Biodiversity and multifunctionality in global drylands

Fernando T. Maestre

Universitat d'Alacant Universidad de Alicante

 \rightarrow Drylands are a key terrestrial biome, as they cover ~45% of terrestrial surface and are the home of ~40% of global population.

 \rightarrow Dryland area, projected under representative concentration pathways RCP8.5 and RCP4.5, will increase by 23% and 11%, respectively, relative to 1961–1990 baseline.

Exploring the role of biodiversity on the functioning of global drylands

 \rightarrow 236 drylands from all continents except Antarctica (21 countries).

erc

- \rightarrow Standardized vegetation and soil surveys conducted in all the sites
- \rightarrow At each site, we quantified primary productivity and multiple soil variables related to C, N and P cycling ("functions").
- \rightarrow These variables are proxies of nutrient cycling, biological productivity, and buildup of nutrient pools, which are critical determinants of ecosystem functioning in drylands.

We captured the wide variety of vegetation found in global drylands

Maestre et al. 2012. Phil Trans R Soc B 367: 3062-3075

Plant species richness and functional diversity increase multifunctionality

Multifunctionality

Maestre et al. 2012. Science 335: 214-218

Evaluating the effects of taxonomic, functional and phylogenetic diversity on multifunctionality

Le Bagousse-Pinguet et al. 2019. PNAS 116 8419-8424

Simultaneous increases in species richness, the richness of early diverging lineages and functional redundancy increased multifunctionality

Parameter estimates

Le Bagousse-Pinguet et al. 2019. PNAS 116 8419-8424

The role of plant diversity on ecosystem stability is as important as that of climate and soil factors

García-Palacios et al. 2018. PNAS 115: 8400-8405

Microbial diversity is a key driver of multifunctionality

Delgado-Baquerizo et al. 2016 Nature Commun 7: 10541

Do we have experimental evidence of these patterns?

Cascading effects from plants to soil microorganisms explain how biodiversity and climate change affect multifunctionality

Valencia et al. 2018. Global Change Biol 24: 5642-5654

Alexander von Humboldt Stiftung/Foundation

Universitat d'Alacant

Universidad de Alicante

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

Marie Skłodowska-

Curie Actions

European Research Council

Established by the European Commission

http://maestrelab.com

@ftmaestre @maestrelab

https://www.facebook.com/MaestreLab

