers/replicaset.md. [Accessed: 12-Nov-2018].

[248] Cloud Native Computing Foundation, “website/labels.md at release-1.8 · kubernetes/website.” [Online].

Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/overview/working-

with-objects/labels.md. [Accessed: 12-Nov-2018].

[249] Cloud Native Computing Foundation, “website/labels.md at release-1.8 · kubernetes/website.” [Online].

Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/overview/working-

with-objects/labels.md#label-selectors. [Accessed: 12-Nov-2018].

[250] Mesosphere, “marathon/application-basics.md at master · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/master/docs/docs/application-basics.md. [Accessed: 12-

Nov-2018].

[251] Mesosphere, “Deploying an Internally and Externally Load Balanced App with Marathon-LB -

Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/marathon-lb/marathon-lb-advanced-tutorial/#deploy-an-

external-facing-nginx-app. [Accessed: 12-Nov-2018].

[252] Mesosphere, “Deploying an Internally and Externally Load Balanced App with Marathon-LB -

Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/marathon-lb/marathon-lb-advanced-tutorial/. [Accessed: 12-

Nov-2018].

[253] Microsoft, “Load balance containers in Azure DC/OS cluster | Microsoft Docs.” [Online]. Available:

https://docs.microsoft.com/en-us/azure/container-service/dcos-swarm/container-service-load-

balancing. [Accessed: 12-Nov-2018].

[254] Mesosphere, “DC/OS Overlay - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/SDN/dcos-overlay/#adding-virtual-networks-during-

installation. [Accessed: 12-Nov-2018].

[255] Mesosphere, “Using an SDN - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/SDN/usage/#example. [Accessed: 12-Nov-2018].

[256] Apache, “aurora/services.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/dns-custom-nameservers.md#configuring-coredns-config-coredns
https://github.com/docker/swarmkit/blob/master/design/task_model.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/pods/pod.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/pods/pod.md
https://github.com/apache/mesos/blob/1.4.x/docs/nested-container-and-task-group.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md
https://docs.mesosphere.com/1.11/deploying-services/pods/
https://github.com/apache/mesos/blob/1.4.x/docs/mesos-containerizer.md#posix-disk-isolator
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/jobs-run-to-completion.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/jobs-run-to-completion.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration-tutorial.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/workloads/controllers/cron-jobs.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/workloads/controllers/cron-jobs.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/cron-jobs.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/service.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/service.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/replicaset.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/replicaset.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/overview/working-with-objects/labels.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/overview/working-with-objects/labels.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/overview/working-with-objects/labels.md#label-selectors
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/overview/working-with-objects/labels.md#label-selectors
https://github.com/mesosphere/marathon/blob/master/docs/docs/application-basics.md
https://docs.mesosphere.com/services/marathon-lb/marathon-lb-advanced-tutorial/#deploy-an-external-facing-nginx-app
https://docs.mesosphere.com/services/marathon-lb/marathon-lb-advanced-tutorial/#deploy-an-external-facing-nginx-app
https://docs.mesosphere.com/services/marathon-lb/marathon-lb-advanced-tutorial/
https://docs.microsoft.com/en-us/azure/container-service/dcos-swarm/container-service-load-balancing
https://docs.microsoft.com/en-us/azure/container-service/dcos-swarm/container-service-load-balancing
https://docs.mesosphere.com/1.11/networking/SDN/dcos-overlay/#adding-virtual-networks-during-installation
https://docs.mesosphere.com/1.11/networking/SDN/dcos-overlay/#adding-virtual-networks-during-installation
https://docs.mesosphere.com/1.11/networking/SDN/usage/#example

 103 of 121

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/services.md. [Accessed: 12-Nov-2018].

[257] Docker Inc., “docker.github.io/deploy-app.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/swarm/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose.

[Accessed: 12-Nov-2018].

[258] Docker Inc., “docker.github.io/index.md at master · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.06/compose/compose-

file/index.md#update_config. [Accessed: 12-Nov-2018].

[259] Cloud Native Computing Foundation, “website/horizontal-pod-autoscale.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/run-application/horizontal-pod-autoscale.md. [Accessed: 12-Nov-2018].

[260] Mesosphere, “Autoscaling with Marathon - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/tutorials/autoscaling/. [Accessed: 12-Nov-2018].

[261] Cloud Native Computing Foundation, “website/daemonset.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/controllers/daemonset.md. [Accessed: 12-Nov-2018].

[262] Docker Inc., “docker.github.io/stack-deploy.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/stack-

deploy.md. [Accessed: 12-Nov-2018].

[263] Mesosphere, “marathon/application-groups.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/application-groups.md. [Accessed: 12-

Nov-2018].

[264] Cloud Native Computing Foundation, “helm/helm: The Kubernetes Package Manager.” [Online].

Available: https://github.com/helm/helm. [Accessed: 12-Nov-2018].

[265] Cloud Native Computing Foundation, “kubernetes/kompose: Go from Docker Compose to

Kubernetes.” [Online]. Available: https://github.com/kubernetes/kompose. [Accessed: 12-Nov-2018].

[266] Mesosphere, “mesos/multiple-disk.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/multiple-disk.md. [Accessed: 12-Nov-2018].

[267] Cloud Native Computing Foundation, “community/volume-topology-scheduling.md at master ·

kubernetes/community.” [Online]. Available:

https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/storage/volume-topology-scheduling.md. [Accessed: 12-Nov-2018].

[268] Mesosphere, “marathon/persistent-volumes.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/persistent-volumes.md#under-the-

hood. [Accessed: 12-Nov-2018].

[269] Mesosphere, “marathon/persistent-volumes.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/persistent-volumes.md. [Accessed: 12-

Nov-2018].

[270] Apache, “aurora/configuration.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#mesos-object.

[Accessed: 12-Nov-2018].

[271] Docker Inc., “docker.github.io/volumes.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/admin/volumes/volumes.md#start-a-service-with-volumes. [Accessed: 12-Nov-2018].

[272] Docker Inc., “docker.github.io/volumes.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/admin/volumes/volumes.md. [Accessed: 12-Nov-2018].

[273] Cloud Native Computing Foundation, “website/volumes.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/storage/volumes.md. [Accessed: 12-Nov-2018].

[274] Mesosphere, “mesos/shared-resources.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/shared-resources.md. [Accessed: 12-Nov-2018].

[275] Docker Inc., “docker.github.io/volumes.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/admin/volumes/volumes.md#use-a-volume-driver. [Accessed: 12-Nov-2018].

[276] Docker Inc., “docker.github.io/services.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/swarm/services.md#data-volumes. [Accessed: 12-Nov-2018].

[277] Mesosphere, “mesos/docker-volume.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/services.md
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose
https://github.com/docker/docker.github.io/blob/v17.06/compose/compose-file/index.md#update_config
https://github.com/docker/docker.github.io/blob/v17.06/compose/compose-file/index.md#update_config
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/run-application/horizontal-pod-autoscale.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/run-application/horizontal-pod-autoscale.md
https://docs.mesosphere.com/1.10/tutorials/autoscaling/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/daemonset.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/daemonset.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/stack-deploy.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/stack-deploy.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/application-groups.md
https://github.com/helm/helm
https://github.com/kubernetes/kompose
https://github.com/apache/mesos/blob/1.4.x/docs/multiple-disk.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/volume-topology-scheduling.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/volume-topology-scheduling.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/persistent-volumes.md#under-the-hood
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/persistent-volumes.md#under-the-hood
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/persistent-volumes.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#mesos-object
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md#start-a-service-with-volumes
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md#start-a-service-with-volumes
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/storage/volumes.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/storage/volumes.md
https://github.com/apache/mesos/blob/1.4.x/docs/shared-resources.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md#use-a-volume-driver
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/admin/volumes/volumes.md#use-a-volume-driver
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#data-volumes
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#data-volumes

 104 of 121

https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md#motivation. [Accessed: 12-Nov-

2018].

[278] Apache, “aurora/configuration.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#docker-object.

[Accessed: 12-Nov-2018].

[279] Mesosphere, “marathon/external-volumes.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/external-volumes.md. [Accessed: 12-

Nov-2018].

[280] Mesosphere, “External Persistent Volumes - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/storage/external-storage/. [Accessed: 13-Nov-2018].

[281] Docker Inc., “docker.github.io/plugins_volume.md at v18.03-release · docker/docker.github.io.”

[Online]. Available:

https://github.com/docker/docker.github.io/blob/v18.03/engine/extend/plugins_volume.md. [Accessed:

12-Nov-2018].

[282] K. and M. Cloud Foundry, “container-storage-interface/spec: Container Storage Interface (CSI)

Specification.” [Online]. Available: https://github.com/container-storage-interface/spec. [Accessed: 12-

Nov-2018].

[283] Docker Inc., “docker.github.io/index.md at v18.03-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v18.03/engine/extend/index.md. [Accessed:

12-Nov-2018].

[284] Portworx, “Using Portworx volumes with DCOS.” [Online]. Available:

https://docs.portworx.com/scheduler/mesosphere-dcos/portworx-volumes.html. [Accessed: 12-Nov-

2018].

[285] Dell, “thecodeteam/mesos-module-dvdi: Mesos Docker Volume Driver Isolator module.” [Online].

Available: https://github.com/thecodeteam/mesos-module-dvdi. [Accessed: 12-Nov-2018].

[286] Cloud Native Computing Foundation, “website/volumes.md at release-1.10 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.10/content/en/docs/concepts/storage/volumes.md#csi. [Accessed: 12-Nov-2018].

[287] Mesosphere, “mesos/csi.md at 1.7.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.7.x/docs/csi.md. [Accessed: 12-Nov-2018].

[288] Mesosphere, “Volume Plugins - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/beta-storage/0.3.0-beta/volume-plugins/. [Accessed: 12-Nov-

2018].

[289] Cloud Native Computing Foundation, “kubernetes/pkg/volume at master · kubernetes/kubernetes.”

[Online]. Available: https://github.com/kubernetes/kubernetes/tree/master/pkg/volume. [Accessed: 12-

Nov-2018].

[290] Docker Inc., “docker.github.io/services.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/swarm/services.md#give-a-service-access-to-volumes-or-bind-mounts. [Accessed: 12-

Nov-2018].

[291] Cloud Native Computing Foundation, “website/dynamic-provisioning.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/storage/dynamic-provisioning.md. [Accessed: 12-Nov-2018].

[292] Cloud Native Computing Foundation, “website/persistent-volumes.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/storage/persistent-volumes.md. [Accessed: 12-Nov-2018].

[293] Cloud Native Computing Foundation, “website/persistent-volumes.md at release-1.8 ·

kubernetes/website. [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/storage/persistent-volumes.md#storageclasses. [Accessed: 12-Nov-2018].

[294] Mesosphere, “mesos/persistent-volume.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/persistent-volume.md#framework-api. [Accessed: 12-

Nov-2018].

[295] Mesosphere, “mesos/docker-volume.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md#pre-conditions. [Accessed: 12-

Nov-2018].

[296] Cloud Native Computing Foundation, “website/downward-api-volume-expose-pod-information.md at

release-1.8 · kubernetes/website.” [Online]. Available:

https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/downward-

api-volume-expose-pod-information.md. [Accessed: 12-Nov-2018].

https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md#motivation
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#docker-object
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/external-volumes.md
https://docs.mesosphere.com/1.11/storage/external-storage/
https://github.com/docker/docker.github.io/blob/v18.03/engine/extend/plugins_volume.md
https://github.com/container-storage-interface/spec
https://github.com/docker/docker.github.io/blob/v18.03/engine/extend/index.md
https://docs.portworx.com/scheduler/mesosphere-dcos/portworx-volumes.html
https://github.com/thecodeteam/mesos-module-dvdi
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/storage/volumes.md#csi
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/storage/volumes.md#csi
https://github.com/apache/mesos/blob/1.7.x/docs/csi.md
https://docs.mesosphere.com/services/beta-storage/0.3.0-beta/volume-plugins/
https://github.com/kubernetes/kubernetes/tree/master/pkg/volume
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#give-a-service-access-to-volumes-or-bind-mounts
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#give-a-service-access-to-volumes-or-bind-mounts
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/storage/dynamic-provisioning.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/storage/dynamic-provisioning.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/storage/persistent-volumes.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/storage/persistent-volumes.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/storage/persistent-volumes.md#storageclasses
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/storage/persistent-volumes.md#storageclasses
https://github.com/apache/mesos/blob/1.4.x/docs/persistent-volume.md#framework-api
https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md#pre-conditions
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information.md

 105 of 121

[297] Mesosphere, “marathon/networking.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#downward-api.

[Accessed: 12-Nov-2018].

[298] Docker Inc., “docker.github.io/configs.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/configs.md.

[Accessed: 12-Nov-2018].

[299] Cloud Native Computing Foundation, “website/configmap.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-

container/configmap.md. [Accessed: 12-Nov-2018].

[300] Docker Inc., “moby/run.md at 17.05.x · moby/moby.” [Online]. Available:

https://github.com/moby/moby/blob/17.05.x/docs/reference/run.md#overriding-dockerfile-image-

defaults. [Accessed: 12-Nov-2018].

[301] Docker Inc., “docker.github.io/deploy-app.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/swarm/swarm_at_scale/deploy-app.md#task-2-start-the-containerized-microservices.

[Accessed: 12-Nov-2018].

[302] Docker Inc., “moby/service_create.md at 17.05.x · moby/moby.” [Online]. Available:

https://github.com/moby/moby/blob/17.05.x/docs/reference/commandline/service_create.md.

[Accessed: 12-Nov-2018].

[303] Cloud Native Computing Foundation, “website/define-command-argument-container.md at release-1.8

· kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/inject-data-application/define-command-argument-container.md#notes. [Accessed: 12-

Nov-2018].

[304] Mesosphere, “mesos/docker-containerizer.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/docker-containerizer.md. [Accessed: 12-Nov-2018].

[305] Mesosphere, “mesos/mesos-containerizer.md at 1.5.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.5.x/docs/mesos-containerizer.md. [Accessed: 09-Nov-2018].

[306] Mesosphere, “marathon/native-docker.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/native-docker.md#command-vs-args.

[Accessed: 12-Nov-2018].

[307] Apache, “aurora/job-updates.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/job-updates.md. [Accessed: 12-Nov-

2018].

[308] Docker Inc., “docker service inspect | Docker Documentation.” [Online]. Available:

https://docs.docker.com/engine/reference/commandline/service_inspect/. [Accessed: 12-Nov-2018].

[309] Apache, “aurora/job-updates.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/job-updates.md#coordinated-job-

updates. [Accessed: 12-Nov-2018].

[310] Cloud Native Computing Foundation, “website/deployment.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/controllers/deployment.md. [Accessed: 12-Nov-2018].

[311] Mesosphere, “marathon/deployments.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/deployments.md. [Accessed: 12-Nov-

2018].

[312] Cloud Native Computing Foundation, “website/configure-liveness-readiness-probes.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/configure-pod-container/configure-liveness-readiness-probes.md#define-readiness-

probes. [Accessed: 12-Nov-2018].

[313] Mesosphere, “marathon/readiness-checks.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/readiness-checks.md. [Accessed: 12-

Nov-2018].

[314] Cloud Native Computing Foundation, “website/deployment.md at release-1.10 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.10/content/en/docs/concepts/workloads/controllers/deployment.md#proportional-scaling. [Accessed:

12-Nov-2018].

[315] Mesosphere, “marathon/deployments.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/deployments.md#rolling-restarts.

[Accessed: 12-Nov-2018].

[316] Docker Inc., “docker service update | Docker Documentation.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#downward-api
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/configs.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/configmap.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/configmap.md
https://github.com/moby/moby/blob/17.05.x/docs/reference/run.md#overriding-dockerfile-image-defaults
https://github.com/moby/moby/blob/17.05.x/docs/reference/run.md#overriding-dockerfile-image-defaults
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/swarm_at_scale/deploy-app.md#task-2-start-the-containerized-microservices
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/swarm_at_scale/deploy-app.md#task-2-start-the-containerized-microservices
https://github.com/moby/moby/blob/17.05.x/docs/reference/commandline/service_create.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/define-command-argument-container.md#notes
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/define-command-argument-container.md#notes
https://github.com/apache/mesos/blob/1.4.x/docs/docker-containerizer.md
https://github.com/apache/mesos/blob/1.5.x/docs/mesos-containerizer.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/native-docker.md#command-vs-args
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/job-updates.md
https://docs.docker.com/engine/reference/commandline/service_inspect/
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/job-updates.md#coordinated-job-updates
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/job-updates.md#coordinated-job-updates
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/deployment.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/deployment.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/deployments.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/configure-liveness-readiness-probes.md#define-readiness-probes
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/configure-liveness-readiness-probes.md#define-readiness-probes
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/configure-liveness-readiness-probes.md#define-readiness-probes
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/readiness-checks.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/workloads/controllers/deployment.md#proportional-scaling
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/workloads/controllers/deployment.md#proportional-scaling
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/deployments.md#rolling-restarts

 106 of 121

https://docs.docker.com/v17.06/engine/reference/commandline/service_update/. [Accessed: 12-Nov-

2018].

[317] Cloud Native Computing Foundation, “website/deployment.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/controllers/deployment.md#max-unavailable. [Accessed: 12-Nov-2018].

[318] Cloud Native Computing Foundation, “website/deployment.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/controllers/deployment.md#max-surge. [Accessed: 12-Nov-2018].

[319] Apache, “aurora/configuration.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#updateconfig-

objects. [Accessed: 12-Nov-2018].

[320] Docker Inc., “docker service update | Docker Documentation.” [Online]. Available:

https://docs.docker.com/engine/reference/commandline/service_update/#roll-back-to-the-previous-

version-of-a-service. [Accessed: 12-Nov-2018].

[321] Cloud Native Computing Foundation, “website/deployment.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/controllers/deployment.md#rolling-back-to-a-previous-revision.

[Accessed: 12-Nov-2018].

[322] Mesosphere, “dcos marathon deployment rollback - Mesosphere DC/OS Documentation.” [Online].

Available: https://docs.mesosphere.com/1.10/cli/command-reference/dcos-marathon/dcos-marathon-

deployment-rollback/. [Accessed: 12-Nov-2018].

[323] Cloud Native Computing Foundation, “website/manage-deployment.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/cluster-administration/manage-deployment.md#canary-deployments. [Accessed: 12-

Nov-2018].

[324] Mesosphere, “marathon/blue-green-deploy.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/blue-green-deploy.md. [Accessed: 12-

Nov-2018].

[325] Cloud Native Computing Foundation, “website/manage-deployment.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/cluster-administration/manage-deployment.md#in-place-updates-of-resources.

[Accessed: 12-Nov-2018].

[326] Mesosphere, “dcos marathon pod update - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/cli/command-reference/dcos-marathon/dcos-marathon-pod-update/.

[Accessed: 12-Nov-2018].

[327] Cloud Native Computing Foundation, “website/update-api-object-kubectl-patch.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/run-application/update-api-object-kubectl-patch.md. [Accessed: 12-Nov-2018].

[328] Cloud Native Computing Foundation, “website/manage-deployment.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/cluster-administration/manage-deployment.md#kubectl-apply. [Accessed: 12-Nov-

2018].

[329] Cloud Native Computing Foundation, “website/manage-deployment.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/cluster-administration/manage-deployment.md#kubectl-edit. [Accessed: 12-Nov-

2018].

[330] Docker Inc., “Docker Engine API v1.37 Reference.” [Online]. Available:

https://docs.docker.com/engine/api/v1.37/#operation/ContainerUpdate. [Accessed: 15-Nov-2018].

[331] Docker Inc., “docker service update | Docker Documentation.” [Online]. Available:

https://docs.docker.com/engine/reference/commandline/service_update/#extended-description.

[Accessed: 12-Nov-2018].

[332] Mesosphere, “Updating a User-Created Service - Mesosphere DC/OS Documentation.” [Online].

Available: https://docs.mesosphere.com/1.11/deploying-services/update-user-service/. [Accessed: 12-

Nov-2018].

[333] Cloud Native Computing Foundation, “website/init-containers.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/pods/init-containers.md. [Accessed: 12-Nov-2018].

[334] Cloud Native Computing Foundation, “autoscaler/vertical-pod-autoscaler at master ·

kubernetes/autoscaler.” [Online]. Available:

https://docs.docker.com/v17.06/engine/reference/commandline/service_update/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/deployment.md#max-unavailable
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/deployment.md#max-unavailable
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/deployment.md#max-surge
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/deployment.md#max-surge
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#updateconfig-objects
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#updateconfig-objects
https://docs.docker.com/engine/reference/commandline/service_update/#roll-back-to-the-previous-version-of-a-service
https://docs.docker.com/engine/reference/commandline/service_update/#roll-back-to-the-previous-version-of-a-service
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/deployment.md#rolling-back-to-a-previous-revision
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/deployment.md#rolling-back-to-a-previous-revision
https://docs.mesosphere.com/1.10/cli/command-reference/dcos-marathon/dcos-marathon-deployment-rollback/
https://docs.mesosphere.com/1.10/cli/command-reference/dcos-marathon/dcos-marathon-deployment-rollback/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/manage-deployment.md#canary-deployments
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/manage-deployment.md#canary-deployments
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/blue-green-deploy.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/manage-deployment.md#in-place-updates-of-resources
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/manage-deployment.md#in-place-updates-of-resources
https://docs.mesosphere.com/1.11/cli/command-reference/dcos-marathon/dcos-marathon-pod-update/
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/run-application/update-api-object-kubectl-patch.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/run-application/update-api-object-kubectl-patch.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/manage-deployment.md#kubectl-apply
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/manage-deployment.md#kubectl-apply
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/manage-deployment.md#kubectl-edit
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/manage-deployment.md#kubectl-edit
https://docs.docker.com/engine/api/v1.37/#operation/ContainerUpdate
https://docs.docker.com/engine/reference/commandline/service_update/#extended-description
https://docs.mesosphere.com/1.11/deploying-services/update-user-service/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/pods/init-containers.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/pods/init-containers.md

 107 of 121

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler. [Accessed: 12-Nov-2018].

[335] Cloud Native Computing Foundation, “website/statefulset.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/controllers/statefulset.md. [Accessed: 12-Nov-2018].

[336] Cloud Native Computing Foundation, “website/persistent-volumes.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/storage/persistent-volumes.md#raw-block-volume-support. [Accessed:

12-Nov-2018].

[337] Cloud Native Computing Foundation, “community/raw-block-pv.md at master ·

kubernetes/community.” [Online]. Available:

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/raw-

block-pv.md. [Accessed: 12-Nov-2018].

[338] Cloud Native Computing Foundation, “website/persistent-volumes.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/storage/persistent-volumes.md#expanding-persistent-volumes-claims.

[Accessed: 12-Nov-2018].

[339] Cloud Native Computing Foundation, “website/persistent-volumes.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/storage/persistent-volumes.md#resizing-an-in-use-

persistentvolumeclaim. [Accessed: 12-Nov-2018].

[340] Cloud Native Computing Foundation, “website/storage-limits.md at release-1.11 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/storage/storage-limits.md. [Accessed: 12-Nov-2018].

[341] Mesosphere, “mesos/persistent-volume.md at 1.6.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.6.x/docs/persistent-volume.md#offeroperationgrowvolume.

[Accessed: 12-Nov-2018].

[342] Mesosphere, “mesosphere/dcos-commons: Simplifying stateful services.” [Online]. Available:

https://github.com/mesosphere/dcos-commons/. [Accessed: 12-Nov-2018].

[343] Cloud Native Computing Foundation, “website/podpreset.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-

application/podpreset.md. [Accessed: 12-Nov-2018].

[344] Thomas Orozco, “krallin/tini: A tiny but valid `init` for containers.” [Online]. Available:

https://github.com/krallin/tini. [Accessed: 12-Nov-2018].

[345] Docker Inc., “docker.github.io/index.md at v18.03 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v18.03/compose/compose-file/index.md#init.

[Accessed: 12-Nov-2018].

[346] Docker Inc., “docker.github.io/compose-file-v2.md at v17.06-release · docker/docker.github.io.”

[Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-

file/compose-file-v2.md#init. [Accessed: 12-Nov-2018].

[347] Docker Inc., “docker.github.io/index.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/datacenter/ucp/2.2/guides/access-control/index.md. [Accessed: 12-Nov-2018].

[348] Docker Inc., “docker.github.io/manage-access-with-collections.md at v17.06-release ·

docker/docker.github.io.” [Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/datacenter/ucp/2.2/guides/access-control/manage-access-with-collections.md. [Accessed: 12-

Nov-2018].

[349] Cloud Native Computing Foundation, “website/namespaces.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/overview/working-with-objects/namespaces.md. [Accessed: 12-Nov-2018].

[350] Apache, “aurora/multitenancy.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md. [Accessed: 12-Nov-

2018].

[351] Mesosphere, “Concepts - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/overview/concepts/#dcos-service-group. [Accessed: 12-Nov-2018].

[352] Mesosphere, “mesos/roles.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/roles.md. [Accessed: 12-Nov-2018].

[353] Cloud Native Computing Foundation, “website/resource-quotas.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/policy/resource-quotas.md#compute-resource-quota. [Accessed: 12-Nov-2018].

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/statefulset.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/statefulset.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#raw-block-volume-support
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#raw-block-volume-support
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/raw-block-pv.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/raw-block-pv.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#expanding-persistent-volumes-claims
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#expanding-persistent-volumes-claims
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#resizing-an-in-use-persistentvolumeclaim
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#resizing-an-in-use-persistentvolumeclaim
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#resizing-an-in-use-persistentvolumeclaim
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/storage-limits.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/storage-limits.md
https://github.com/apache/mesos/blob/1.6.x/docs/persistent-volume.md#offeroperationgrowvolume
https://github.com/mesosphere/dcos-commons/
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/podpreset.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/podpreset.md
https://github.com/krallin/tini
https://github.com/docker/docker.github.io/blob/v18.03/compose/compose-file/index.md#init
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/compose-file-v2.md#init
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/compose-file-v2.md#init
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/index.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/index.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/manage-access-with-collections.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/manage-access-with-collections.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/overview/working-with-objects/namespaces.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/overview/working-with-objects/namespaces.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md
https://docs.mesosphere.com/1.10/overview/concepts/#dcos-service-group
https://github.com/apache/mesos/blob/1.4.x/docs/roles.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/resource-quotas.md#compute-resource-quota
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/resource-quotas.md#compute-resource-quota

 108 of 121

[354] Cloud Native Computing Foundation, “website/resource-quotas.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/policy/resource-quotas.md#storage-resource-quota. [Accessed: 12-Nov-2018].

[355] Mesosphere, “mesos/quota.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/quota.md. [Accessed: 12-Nov-2018].

[356] Mesosphere, “mesos/operator-http-api.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/operator-http-api.md#get_roles. [Accessed: 12-Nov-

2018].

[357] Mesosphere, “mesos/weights.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/weights.md. [Accessed: 12-Nov-2018].

[358] Apache, “aurora/multitenancy.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md#configuration-tiers.

[Accessed: 12-Nov-2018].

[359] Cloud Native Computing Foundation, “website/resource-quotas.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/policy/resource-quotas.md#object-count-quota. [Accessed: 12-Nov-2018].

[360] Docker Inc., “docker.github.io/isolate-nodes-between-teams.md at v17.06-release ·

docker/docker.github.io.” [Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/datacenter/ucp/2.2/guides/access-control/isolate-nodes-between-teams.md. [Accessed: 12-Nov-

2018].

[361] Docker Inc., “docker.github.io/isolate-volumes-between-teams.md at v17.06-release ·

docker/docker.github.io.” [Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/datacenter/ucp/2.2/guides/access-control/isolate-volumes-between-teams.md. [Accessed: 12-

Nov-2018].

[362] Mesosphere, “Tutorial – Restricting Access to DC/OS Service Groups - Mesosphere DC/OS

Documentation.” [Online]. Available: https://docs.mesosphere.com/1.10/security/ent/restrict-service-

access/#create-users-and-groups. [Accessed: 12-Nov-2018].

[363] Cloud Native Computing Foundation, “website/reserve-compute-resources.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/administer-cluster/reserve-compute-resources.md. [Accessed: 12-Nov-2018].

[364] Mesosphere, “marathon/pods.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md#executor-resources.

[Accessed: 12-Nov-2018].

[365] Mesosphere, “mesos/framework-rate-limiting.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/framework-rate-limiting.md. [Accessed: 12-Nov-

2018].

[366] Cloud Native Computing Foundation, “website/manage-compute-resources-container.md at release-1.8

· kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/manage-compute-resources-container.md. [Accessed: 12-Nov-2018].

[367] Cloud Native Computing Foundation, “kubernetes/resource-qos.md at release-1.2 ·

kubernetes/kubernetes.” [Online]. Available: https://github.com/kubernetes/kubernetes/blob/release-

1.2/docs/proposals/resource-qos.md. [Accessed: 12-Nov-2018].

[368] Cloud Native Computing Foundation, “website/assign-memory-resource.md at release-1.12 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.12/content/en/docs/tasks/configure-pod-container/assign-memory-resource.md#exceed-a-containers-

memory-limit. [Accessed: 12-Nov-2018].

[369] Cloud Native Computing Foundation, “website/manage-compute-resources-container.md at release-

1.11 · kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#how-pods-

with-resource-limits-are-run. [Accessed: 12-Nov-2018].

[370] Docker Inc., “docker.github.io/index.md at master · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.06/compose/compose-file/index.md#resources.

[Accessed: 12-Nov-2018].

[371] Docker Inc, “docker.github.io/compose-file-v2.md at v17.06-release · docker/docker.github.io.”

[Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-

file/compose-file-v2.md#cpu_count-cpu_percent-cpu_shares-cpu_quota-cpus-cpuset-domainname-

hostname-ipc-mac_address-mem_limit-memswap_limit-mem_swappiness-mem_reservation-oom_sc.

[Accessed: 12-Nov-2018].

[372] L. Torvalds, “linux/sched-design-CFS.txt at master · torvalds/linux.” [Online]. Available:

https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/resource-quotas.md#storage-resource-quota
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/resource-quotas.md#storage-resource-quota
https://github.com/apache/mesos/blob/1.4.x/docs/quota.md
https://github.com/apache/mesos/blob/1.4.x/docs/operator-http-api.md%23get_roles
https://github.com/apache/mesos/blob/1.4.x/docs/weights.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md#configuration-tiers
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/resource-quotas.md#object-count-quota
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/resource-quotas.md#object-count-quota
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/isolate-nodes-between-teams.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/isolate-nodes-between-teams.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/isolate-volumes-between-teams.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/isolate-volumes-between-teams.md
https://docs.mesosphere.com/1.10/security/ent/restrict-service-access/#create-users-and-groups
https://docs.mesosphere.com/1.10/security/ent/restrict-service-access/#create-users-and-groups
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/reserve-compute-resources.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/reserve-compute-resources.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md#executor-resources
https://github.com/apache/mesos/blob/1.4.x/docs/framework-rate-limiting.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md
https://github.com/kubernetes/kubernetes/blob/release-1.2/docs/proposals/resource-qos.md
https://github.com/kubernetes/kubernetes/blob/release-1.2/docs/proposals/resource-qos.md
https://github.com/kubernetes/website/blob/release-1.12/content/en/docs/tasks/configure-pod-container/assign-memory-resource.md#exceed-a-containers-memory-limit
https://github.com/kubernetes/website/blob/release-1.12/content/en/docs/tasks/configure-pod-container/assign-memory-resource.md#exceed-a-containers-memory-limit
https://github.com/kubernetes/website/blob/release-1.12/content/en/docs/tasks/configure-pod-container/assign-memory-resource.md#exceed-a-containers-memory-limit
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#how-pods-with-resource-limits-are-run
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#how-pods-with-resource-limits-are-run
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#how-pods-with-resource-limits-are-run
https://github.com/docker/docker.github.io/blob/v17.06/compose/compose-file/index.md#resources
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/compose-file-v2.md#cpu_count-cpu_percent-cpu_shares-cpu_quota-cpus-cpuset-domainname-hostname-ipc-mac_address-mem_limit-memswap_limit-mem_swappiness-mem_reservation-oom_sc
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/compose-file-v2.md#cpu_count-cpu_percent-cpu_shares-cpu_quota-cpus-cpuset-domainname-hostname-ipc-mac_address-mem_limit-memswap_limit-mem_swappiness-mem_reservation-oom_sc
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/compose-file-v2.md#cpu_count-cpu_percent-cpu_shares-cpu_quota-cpus-cpuset-domainname-hostname-ipc-mac_address-mem_limit-memswap_limit-mem_swappiness-mem_reservation-oom_sc

 109 of 121

https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-design-CFS.txt.

[Accessed: 12-Nov-2018].

[373] Mesosphere, “mesos/cgroups-cpu.md at 1.5.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-cpu.md. [Accessed: 12-Nov-2018].

[374] L. Torvalds, “linux/sched-bwc.txt at master · torvalds/linux.” [Online]. Available:

https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-bwc.txt. [Accessed: 12-

Nov-2018].

[375] Mesosphere, “mesos/posix_rlimits.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/posix_rlimits.md. [Accessed: 12-Nov-2018].

[376] Mesosphere, “mesos/oversubscription.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/oversubscription.md. [Accessed: 12-Nov-2018].

[377] Apache, “aurora/resource-isolation.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-

isolation.md#oversubscription. [Accessed: 12-Nov-2018].

[378] Apache, “aurora/resource-isolation.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-isolation.md. [Accessed: 12-

Nov-2018].

[379] Mesosphere, “marathon/pods.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md#basic-pod-container-fields.

[Accessed: 12-Nov-2018].

[380] Mesosphere, “mesos/gpu-support.md at 1.7.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.7.x/docs/gpu-support.md. [Accessed: 12-Nov-2018].

[381] Mesosphere, “marathon/pod.json at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/rest-

api/public/api/v2/examples/pod.json. [Accessed: 12-Nov-2018].

[382] Mesosphere, “Using GPUs - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/deploying-services/gpu/. [Accessed: 12-Nov-2018].

[383] Cloud Native Computing Foundation, “website/scheduling-gpus.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/tasks/manage-gpus/scheduling-gpus.md. [Accessed: 12-Nov-2018].

[384] Apache, “aurora/resource-isolation.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-isolation.md#disk-space.

[Accessed: 12-Nov-2018].

[385] Cloud Native Computing Foundation, “website/manage-compute-resources-container.md at release-

1.11 · kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#local-

ephemeral-storage-alpha-feature. [Accessed: 12-Nov-2018].

[386] Cloud Native Computing Foundation, “website/assign-pod-node.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/assign-pod-node.md#step-one-attach-label-to-the-node. [Accessed: 12-

Nov-2018].

[387] Mesosphere, “Frequently Asked Questions - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/installing/installation-faq/#q-how-to-add-mesos-attributes-to-nodes-

to-use-marathon-constraints. [Accessed: 12-Nov-2018].

[388] Mesosphere, “mesos/attributes-resources.md at master · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/master/docs/attributes-resources.md#attributes. [Accessed: 12-

Nov-2018].

[389] Docker Inc., “docker.github.io/services.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/swarm/services.md#specify-service-placement-preferences---placement-pref. [Accessed:

12-Nov-2018].

[390] Cloud Native Computing Foundation, “website/assign-pod-node.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/assign-pod-node.md#nodeselector. [Accessed: 12-Nov-2018].

[391] Cloud Native Computing Foundation, “website/assign-pod-node.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/assign-pod-node.md#inter-pod-affinity-and-anti-affinity-beta-feature.

[Accessed: 12-Nov-2018].

[392] Cloud Native Computing Foundation, “website/taint-and-toleration.md at release-1.8 ·

https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-design-CFS.txt
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-cpu.md
https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-bwc.txt
https://github.com/apache/mesos/blob/1.4.x/docs/posix_rlimits.md
https://github.com/apache/mesos/blob/1.4.x/docs/oversubscription.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-isolation.md#oversubscription
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-isolation.md#oversubscription
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-isolation.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md#basic-pod-container-fields
https://github.com/apache/mesos/blob/1.7.x/docs/gpu-support.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/rest-api/public/api/v2/examples/pod.json
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/rest-api/public/api/v2/examples/pod.json
https://docs.mesosphere.com/1.11/deploying-services/gpu/
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/manage-gpus/scheduling-gpus.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/manage-gpus/scheduling-gpus.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-isolation.md#disk-space
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#local-ephemeral-storage-alpha-feature
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#local-ephemeral-storage-alpha-feature
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#local-ephemeral-storage-alpha-feature
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md#step-one-attach-label-to-the-node
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md#step-one-attach-label-to-the-node
https://docs.mesosphere.com/1.10/installing/installation-faq/#q-how-to-add-mesos-attributes-to-nodes-to-use-marathon-constraints
https://docs.mesosphere.com/1.10/installing/installation-faq/#q-how-to-add-mesos-attributes-to-nodes-to-use-marathon-constraints
https://github.com/apache/mesos/blob/master/docs/attributes-resources.md#attributes
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#specify-service-placement-preferences---placement-pref
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#specify-service-placement-preferences---placement-pref
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md#nodeselector
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md#nodeselector
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md#inter-pod-affinity-and-anti-affinity-beta-feature
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md#inter-pod-affinity-and-anti-affinity-beta-feature

 110 of 121

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/taint-and-toleration.md. [Accessed: 12-Nov-2018].

[393] Cloud Native Computing Foundation, “website/pod-priority-preemption.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/pod-priority-preemption.md. [Accessed: 12-Nov-2018].

[394] Apache, “aurora/multitenancy.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md#preemption.

[Accessed: 12-Nov-2018].

[395] Cloud Native Computing Foundation, “website/manage-compute-resources-container.md at release-

1.11 · kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#how-pods-

with-resource-requests-are-scheduled. [Accessed: 12-Nov-2018].

[396] Cloud Native Computing Foundation.”website/out-of-resource.md at release-1.8 . kubernetes/website."

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-

cluster/out-of-resource.md. [Accessed: 12-Nov-2018].

[397] Cloud Native Computing Foundation, “website/out-of-resource.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-

cluster/out-of-resource.md#eviction-policy. [Accessed: 12-Nov-2018].

[398] Cloud Native Computing Foundation, “website/out-of-resource.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-

cluster/out-of-resource.md#node-oom-behavior. [Accessed: 12-Nov-2018].

[399] Mesosphere, “mesos/high-availability-framework-guide.md at 1.4.x · apache/mesos.” [Online].

Available: https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-

guide.md#dealing-with-partitioned-or-failed-agents. [Accessed: 12-Nov-2018].

[400] Mesosphere, “mesos/agent-recovery.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/agent-recovery.md. [Accessed: 12-Nov-2018].

[401] Cloud Native Computing Foundation, “website/container-lifecycle-hooks.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/containers/container-lifecycle-hooks.md. [Accessed: 12-Nov-2018].

[402] Docker Inc., “docker.github.io/admin_guide.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/swarm/admin_guide.md#force-the-swarm-to-rebalance. [Accessed: 12-Nov-2018].

[403] Eddy Truyen et al., “Kubernetes scheduler doesn’t support N+1 fault tolerance in the presence of

automated shutdowns and restarts of VMs · Issue #23758 · kubernetes/kubernetes.” [Online]. Available:

https://github.com/kubernetes/kubernetes/issues/23758. [Accessed: 09-Nov-2018].

[404] Cloud Native Computing Foundation, “kubernetes-incubator/descheduler: Descheduler for

Kubernetes.” [Online]. Available: https://github.com/kubernetes-incubator/descheduler. [Accessed: 12-

Nov-2018].

[405] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic Vertical Elasticity of Docker

Containers with ELASTICDOCKER,” in IEEE International Conference on Cloud Computing, CLOUD, 2017,

vol. 2017–June.

[406] Cloud Native Computing Foundation, “website/manage-compute-resources-container.md at release-1.8

· kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/manage-compute-resources-container.md#extended-resources.

[Accessed: 12-Nov-2018].

[407] Cloud Native Computing Foundation, “website/scheduling-hugepages.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/tasks/manage-hugepages/scheduling-hugepages.md. [Accessed: 12-Nov-2018].

[408] Debian.org, “Hugepages - Debian Wiki.” [Online]. Available: https://wiki.debian.org/Hugepages.

[Accessed: 12-Nov-2018].

[409] Mesosphere, “mesos/port-mapping-isolator.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md#rate-limiting-container-

traffic. [Accessed: 12-Nov-2018].

[410] Mesosphere, “mesos/cgroups-net-cls.md at 1.5.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-net-cls.md. [Accessed: 12-Nov-

2018].

[411] kernel.org, “Network classifier cgroup.” [Online]. Available:

https://www.kernel.org/doc/Documentation/cgroup-v1/net_cls.txt. [Accessed: 12-Nov-2018].

[412] tlpd.org, “Traffic Control HOWTO | Software and Tools.” [Online]. Available:

https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/taint-and-toleration.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/taint-and-toleration.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/pod-priority-preemption.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/pod-priority-preemption.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md#preemption
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#how-pods-with-resource-requests-are-scheduled
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#how-pods-with-resource-requests-are-scheduled
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#how-pods-with-resource-requests-are-scheduled
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/out-of-resource.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/out-of-resource.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/out-of-resource.md#eviction-policy
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/out-of-resource.md#eviction-policy
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/out-of-resource.md#node-oom-behavior
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/out-of-resource.md#node-oom-behavior
https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-guide.md#dealing-with-partitioned-or-failed-agents
https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-guide.md#dealing-with-partitioned-or-failed-agents
https://github.com/apache/mesos/blob/1.4.x/docs/agent-recovery.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/containers/container-lifecycle-hooks.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/containers/container-lifecycle-hooks.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/admin_guide.md#force-the-swarm-to-rebalance
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/admin_guide.md#force-the-swarm-to-rebalance
https://github.com/kubernetes/kubernetes/issues/23758
https://github.com/kubernetes-incubator/descheduler
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md#extended-resources
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md#extended-resources
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/manage-hugepages/scheduling-hugepages.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/manage-hugepages/scheduling-hugepages.md
https://wiki.debian.org/Hugepages
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md#rate-limiting-container-traffic
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md#rate-limiting-container-traffic
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-net-cls.md
https://www.kernel.org/doc/Documentation/cgroup-v1/net_cls.txt

 111 of 121

http://tldp.org/HOWTO/Traffic-Control-HOWTO/software.html#s-iproute2-tc. [Accessed: 12-Nov-

2018].

[413] Cloud Native Computing Foundation, “website/cpu-management-policies.md at release-1.10 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md. [Accessed: 12-Nov-2018].

[414] Docker Inc., “docker.github.io/secure-swarm-tls.md at v17.06-release · docker/docker.github.io.”

[Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/secure-

swarm-tls.md. [Accessed: 12-Nov-2018].

[415] Docker Inc., “docker.github.io/https.md at v17.06 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.06/engine/security/https.md. [Accessed: 12-Nov-

2018].

[416] Docker Inc., “docker.github.io/index.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/datacenter/ucp/2.2/guides/index.md. [Accessed: 12-Nov-2018].

[417] Cloud Native Computing Foundation, “website/authentication.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/admin/authentication.md. [Accessed: 12-Nov-2018].

[418] Cloud Native Computing Foundation, “website/index.md at release-1.8 · kubernetes/website.” [Online].

Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/admin/authorization/index.md. [Accessed: 12-Nov-2018].

[419] Cloud Native Computing Foundation, “website/authentication.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/reference/access-authn-authz/authentication.md#client-go-credential-plugins.

[Accessed: 12-Nov-2018].

[420] Mesosphere, “mesos/authentication.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/authentication.md. [Accessed: 12-Nov-2018].

[421] Apache, “aurora/security.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md. [Accessed: 12-Nov-

2018].

[422] Apache, “aurora/security.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#announcer-

authentication. [Accessed: 12-Nov-2018].

[423] Mesosphere, “marathon/ssl-basic-access-authentication.md at v1.5.0 · mesosphere/marathon.” [Online].

Available: https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/ssl-basic-access-

authentication.md. [Accessed: 12-Nov-2018].

[424] Mesosphere, “marathon/plugin.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/plugin.md#security. [Accessed: 12-

Nov-2018].

[425] Mesosphere, “Identity provider-based authentication - Mesosphere DC/OS Documentation.” [Online].

Available: https://docs.mesosphere.com/1.10/security/ent/sso/. [Accessed: 12-Nov-2018].

[426] Mesosphere, “Directory-based authentication via LDAP - Mesosphere DC/OS Documentation.”

[Online]. Available: https://docs.mesosphere.com/1.9/security/ent/ldap/. [Accessed: 12-Nov-2018].

[427] Mesosphere, “Permissions Management - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/security/ent/perms-management/. [Accessed: 12-Nov-2018].

[428] Mesosphere, “mesos/authorization.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/authorization.md#local-authorizer. [Accessed: 12-

Nov-2018].

[429] Apache, “aurora/security.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#authorization.

[Accessed: 12-Nov-2018].

[430] Apache, “aurora/security.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#using-an-ini-file-to-

define-security-controls. [Accessed: 12-Nov-2018].

[431] Mesosphere, “Tutorial – Restricting Access to DC/OS Service Groups - Mesosphere DC/OS

Documentation.” [Online]. Available: https://docs.mesosphere.com/1.10/security/ent/restrict-service-

access/. [Accessed: 12-Nov-2018].

[432] Docker Inc., “docker.github.io/configure-tls.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/configure-tls.md.

[Accessed: 12-Nov-2018].

http://tldp.org/HOWTO/Traffic-Control-HOWTO/software.html#s-iproute2-tc
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/secure-swarm-tls.md
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/secure-swarm-tls.md
file:///C:/Users/eddy/Documents/DistriNetProjects/Decomads/middleware-architecture-for-adaptive-saas/Task2.1%20-%20Overall%20architecture/Research%20Targets%20and%20Questions/Internet%20Computing/https.md%20at%20v17.06%20·%20docker/docker.github.io
file:///C:/Users/eddy/Documents/DistriNetProjects/Decomads/middleware-architecture-for-adaptive-saas/Task2.1%20-%20Overall%20architecture/Research%20Targets%20and%20Questions/Internet%20Computing/https.md%20at%20v17.06%20·%20docker/docker.github.io
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/index.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/index.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/authentication.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/authentication.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/authorization/index.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/authorization/index.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/authentication.md#client-go-credential-plugins
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/authentication.md#client-go-credential-plugins
https://github.com/apache/mesos/blob/1.4.x/docs/authentication.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#announcer-authentication
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#announcer-authentication
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/ssl-basic-access-authentication.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/ssl-basic-access-authentication.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/plugin.md#security
https://docs.mesosphere.com/1.10/security/ent/sso/
https://docs.mesosphere.com/1.9/security/ent/ldap/
https://docs.mesosphere.com/1.10/security/ent/perms-management/
https://github.com/apache/mesos/blob/1.4.x/docs/authorization.md#local-authorizer
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#authorization
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#using-an-ini-file-to-define-security-controls
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#using-an-ini-file-to-define-security-controls
https://docs.mesosphere.com/1.10/security/ent/restrict-service-access/
https://docs.mesosphere.com/1.10/security/ent/restrict-service-access/
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/configure-tls.md

 112 of 121

[433] Docker Inc., “docker.github.io/pki.md at v17.06-release · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/how-swarm-mode-

works/pki.md. [Accessed: 12-Nov-2018].

[434] Cloud Native Computing Foundation, “website/kubelet-tls-bootstrapping.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/admin/kubelet-tls-bootstrapping.md. [Accessed: 12-Nov-2018].

[435] Docker Inc., “docker.github.io/create-swarm.md at v17.06 · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/swarm-

tutorial/create-swarm.md. [Accessed: 12-Nov-2018].

[436] Cloud Native Computing Foundation, “website/bootstrap-tokens.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/admin/bootstrap-tokens.md. [Accessed: 12-Nov-2018].

[437] Cloud Native Computing Foundation, “website/create-cluster-kubeadm.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/setup/independent/create-cluster-kubeadm.md. [Accessed: 09-Nov-2018].

[438] Mesosphere, “mesos/authorization.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/authorization.md#authorizable-actions. [Accessed:

12-Nov-2018].

[439] Apache, “ZooKeeper Programmer’s Guide.” [Online]. Available:

https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html#sc_ZooKeeperAccessControl.

[Accessed: 12-Nov-2018].

[440] Docker Inc., “docker.github.io/overlay-security-model.md at v17.06 · docker/docker.github.io.”

[Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.06/engine/userguide/networking/overlay-

security-model.md. [Accessed: 16-Nov-2018].

[441] Cloud Native Computing Foundation, “website/master-node-communication.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/architecture/master-node-communication.md#ssh-tunnels. [Accessed: 16-Nov-2018].

[442] Mesosphere, “DC/OS Enterprise Security - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/security/ent/#transport-layer-security-tls-encryption. [Accessed: 16-

Nov-2018].

[443] Docker Inc., “docker.github.io/networking.md at v17.06 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/networking.md#configure-

encryption-of-application-data. [Accessed: 16-Nov-2018].

[444] Docker Inc., “moby/swarm_init.md at 17.05.x · moby/moby.” [Online]. Available:

https://github.com/moby/moby/blob/17.05.x/docs/reference/commandline/swarm_init.md#--listen-

addr. [Accessed: 16-Nov-2018].

[445] Cloud Native Computing Foundation, “community/nodeport-ip-range.md at master ·

kubernetes/community.” [Online]. Available:

https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/network/nodeport-ip-range.md. [Accessed: 16-Nov-2018].

[446] Mesosphere, “Node Types - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/overview/architecture/node-types/. [Accessed: 16-Nov-2018].

[447] Cloud Native Computing Foundation, “website/audit.md at release-1.8 · kubernetes/website.” [Online].

Available: https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-

cluster/audit.md. [Accessed: 16-Nov-2018].

[448] Docker Inc., “docker.github.io/swarm_manager_locking.md at v17.06-release ·

docker/docker.github.io.” [Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/swarm/swarm_manager_locking.md. [Accessed: 16-Nov-2018].

[449] Cloud Native Computing Foundation, “website/kubelet-authentication-authorization.md at release-

1.10 · kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.10/content/en/docs/reference/command-line-tools-reference/kubelet-authentication-

authorization.md. [Accessed: 16-Nov-2018].

[450] Cloud Native Computing Foundation, “website/network-policies.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/services-networking/network-policies.md. [Accessed: 16-Nov-2018].

[451] Docker Inc., “docker.github.io/secrets.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/secrets.md.

[Accessed: 16-Nov-2018].

https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/how-swarm-mode-works/pki.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/how-swarm-mode-works/pki.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/kubelet-tls-bootstrapping.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/kubelet-tls-bootstrapping.md
https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/swarm-tutorial/create-swarm.md
https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/swarm-tutorial/create-swarm.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/bootstrap-tokens.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/bootstrap-tokens.md
https://github.com/kubernetes/website/blob/release-1.8/docs/setup/independent/create-cluster-kubeadm.md
https://github.com/kubernetes/website/blob/release-1.8/docs/setup/independent/create-cluster-kubeadm.md
https://github.com/apache/mesos/blob/1.4.x/docs/authorization.md#authorizable-actions
https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html#sc_ZooKeeperAccessControl
https://github.com/docker/docker.github.io/blob/v17.06/engine/userguide/networking/overlay-security-model.md
https://github.com/docker/docker.github.io/blob/v17.06/engine/userguide/networking/overlay-security-model.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/architecture/master-node-communication.md#ssh-tunnels
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/architecture/master-node-communication.md#ssh-tunnels
https://docs.mesosphere.com/1.10/security/ent/#transport-layer-security-tls-encryption
https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/networking.md#configure-encryption-of-application-data
https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/networking.md#configure-encryption-of-application-data
https://github.com/moby/moby/blob/17.05.x/docs/reference/commandline/swarm_init.md#--listen-addr
https://github.com/moby/moby/blob/17.05.x/docs/reference/commandline/swarm_init.md#--listen-addr
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/network/nodeport-ip-range.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/network/nodeport-ip-range.md
https://docs.mesosphere.com/1.10/overview/architecture/node-types/
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/audit.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/audit.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm_manager_locking.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm_manager_locking.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/reference/command-line-tools-reference/kubelet-authentication-authorization.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/reference/command-line-tools-reference/kubelet-authentication-authorization.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/reference/command-line-tools-reference/kubelet-authentication-authorization.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/network-policies.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/network-policies.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/secrets.md

 113 of 121

[452] Cloud Native Computing Foundation, “website/secret.md at release-1.8 · kubernetes/website.” [Online].

Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/secret.md. [Accessed: 16-Nov-2018].

[453] Mesosphere, “mesos/secrets.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/secrets.md. [Accessed: 16-Nov-2018].

[454] Mesosphere, “marathon/secrets.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/secrets.md. [Accessed: 16-Nov-2018].

[455] Mesosphere, “Creating secrets - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/security/ent/secrets/create-secrets/. [Accessed: 16-Nov-2018].

[456] Cloud Native Computing Foundation, “website/pull-image-private-registry.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/configure-pod-container/pull-image-private-registry.md. [Accessed: 16-Nov-2018].

[457] Mesosphere, “marathon/native-docker-private-registry.md at v1.5.0 · mesosphere/marathon.” [Online].

Available: https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/native-docker-private-

registry.md. [Accessed: 16-Nov-2018].

[458] Docker Inc., “mesos/docker-containerizer.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/docker-containerizer.md#private-docker-repository.

[Accessed: 16-Nov-2018].

[459] M. G. Xavier, M. V. Neves, and C. A. F. De Rose, “A Performance Comparison of Container-Based

Virtualization Systems for MapReduce Clusters,” 2014 22nd Euromicro Int. Conf. Parallel, Distrib. Network-

Based Process., pp. 299–306, 2014.

[460] SELinux Project, “SELinux Policy Analysis Tools.” [Online]. Available:

https://github.com/SELinuxProject/setools. [Accessed: 16-Nov-2018].

[461] “AppArmor / apparmor · GitLab.” [Online]. Available: https://gitlab.com/apparmor/apparmor.

[Accessed: 15-Nov-2018].

[462] Jonathan Corbet, “Yet another new approach to seccomp [LWN.net].” [Online]. Available:

https://lwn.net/Articles/475043/. [Accessed: 16-Nov-2018].

[463] bpf(4) Berkeley Packet Filter. FreeBSD, 2010.

[464] Linux Audit, “Linux capabilities 101 - Linux Audit.” [Online]. Available: https://linux-audit.com/linux-

capabilities-101/. [Accessed: 15-Nov-2018].

[465] Docker Inc., “docker.github.io/security.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/security/security.md#linux-kernel-capabilities. [Accessed: 15-Nov-2018].

[466] Cloud Native Computing Foundation, “website/security-context.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/configure-pod-container/security-context.md#set-capabilities-for-a-container. [Accessed:

15-Nov-2018].

[467] RedHat, “Chapter 6. Docker SELinux Security Policy - Red Hat Customer Portal.” [Online]. Available:

https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_p

olicy. [Accessed: 15-Nov-2018].

[468] Cloud Native Computing Foundation, “website/security-context.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/configure-pod-container/security-context.md#assign-selinux-labels-to-a-container.

[Accessed: 15-Nov-2018].

[469] Docker Inc., “docker.github.io/apparmor.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/security/apparmor.md. [Accessed: 15-Nov-2018].

[470] Cloud Native Computing Foundation, “website/apparmor.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tutorials/clusters/apparmor.md. [Accessed: 15-Nov-2018].

[471] Docker Inc., “docker.github.io/seccomp.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/security/seccomp.md. [Accessed: 15-Nov-2018].

[472] RedHat, “Restricting Application Capabilities Using Seccomp | Cluster Administration | OpenShift

Container Platform 3.3.” [Online]. Available: https://docs.openshift.com/container-

platform/3.3/admin_guide/seccomp.html. [Accessed: 15-Nov-2018].

[473] Cloud Native Computing Foundation, “website/security-context.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/secret.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/secret.md
https://github.com/apache/mesos/blob/1.4.x/docs/secrets.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/secrets.md
https://docs.mesosphere.com/1.10/security/ent/secrets/create-secrets/
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/pull-image-private-registry.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/pull-image-private-registry.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/native-docker-private-registry.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/native-docker-private-registry.md
https://github.com/apache/mesos/blob/1.4.x/docs/docker-containerizer.md#private-docker-repository
https://github.com/SELinuxProject/setools
https://gitlab.com/apparmor/apparmor
https://lwn.net/Articles/475043/
https://linux-audit.com/linux-capabilities-101/
https://linux-audit.com/linux-capabilities-101/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/security.md#linux-kernel-capabilities
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/security.md#linux-kernel-capabilities
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md#set-capabilities-for-a-container
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md#set-capabilities-for-a-container
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_policy
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_policy
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_policy
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md#assign-selinux-labels-to-a-container
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md#assign-selinux-labels-to-a-container
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/apparmor.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/apparmor.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tutorials/clusters/apparmor.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tutorials/clusters/apparmor.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/seccomp.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/seccomp.md
https://docs.openshift.com/container-platform/3.3/admin_guide/seccomp.html
https://docs.openshift.com/container-platform/3.3/admin_guide/seccomp.html
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md

 114 of 121

1.8/docs/tasks/configure-pod-container/security-context.md. [Accessed: 15-Nov-2018].

[474] Docker Inc., “moby/libentitlement: Entitlements library for high level control of container permissions.”

[Online]. Available: https://github.com/moby/libentitlement. [Accessed: 15-Nov-2018].

[475] Docker Inc., “Entitlements on Moby and Kubernetes - Google Docs.” [Online]. Available:

https://docs.google.com/document/d/1j3BJUNBsgi-

nxJHoIJHsXRRtVWT5lrwsI2EN9WMQaes/edit#heading=h.yhnr195944yh. [Accessed: 15-Nov-2018].

[476] Cloud Native Computing Foundation, “website/pod-security-policy.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/policy/pod-security-policy.md#what-is-a-pod-security-policy. [Accessed: 15-Nov-

2018].

[477] Cloud Native Computing Foundation, “examples/README.md at master · kubernetes/examples.”

[Online]. Available:

https://github.com/kubernetes/examples/blob/master/staging/podsecuritypolicy/rbac/README.md.

[Accessed: 15-Nov-2018].

[478] Cloud Native Computing Foundation, “website/sysctl-cluster.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-

administration/sysctl-cluster.md. [Accessed: 15-Nov-2018].

[479] Docker Inc., “Universal Control Plane overview | Docker Documentation.” [Online]. Available:

https://docs.docker.com/v17.06/datacenter/ucp/2.2/guides/. [Accessed: 15-Nov-2018].

[480] Cloud Native Computing Foundation, “kubernetes/dashboard: General-purpose web UI for Kubernetes

clusters.” [Online]. Available: https://github.com/kubernetes/dashboard. [Accessed: 15-Nov-2018].

[481] Mesosphere, “GUI - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/gui/. [Accessed: 15-Nov-2018].

[482] Mesosphere, “mesosphere/marathon-ui: The web-ui for Marathon

(https://github.com/mesosphere/marathon).” [Online]. Available:

https://github.com/mesosphere/marathon-ui. [Accessed: 15-Nov-2018].

[483] Mesosphere, “Granting Access to the GUI - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/security/ent/gui-permissions/. [Accessed: 15-Nov-2018].

[484] Mesosphere, “Granting Access to the Marathon UI - Mesosphere DC/OS Documentation.” [Online].

Available: https://docs.mesosphere.com/1.10/security/ent/gui-permissions/marathon-ui/. [Accessed: 15-

Nov-2018].

[485] Apache, “aurora/tutorial.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/getting-started/tutorial.md#watching-the-job-

run. [Accessed: 15-Nov-2018].

[486] Docker Inc., “docker.github.io/index.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-

file/index.md#labels-1. [Accessed: 15-Nov-2018].

[487] Docker Inc., “docker.github.io/manage-nodes.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/manage-

nodes.md#add-or-remove-label-metadata. [Accessed: 15-Nov-2018].

[488] Mesosphere, “Apache Mesos 0.22.0 released - Mesosphere.” [Online]. Available:

https://mesosphere.com/blog/mesos-0-22-0-released/. [Accessed: 15-Nov-2018].

[489] Mesosphere, “Labeling Tasks and Jobs - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/tutorials/task-labels/. [Accessed: 15-Nov-2018].

[490] Apache, “aurora/observer-configuration.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/observer-configuration.md. [Accessed:

15-Nov-2018].

[491] Cloud Native Computing Foundation, “website/resource-usage-monitoring.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/debug-application-cluster/resource-usage-monitoring.md. [Accessed: 15-Nov-2018].

[492] Cloud Native Computing Foundation, “heapster/storage-schema.md at master · kubernetes/heapster.”

[Online]. Available: https://github.com/kubernetes/heapster/blob/master/docs/storage-schema.md.

[Accessed: 15-Nov-2018].

[493] Cloud Native Computing Foundation, “heapster/deprecation.md at master · kubernetes/heapster.”

[Online]. Available: https://github.com/kubernetes/heapster/blob/master/docs/deprecation.md.

[Accessed: 15-Nov-2018].

[494] Cloud Native Computing Foundation, “Core metrics pipeline - Kubernetes.” [Online]. Available:

https://kubernetes.io/docs/tasks/debug-application-cluster/core-metrics-pipeline/. [Accessed: 15-Nov-

2018].

https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md
https://github.com/moby/libentitlement
https://docs.google.com/document/d/1j3BJUNBsgi-nxJHoIJHsXRRtVWT5lrwsI2EN9WMQaes/edit#heading=h.yhnr195944yh
https://docs.google.com/document/d/1j3BJUNBsgi-nxJHoIJHsXRRtVWT5lrwsI2EN9WMQaes/edit#heading=h.yhnr195944yh
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/pod-security-policy.md#what-is-a-pod-security-policy
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/pod-security-policy.md#what-is-a-pod-security-policy
https://github.com/kubernetes/examples/blob/master/staging/podsecuritypolicy/rbac/README.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/sysctl-cluster.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/sysctl-cluster.md
https://docs.docker.com/v17.06/datacenter/ucp/2.2/guides/
https://github.com/kubernetes/dashboard
https://docs.mesosphere.com/1.10/gui/
https://github.com/mesosphere/marathon).
https://github.com/mesosphere/marathon-ui
https://docs.mesosphere.com/1.10/security/ent/gui-permissions/
https://docs.mesosphere.com/1.10/security/ent/gui-permissions/marathon-ui/
https://github.com/apache/aurora/blob/rel/0.18.0/docs/getting-started/tutorial.md#watching-the-job-run
https://github.com/apache/aurora/blob/rel/0.18.0/docs/getting-started/tutorial.md#watching-the-job-run
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/index.md#labels-1
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/index.md#labels-1
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/manage-nodes.md#add-or-remove-label-metadata
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/manage-nodes.md#add-or-remove-label-metadata
https://mesosphere.com/blog/mesos-0-22-0-released/
https://docs.mesosphere.com/1.10/tutorials/task-labels/
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/observer-configuration.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/resource-usage-monitoring.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/resource-usage-monitoring.md
https://github.com/kubernetes/heapster/blob/master/docs/storage-schema.md
https://github.com/kubernetes/heapster/blob/master/docs/deprecation.md
https://kubernetes.io/docs/tasks/debug-application-cluster/core-metrics-pipeline/

 115 of 121

[495] Cloud Native Computing Foundation, “website/resource-usage-monitoring.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/tasks/debug-application-cluster/resource-usage-monitoring.md#full-metrics-

pipelines. [Accessed: 15-Nov-2018].

[496] Mesosphere, “mesos/statistics.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/endpoints/slave/monitor/statistics.md. [Accessed: 15-

Nov-2018].

[497] Mesosphere, “mesos/port-mapping-isolator.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md#monitoring-container-

network-statistics. [Accessed: 15-Nov-2018].

[498] Mesosphere, “[MESOS-5647] Expose network statistics for containers on CNI network in the

`network/cni` isolator. - ASF JIRA.” [Online]. Available: https://issues.apache.org/jira/browse/MESOS-

5647. [Accessed: 15-Nov-2018].

[499] Mesosphere, “Metrics - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/metrics/. [Accessed: 15-Nov-2018].

[500] Docker Inc., “docker.github.io/prometheus.md at v17.12 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.12/config/thirdparty/prometheus.md. [Accessed:

15-Nov-2018].

[501] Cloud Native Computing Foundation, “website/controller-metrics.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/cluster-administration/controller-metrics.md. [Accessed: 15-Nov-2018].

[502] Mesosphere, “mesos/monitoring.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/monitoring.md. [Accessed: 15-Nov-2018].

[503] Apache, “aurora/monitoring.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/monitoring.md. [Accessed: 15-Nov-

2018].

[504] Mesosphere, “marathon/metrics.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/metrics.md. [Accessed: 15-Nov-2018].

[505] Mesosphere, “Performance Monitoring - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/monitoring/performance-monitoring/. [Accessed: 15-Nov-2018].

[506] Mesosphere, “mesos/monitoring.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/monitoring.md#resources. [Accessed: 15-Nov-2018].

[507] Cloud Native Computing Foundation, “community/accelerator-monitoring.md at master ·

kubernetes/community.” [Online]. Available:

https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/node/accelerator-monitoring.md. [Accessed: 15-Nov-2018].

[508] Docker Inc., “docker.github.io/builder.md at v17.03-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.03-

release/engine/reference/builder.md#healthcheck. [Accessed: 15-Nov-2018].

[509] Docker Inc., “docker.github.io/index.md at v17.03-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.03-release/compose/compose-

file/index.md#healthcheck. [Accessed: 15-Nov-2018].

[510] Mesosphere, “mesos/health-checks.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/health-checks.md. [Accessed: 15-Nov-2018].

[511] Mesosphere, “mesos/health-checks.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/health-checks.md#anatomy-of-a-check. [Accessed:

15-Nov-2018].

[512] Mesosphere, “marathon/health-checks.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/health-checks.md#mesos-level-health-

checks. [Accessed: 15-Nov-2018].

[513] Apache, “aurora/configuration.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md/#healthcheckerconfi

g-objects. [Accessed: 15-Nov-2018].

[514] Docker Inc., “docker events | Docker Documentation.” [Online]. Available:

https://docs.docker.com/v17.12/engine/reference/commandline/events/. [Accessed: 15-Nov-2018].

[515] Cloud Native Computing Foundation, “Kubernetes API Reference Docs.” [Online]. Available:

https://v1-10.docs.kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#event-v1-core.

[Accessed: 15-Nov-2018].

[516] Cloud Native Computing Foundation, “website/events-stackdriver.md at release-1.8 ·

https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/debug-application-cluster/resource-usage-monitoring.md#full-metrics-pipelines
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/debug-application-cluster/resource-usage-monitoring.md#full-metrics-pipelines
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/debug-application-cluster/resource-usage-monitoring.md#full-metrics-pipelines
https://github.com/apache/mesos/blob/1.4.x/docs/endpoints/slave/monitor/statistics.md
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md#monitoring-container-network-statistics
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md#monitoring-container-network-statistics
https://issues.apache.org/jira/browse/MESOS-5647
https://issues.apache.org/jira/browse/MESOS-5647
https://docs.mesosphere.com/1.11/metrics/
https://github.com/docker/docker.github.io/blob/v17.12/config/thirdparty/prometheus.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/controller-metrics.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/controller-metrics.md
https://github.com/apache/mesos/blob/1.4.x/docs/monitoring.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/monitoring.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/metrics.md
https://docs.mesosphere.com/1.10/monitoring/performance-monitoring/
https://github.com/apache/mesos/blob/1.4.x/docs/monitoring.md#resources
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/accelerator-monitoring.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/accelerator-monitoring.md
https://github.com/docker/docker.github.io/blob/v17.03-release/engine/reference/builder.md#healthcheck
https://github.com/docker/docker.github.io/blob/v17.03-release/engine/reference/builder.md#healthcheck
https://github.com/docker/docker.github.io/blob/v17.03-release/compose/compose-file/index.md#healthcheck
https://github.com/docker/docker.github.io/blob/v17.03-release/compose/compose-file/index.md#healthcheck
https://github.com/apache/mesos/blob/1.4.x/docs/health-checks.md
https://github.com/apache/mesos/blob/1.4.x/docs/health-checks.md#anatomy-of-a-check
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/health-checks.md#mesos-level-health-checks
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/health-checks.md#mesos-level-health-checks
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md/#healthcheckerconfig-objects
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md/#healthcheckerconfig-objects
https://docs.docker.com/v17.12/engine/reference/commandline/events/
https://v1-10.docs.kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#event-v1-core

 116 of 121

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/debug-application-cluster/events-stackdriver.md. [Accessed: 15-Nov-2018].

[517] Mesosphere, “mesos/operator-http-api.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/operator-http-api.md#events. [Accessed: 15-Nov-

2018].

[518] Apache, “aurora/webhooks.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/webhooks.md. [Accessed: 15-Nov-

2018].

[519] Mesosphere, “marathon/event-bus.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/event-bus.md. [Accessed: 15-Nov-

2018].

[520] Docker Inc., “docker.github.io/troubleshoot-with-logs.md at v17.06-release · docker/docker.github.io.”

[Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/datacenter/ucp/2.2/guides/admin/monitor-and-troubleshoot/troubleshoot-with-logs.md.

[Accessed: 15-Nov-2018].

[521] Cloud Native Computing Foundation, “website/logging.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-

administration/logging.md. [Accessed: 15-Nov-2018].

[522] Mesosphere, “mesos/logging.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/logging.md#containers. [Accessed: 15-Nov-2018].

[523] Mesosphere, “Logging - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/monitoring/logging/#service-task-and-node-logs. [Accessed: 15-Nov-

2018].

[524] Linux, “systemd-journald.service(8) - Linux manual page.” [Online]. Available:

http://man7.org/linux/man-pages/man8/systemd-journald.service.8.html. [Accessed: 15-Nov-2018].

[525] Mesosphere, “mesos/logging-and-debugging.md at 0.26.0 · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/0.26.0/docs/logging-and-debugging.md. [Accessed: 15-Nov-

2018].

[526] Mesosphere, “marathon/logging.raml at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/rest-

api/public/api/general/logging.raml. [Accessed: 15-Nov-2018].

[527] logz.io, “Docker Swarm Logging with ELK and the Logz.io Log Collector.” [Online]. Available:

https://logz.io/blog/docker-swarm-logging/. [Accessed: 15-Nov-2018].

[528] Cloud Native Computing Foundation, “website/logging-elasticsearch-kibana.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/debug-application-cluster/logging-elasticsearch-kibana.md. [Accessed: 15-Nov-2018].

[529] Mesosphere, “Log Aggregation - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/monitoring/logging/aggregating/. [Accessed: 15-Nov-2018].

[530] Docker Inc., “docker.github.io/admin_guide.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/swarm/admin_guide.md#back-up-the-swarm. [Accessed: 15-Nov-2018].

[531] Mesosphere, “mesos/replicated-log-internals.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/replicated-log-internals.md. [Accessed: 15-Nov-2018].

[532] Apache, “aurora/backup-restore.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/backup-restore.md. [Accessed: 15-

Nov-2018].

[533] Mesosphere, “marathon/backup-restore.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/backup-restore.md. [Accessed: 15-

Nov-2018].

[534] https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/taint-and-

toleration.md, “mhausenblas/reshifter: Kubernetes cluster state management.” [Online]. Available:

https://github.com/mhausenblas/reshifter. [Accessed: 15-Nov-2018].

[535] Cloud Native Computing Foundation, “website/cluster-management.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/administer-cluster/cluster-management.md#upgrading-a-cluster. [Accessed: 15-Nov-

2018].

[536] Mesosphere, “Upgrading - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/installing/production/upgrading/. [Accessed: 15-Nov-2018].

[537] Apache, “aurora/upgrades.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/events-stackdriver.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/events-stackdriver.md
https://github.com/apache/mesos/blob/1.4.x/docs/operator-http-api.md%23events
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/webhooks.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/event-bus.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/admin/monitor-and-troubleshoot/troubleshoot-with-logs.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/admin/monitor-and-troubleshoot/troubleshoot-with-logs.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/logging.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/logging.md
https://github.com/apache/mesos/blob/1.4.x/docs/logging.md#containers
https://docs.mesosphere.com/1.10/monitoring/logging/#service-task-and-node-logs
http://man7.org/linux/man-pages/man8/systemd-journald.service.8.html
https://github.com/apache/mesos/blob/0.26.0/docs/logging-and-debugging.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/rest-api/public/api/general/logging.raml
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/rest-api/public/api/general/logging.raml
https://logz.io/blog/docker-swarm-logging/
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/logging-elasticsearch-kibana.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/logging-elasticsearch-kibana.md
https://docs.mesosphere.com/1.10/monitoring/logging/aggregating/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/admin_guide.md#back-up-the-swarm
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/admin_guide.md#back-up-the-swarm
https://github.com/apache/mesos/blob/1.4.x/docs/replicated-log-internals.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/backup-restore.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/backup-restore.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/taint-and-toleration.md,
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/taint-and-toleration.md,
https://github.com/mhausenblas/reshifter
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/cluster-management.md#upgrading-a-cluster
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/cluster-management.md#upgrading-a-cluster
https://docs.mesosphere.com/1.10/installing/production/upgrading/

 117 of 121

https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/upgrades.md. [Accessed: 15-Nov-

2018].

[538] Mesosphere, “marathon/index.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/upgrade/index.md. [Accessed: 15-

Nov-2018].

[539] Docker Inc., “docker.github.io/live-restore.md at v17.12 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.12/config/containers/live-restore.md. [Accessed:

15-Nov-2018].

[540] Cloud Native Computing Foundation, “website/kubeadm-upgrade-1-9.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade-1-9.md. [Accessed: 15-Nov-

2018].

[541] Google LLC, “website/cluster-management.md at release-1.8 · kubernetes/website.” [Online]. Available:

https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/cluster-

management.md#upgrading-google-compute-engine-clusters. [Accessed: 15-Nov-2018].

[542] Google LLC, “Instance Groups | Compute Engine Documentation | Google Cloud.” [Online]. Available:

https://cloud.google.com/compute/docs/instance-groups/. [Accessed: 15-Nov-2018].

[543] Docker Inc., “docker.github.io/drain-node.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm-

tutorial/drain-node.md. [Accessed: 15-Nov-2018].

[544] Cloud Native Computing Foundation, “website/safely-drain-node.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/administer-cluster/safely-drain-node.md. [Accessed: 15-Nov-2018].

[545] Mesosphere, “mesos/maintenance.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/maintenance.md. [Accessed: 15-Nov-2018].

[546] Mesosphere, “marathon/maintenance-mode.md at v1.6.322 · mesosphere/marathon.” [Online].

Available: https://github.com/mesosphere/marathon/blob/v1.6.322/docs/docs/maintenance-mode.md.

[Accessed: 15-Nov-2018].

[547] Mesosphere, “Updating Nodes - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/administering-clusters/update-a-node/. [Accessed: 15-Nov-2018].

[548] Docker Inc., “docker.github.io/garbage-collection.md at v17.09-release · docker/docker.github.io.”

[Online]. Available: https://github.com/docker/docker.github.io/blob/v17.09-release/registry/garbage-

collection.md. [Accessed: 15-Nov-2018].

[549] Cloud Native Computing Foundation, “website/kubelet-garbage-collection.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/cluster-administration/kubelet-garbage-collection.md. [Accessed: 15-Nov-2018].

[550] Mesosphere, “mesos/container-image.md at 1.5.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.5.x/docs/container-image.md#garbage-collect-unused-

container-images. [Accessed: 15-Nov-2018].

[551] Mesosphere, “Components - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/overview/architecture/components/#docker-gc. [Accessed: 15-Nov-

2018].

[552] Mesosphere, “mesos/high-availability-framework-guide.md at 1.4.x · apache/mesos.” [Online].

Available: https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-

guide.md#dealing-with-partitioned-or-failed-masters. [Accessed: 15-Nov-2018].

[553] Docker Inc., “docker.github.io/plan-for-production.md at v17.06-release · docker/docker.github.io.”

[Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/plan-for-

production.md#multiple-clouds. [Accessed: 15-Nov-2018].

[554] Docker Inc., “docker.github.io/admin_guide.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/swarm/admin_guide.md#distribute-manager-nodes. [Accessed: 15-Nov-2018].

[555] Cloud Native Computing Foundation, “website/multiple-zones.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/admin/multiple-

zones.md. [Accessed: 15-Nov-2018].

[556] Apache, “aurora/configuration.md at rel/0.20.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.20.0/docs/reference/configuration.md#job-objects.

[Accessed: 15-Nov-2018].

[557] Docker Inc., “docker.github.io/index.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/docker-cloud/cloud-

https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/upgrades.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/upgrade/index.md
https://github.com/docker/docker.github.io/blob/v17.12/config/containers/live-restore.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade-1-9.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade-1-9.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/cluster-management.md#upgrading-google-compute-engine-clusters
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/cluster-management.md#upgrading-google-compute-engine-clusters
https://cloud.google.com/compute/docs/instance-groups/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm-tutorial/drain-node.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm-tutorial/drain-node.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/safely-drain-node.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/safely-drain-node.md
https://github.com/apache/mesos/blob/1.4.x/docs/maintenance.md
https://github.com/mesosphere/marathon/blob/v1.6.322/docs/docs/maintenance-mode.md
https://docs.mesosphere.com/1.10/administering-clusters/update-a-node/
https://github.com/docker/docker.github.io/blob/v17.09-release/registry/garbage-collection.md
https://github.com/docker/docker.github.io/blob/v17.09-release/registry/garbage-collection.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/kubelet-garbage-collection.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/kubelet-garbage-collection.md
https://github.com/apache/mesos/blob/1.5.x/docs/container-image.md#garbage-collect-unused-container-images
https://github.com/apache/mesos/blob/1.5.x/docs/container-image.md#garbage-collect-unused-container-images
https://docs.mesosphere.com/1.11/overview/architecture/components/#docker-gc
https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-guide.md#dealing-with-partitioned-or-failed-masters
https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-guide.md#dealing-with-partitioned-or-failed-masters
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/plan-for-production.md#multiple-clouds
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/plan-for-production.md#multiple-clouds
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/admin_guide.md#distribute-manager-nodes
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/admin_guide.md#distribute-manager-nodes
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/multiple-zones.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/multiple-zones.md
https://github.com/apache/aurora/blob/rel/0.20.0/docs/reference/configuration.md#job-objects
https://github.com/docker/docker.github.io/blob/v17.06-release/docker-cloud/cloud-swarm/index.md

 118 of 121

swarm/index.md. [Accessed: 15-Nov-2018].

[558] Cloud Native Computing Foundation, “website/set-up-cluster-federation-kubefed.md at release-1.9 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.9/docs/tasks/federation/set-up-cluster-federation-kubefed.md. [Accessed: 15-Nov-2018].

[559] Mesosphere, “Multiple Clusters - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/administering-clusters/multiple-clusters/. [Accessed: 15-Nov-2018].

[560] Cloud Native Computing Foundation, “website/set-up-cluster-federation-kubefed.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/federation/set-up-cluster-federation-kubefed.md#basic-and-token-authentication-

support. [Accessed: 15-Nov-2018].

[561] Mesosphere, “Cluster Links - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/administering-clusters/multiple-clusters/cluster-links/. [Accessed:

15-Nov-2018].

[562] Mesosphere, “mesos/fault-domains.md at 1.6.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.6.x/docs/fault-domains.md. [Accessed: 15-Nov-2018].

[563] Apache, “aurora/constraints.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/constraints.md#limit-constraints.

[Accessed: 15-Nov-2018].

[564] Mesosphere, “Fault Domain Awareness and Capacity Extension - Mesosphere DC/OS Documentation.”

[Online]. Available: https://docs.mesosphere.com/1.11/deploying-services/fault-domain-awareness/.

[Accessed: 15-Nov-2018].

[565] Mesosphere, “dcos/gen/fault-domain-detect at 1.11 · dcos/dcos.” [Online]. Available:

https://github.com/dcos/dcos/tree/1.11/gen/fault-domain-detect. [Accessed: 15-Nov-2018].

[566] Cloud Native Computing Foundation, “website/federation.md at release-1.9 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/cluster-

administration/federation.md. [Accessed: 15-Nov-2018].

[567] Cloud Native Computing Foundation, “website/hpa.md at release-1.11 · kubernetes/website.” [Online].

Available: https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-

federation/hpa.md. [Accessed: 15-Nov-2018].

[568] Docker Inc., “docker.github.io/completion.md at v17.09-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.09-release/compose/completion.md.

[Accessed: 15-Nov-2018].

[569] Cloud Native Computing Foundation, “autoscaler/cluster-autoscaler at master · kubernetes/autoscaler.”

[Online]. Available: https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler. [Accessed:

15-Nov-2018].

[570] Apache, “aurora/sla-metrics.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/sla-metrics.md. [Accessed: 15-Nov-

2018].

[571] Mesosphere, “Node and Cluster Health Checks - Mesosphere DC/OS Documentation.” [Online].

Available: https://docs.mesosphere.com/1.10/installing/production/deploying-dcos/node-cluster-

health-check/. [Accessed: 15-Nov-2018].

[572] Cloud Native Computing Foundation, “website/port-forward-access-application-cluster.md at release-

1.8 · kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/access-application-cluster/port-forward-access-application-cluster.md. [Accessed: 15-

Nov-2018].

[573] Cloud Native Computing Foundation, “website/configure-pdb.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/run-

application/configure-pdb.md. [Accessed: 15-Nov-2018].

[574] Google LLC, “Upgrading a Cluster | Kubernetes Engine | Google Cloud.” [Online]. Available:

https://cloud.google.com/kubernetes-engine/docs/how-to/upgrading-a-cluster. [Accessed: 15-Nov-

2018].

[575] Cloud Native Computing Foundation, “website/configure-upgrade-etcd.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/administer-cluster/configure-upgrade-etcd.md. [Accessed: 15-Nov-2018].

[576] Cloud Native Computing Foundation, “website/service-catalog.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/extend-kubernetes/service-catalog.md. [Accessed: 15-Nov-2018].

[577] Cloud Native Computing Foundation, “website/federation.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-

https://github.com/docker/docker.github.io/blob/v17.06-release/docker-cloud/cloud-swarm/index.md
https://github.com/kubernetes/website/blob/release-1.9/docs/tasks/federation/set-up-cluster-federation-kubefed.md
https://github.com/kubernetes/website/blob/release-1.9/docs/tasks/federation/set-up-cluster-federation-kubefed.md
https://docs.mesosphere.com/1.11/administering-clusters/multiple-clusters/
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/federation/set-up-cluster-federation-kubefed.md#basic-and-token-authentication-support
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/federation/set-up-cluster-federation-kubefed.md#basic-and-token-authentication-support
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/federation/set-up-cluster-federation-kubefed.md#basic-and-token-authentication-support
https://docs.mesosphere.com/1.11/administering-clusters/multiple-clusters/cluster-links/
https://github.com/apache/mesos/blob/1.6.x/docs/fault-domains.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/constraints.md#limit-constraints
https://docs.mesosphere.com/1.11/deploying-services/fault-domain-awareness/
https://github.com/dcos/dcos/tree/1.11/gen/fault-domain-detect
https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/cluster-administration/federation.md
https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/cluster-administration/federation.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-federation/hpa.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-federation/hpa.md
https://github.com/docker/docker.github.io/blob/v17.09-release/compose/completion.md
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/sla-metrics.md
https://docs.mesosphere.com/1.10/installing/production/deploying-dcos/node-cluster-health-check/
https://docs.mesosphere.com/1.10/installing/production/deploying-dcos/node-cluster-health-check/
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/access-application-cluster/port-forward-access-application-cluster.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/access-application-cluster/port-forward-access-application-cluster.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/run-application/configure-pdb.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/run-application/configure-pdb.md
https://cloud.google.com/kubernetes-engine/docs/how-to/upgrading-a-cluster
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/configure-upgrade-etcd.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/configure-upgrade-etcd.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/service-catalog.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/service-catalog.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/federation.md#api-resources

 119 of 121

administration/federation.md#api-resources. [Accessed: 15-Nov-2018].

[578] Cloud Native Computing Foundation, “website/federation-service-discovery.md at release-1.9 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.9/docs/tasks/federation/federation-service-discovery.md. [Accessed: 15-Nov-2018].

[579] F. Khomh, T. Dhaliwal, Y. Zou, B. Adams, and C. Engineering, “Do Faster Releases Improve Software

Quality ? An Empirical Case Study of Mozilla Firefox,” in Proceedings of the 9th IEEE Working Conference

on Mining Software Repositories (MSR 2012), pp. 179–188, 2012.

[580] Docker Inc., “Docker Enterprise | Docker Documentation.” [Online]. Available:

https://docs.docker.com/ee/#kubernetes-support. [Accessed: 16-Nov-2018].

[581] B. Hindman, A. Konwinski, A. Platform, F.-G. Resource, and M. Zaharia, “Mesos: A platform for fine-

grained resource sharing in the data center,” in Proceedings of the 8th USENIX conference on Networked

systems design and implementation (NSDI 2011), 2011.

[582] P.-C. Quint and N. Kratzke, “Towards a Lightweight Multi-Cloud DSL for Elastic and Transferable

Cloud-native Applications,” in Proceedings of the 8th International Conference on Cloud Computing and

Services Science (CLOSER 2018), 2018.

[583] Docker Inc., “UCP architecture | Docker Documentation.” [Online]. Available:

https://docs.docker.com/ee/ucp/ucp-architecture/#ucp-components-in-manager-nodes. [Accessed: 16-

Nov-2018].

[584] Mesosphere, “Install and Customize - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/kubernetes/1.3.1-1.10.8/install/#installing-from-the-dcos-cli.

[Accessed: 16-Nov-2018].

[585] Docker Inc., “Set the orchestrator type for a node | Docker Documentation.” [Online]. Available:

https://docs.docker.com/ee/ucp/admin/configure/set-orchestrator-type/#change-the-orchestrator-for-a-

node. [Accessed: 16-Nov-2018].

[586] Docker Inc., “UCP configuration file | Docker Documentation.” [Online]. Available:

https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file/. [Accessed: 16-Nov-2018].

[587] Mesosphere, “Advanced Installation - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/kubernetes/1.3.0-1.10.8/advanced-install/. [Accessed: 16-Nov-

2018].

[588] M. T. Rahman, L.-P. Querel, P. C. Rigby, and B. Adams, “Feature Toggles: Practitioner Practices and a

Case Study,” Proc. 13th Int. Conf. Min. Softw. Repos., pp. 201–211, 2016.

[589] Cloud Native Computing Foundation, “website/feature-gates.md at release-1.11 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/reference/command-line-tools-reference/feature-gates.md. [Accessed: 16-Nov-

2018].

[590] rkt project, “rkt/using-rkt-with-kubernetes.md at master · rkt/rkt.” [Online]. Available:

https://github.com/rkt/rkt/blob/master/Documentation/using-rkt-with-kubernetes.md. [Accessed: 16-

Nov-2018].

[591] Docker Inc., “Scalable, Flexible Networking Included in Docker Enterprise Edition 2.0 - Docker Blog.”

[Online]. Available: https://blog.docker.com/2018/04/networking-in-docker-enterprise-edition-2-0/.

[Accessed: 16-Nov-2018].

[592] Docker Inc., “Use NFS persistent storage | Docker Documentation.” [Online]. Available:

https://docs.docker.com/ee/ucp/admin/configure/use-nfs-volumes/. [Accessed: 16-Nov-2018].

[593] Mesosphere, “Kubernetes-as-a-Service Now Available in DC/OS 1.11 - Mesosphere.” [Online].

Available: https://mesosphere.com/blog/dcos-1_11-kubernetes/. [Accessed: 16-Nov-2018].

[594] Mesosphere, “Advanced Installation - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/kubernetes/1.3.0-1.10.8/advanced-install/#configuring-a-

storageclass. [Accessed: 16-Nov-2018].

[595] Mesosphere, “Authorization - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/kubernetes/1.3.0-1.10.8/authn-and-authz/. [Accessed: 16-Nov-

2018].

[596] Docker Inc., “Integrate with an LDAP directory | Docker Documentation.” [Online]. Available:

https://docs.docker.com/ee/ucp/admin/configure/external-auth/. [Accessed: 16-Nov-2018].

[597] Docker Inc., “Layer 7 routing | Docker Documentation.” [Online]. Available:

https://docs.docker.com/ee/ucp/kubernetes/layer-7-routing/. [Accessed: 16-Nov-2018].

[598] Mesosphere, “External Ingress - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/kubernetes/1.3.0-1.10.8/ingress/. [Accessed: 16-Nov-2018].

[599] Mesosphere, “External Ingress - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/kubernetes/1.3.0-1.10.8/ingress/#open-source-ingress-controllers.

https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/federation.md#api-resources
https://github.com/kubernetes/website/blob/release-1.9/docs/tasks/federation/federation-service-discovery.md
https://github.com/kubernetes/website/blob/release-1.9/docs/tasks/federation/federation-service-discovery.md
https://docs.docker.com/ee/#kubernetes-support
https://docs.docker.com/ee/ucp/ucp-architecture/#ucp-components-in-manager-nodes
https://docs.mesosphere.com/services/kubernetes/1.3.1-1.10.8/install/#installing-from-the-dcos-cli
https://docs.docker.com/ee/ucp/admin/configure/set-orchestrator-type/#change-the-orchestrator-for-a-node
https://docs.docker.com/ee/ucp/admin/configure/set-orchestrator-type/#change-the-orchestrator-for-a-node
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file/
https://docs.mesosphere.com/services/kubernetes/1.3.0-1.10.8/advanced-install/
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/command-line-tools-reference/feature-gates.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/command-line-tools-reference/feature-gates.md
https://github.com/rkt/rkt/blob/master/Documentation/using-rkt-with-kubernetes.md
https://blog.docker.com/2018/04/networking-in-docker-enterprise-edition-2-0/
https://docs.docker.com/ee/ucp/admin/configure/use-nfs-volumes/
https://mesosphere.com/blog/dcos-1_11-kubernetes/
https://docs.mesosphere.com/services/kubernetes/1.3.0-1.10.8/advanced-install/#configuring-a-storageclass
https://docs.mesosphere.com/services/kubernetes/1.3.0-1.10.8/advanced-install/#configuring-a-storageclass
https://docs.mesosphere.com/services/kubernetes/1.3.0-1.10.8/authn-and-authz/
https://docs.docker.com/ee/ucp/admin/configure/external-auth/
https://docs.docker.com/ee/ucp/kubernetes/layer-7-routing/
https://docs.mesosphere.com/services/kubernetes/1.3.0-1.10.8/ingress/
https://docs.mesosphere.com/services/kubernetes/1.3.0-1.10.8/ingress/#open-source-ingress-controllers

 120 of 121

[Accessed: 16-Nov-2018].

[600] Cloud Native Computing Foundation, “kubernetes-incubator/metrics-server.” [Online]. Available:

https://github.com/kubernetes-incubator/metrics-server. [Accessed: 16-Nov-2018].

[601] Mesosphere, “mesosphere/dcos-kubernetes-quickstart: Quickstart guide for Kubernetes on DC/OS.”

[Online]. Available: https://github.com/mesosphere/dcos-kubernetes-quickstart#install. [Accessed: 16-

Nov-2018].

[602] Docker Inc., “UCP architecture | Docker Documentation.” [Online]. Available:

https://docs.docker.com/ee/ucp/ucp-architecture/#ucp-internal-components. [Accessed: 16-Nov-2018].

[603] Docker Inc., “Deploy a Compose-based app to a Kubernetes cluster | Docker Documentation.” [Online].

Available: https://docs.docker.com/ee/ucp/kubernetes/deploy-with-compose/. [Accessed: 16-Nov-2018].

[604] Cloud Native Computing Foundation, “Translate a Docker Compose File to Kubernetes Resources -

Kubernetes.” [Online]. Available: https://kubernetes.io/docs/tasks/configure-pod-container/translate-

compose-kubernetes/. [Accessed: 16-Nov-2018].

[605] Docker Inc., “Group and isolate cluster resources | Docker Documentation.” [Online]. Available:

https://docs.docker.com/ee/ucp/authorization/group-resources/. [Accessed: 16-Nov-2018].

[606] Docker Inc., “Access control model | Docker Documentation.” [Online]. Available:

https://docs.docker.com/ee/ucp/authorization/. [Accessed: 16-Nov-2018].

[607] Andy Clemenko, “Docker - Docker Reference Architecture: Securing Docker EE and Security Best

Practices.” [Online]. Available: https://success.docker.com/article/security-best-practices. [Accessed: 16-

Nov-2018].

[608] Mesosphere, “DC/OS Enterprise Security - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/security/ent/#security-modes. [Accessed: 16-Nov-2018].

[609] Docker Inc., “Configure native Kubernetes role-based access control | Docker Documentation.”

[Online]. Available: https://docs.docker.com/ee/ucp/admin/configure/configure-rbac-kube/. [Accessed:

16-Nov-2018].

[610] Docker Inc., “Backups and disaster recovery | Docker Documentation.” [Online]. Available:

https://docs.docker.com/ee/ucp/admin/backups-and-disaster-recovery/. [Accessed: 16-Nov-2018].

[611] Mesosphere, “Supported Versions - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/kubernetes/1.3.0-1.10.8/supported-versions/. [Accessed: 16-Nov-

2018].

[612] Mesosphere, “Upgrade - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/kubernetes/1.3.1-1.10.8/upgrade/. [Accessed: 16-Nov-2018].

[613] Mesosphere, “Disaster Recovery - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/kubernetes/1.3.1-1.10.8/disaster-recovery/. [Accessed: 16-Nov-

2018].

[614] Cloud Native Computing Foundation, “charts/stable/prometheus at master · helm/charts.” [Online].

Available: https://github.com/helm/charts/tree/master/stable/prometheus. [Accessed: 16-Nov-2018].

[615] Cloud Native Computing Foundation, “website/resource-usage-monitoring.md at master ·

kubernetes/website.” [Online]. Available:

https://github.com/kubernetes/website/blob/master/content/en/docs/tasks/debug-application-

cluster/resource-usage-monitoring.md#prometheus. [Accessed: 16-Nov-2018].

[616] Mesosphere, “Sending DC/OS Metrics to Prometheus - Mesosphere DC/OS Documentation.” [Online].

Available: https://docs.mesosphere.com/1.11/metrics/prometheus/. [Accessed: 16-Nov-2018].

[617] Cloud Native Computing Foundation, “Kubernetes 1.10: Stabilizing Storage, Security, and Networking

- Kubernetes.” [Online]. Available: https://kubernetes.io/blog/2018/03/26/kubernetes-1.10-stabilizing-

storage-security-networking/. [Accessed: 16-Nov-2018].

[618] Cloud Native Computing Foundation, “Kubernetes 1.11: In-Cluster Load Balancing and CoreDNS

Plugin Graduate to General Availability - Kubernetes.” [Online]. Available:

https://kubernetes.io/blog/2018/06/27/kubernetes-1.11-release-announcement/. [Accessed: 16-Nov-

2018].

[619] Mesosphere, “Service Docs - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/. [Accessed: 16-Nov-2018].

[620] S. Shekhar, H. Abdel-Aziz, A. Bhattacharjee, A. Gokhale, and X. Koutsoukos, “Performance Interference-

Aware Vertical Elasticity for Cloud-Hosted Latency-Sensitive Applications,” in 2018 IEEE 11th

International Conference on Cloud Computing (CLOUD), 2018.

[621] Cloud Native Computing Foundation, “Federation - Kubernetes.” [Online]. Available: https://v1-

11.docs.kubernetes.io/docs/concepts/cluster-administration/federation/. [Accessed: 16-Nov-2018].

[622] J. Demsar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” J. Mach. Learn. Res., vol. 7,

2006.

https://github.com/kubernetes-incubator/metrics-server
https://github.com/mesosphere/dcos-kubernetes-quickstart#install
https://docs.docker.com/ee/ucp/ucp-architecture/#ucp-internal-components
https://docs.docker.com/ee/ucp/kubernetes/deploy-with-compose/
https://kubernetes.io/docs/tasks/configure-pod-container/translate-compose-kubernetes/
https://kubernetes.io/docs/tasks/configure-pod-container/translate-compose-kubernetes/
https://docs.docker.com/ee/ucp/authorization/group-resources/
https://docs.docker.com/ee/ucp/authorization/
https://success.docker.com/article/security-best-practices
https://docs.mesosphere.com/1.11/security/ent/#security-modes
https://docs.docker.com/ee/ucp/admin/configure/configure-rbac-kube/
https://docs.docker.com/ee/ucp/admin/backups-and-disaster-recovery/
https://docs.mesosphere.com/services/kubernetes/1.3.0-1.10.8/supported-versions/
https://docs.mesosphere.com/services/kubernetes/1.3.1-1.10.8/upgrade/
https://docs.mesosphere.com/services/kubernetes/1.3.1-1.10.8/disaster-recovery/
https://github.com/helm/charts/tree/master/stable/prometheus
https://github.com/kubernetes/website/blob/master/content/en/docs/tasks/debug-application-cluster/resource-usage-monitoring.md#prometheus
https://github.com/kubernetes/website/blob/master/content/en/docs/tasks/debug-application-cluster/resource-usage-monitoring.md#prometheus
https://docs.mesosphere.com/1.11/metrics/prometheus/
https://kubernetes.io/blog/2018/03/26/kubernetes-1.10-stabilizing-storage-security-networking/
https://kubernetes.io/blog/2018/03/26/kubernetes-1.10-stabilizing-storage-security-networking/
https://kubernetes.io/blog/2018/06/27/kubernetes-1.11-release-announcement/
https://docs.mesosphere.com/services/
https://v1-11.docs.kubernetes.io/docs/concepts/cluster-administration/federation/
https://v1-11.docs.kubernetes.io/docs/concepts/cluster-administration/federation/

 121 of 121

[623] Google LLC, “website/gce.md at release-1.8 · kubernetes/website.” [Online]. Available:

https://github.com/kubernetes/website/blob/release-1.8/docs/getting-started-guides/gce.md. [Accessed:

09-Nov-2018].

[624] Microsoft Azure, “acs-engine/docs at master · Azure/acs-engine.” [Online]. Available:

https://github.com/Azure/acs-engine/tree/master/docs. [Accessed: 09-Nov-2018].

[625] Rancher, “Your Enterprise Kubernetes Platform | Rancher Labs.” [Online]. Available:

https://rancher.com/. [Accessed: 16-Nov-2018].

[626] Canonical, “Juju solutions for container management | Juju.” [Online]. Available:

https://jujucharms.com/containers. [Accessed: 16-Nov-2018].

© 2018 by the authors. Submitted for possible open access publication under the terms

and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

https://github.com/kubernetes/website/blob/release-1.8/docs/getting-started-guides/gce.md
https://github.com/Azure/acs-engine/tree/master/docs
https://rancher.com/
https://jujucharms.com/containers

