The Alan Turing Institute

The Turing Way
Reproducible, Inclusive,
Collaborative Data Science

Kirstie Whitaker

Pronouns: she/her

#PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

The Turing Way is:

- -a book
- -a community
- -a global collaboration
- -a whole tonne of work

Rachael Ainsworth

Becky Arnold

Louise Bowler

Sarah Gibson

Patricia Herterich

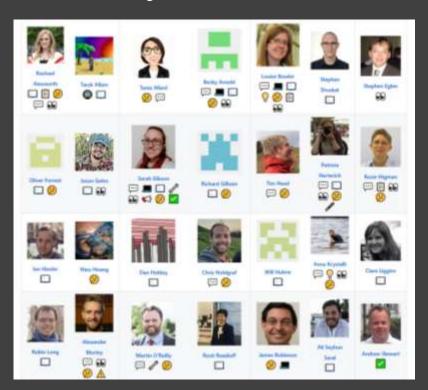
James Hetherington

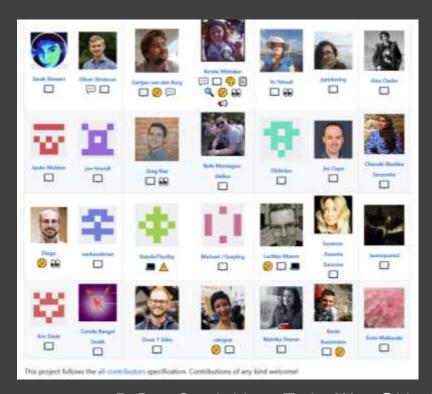
Rosie Higman

Anna Krystalli

Catherine Lawrence

Alex Morley


Martin O'Reilly



Malvika Sharan

#PyDataCambridge #TuringWay @kirstie i https://doi.org/10.5281/zenodo.3543478

Thank you to all our contributors

An introduction to me

#PyDataCambridge #TuringWay @kirstie_j
https://doi.org/10.5281/zenodo.3543478

Academic errors have real world effects

0	В	С		J	K	L	M	
2		-		Real GDP growth				
3								
4	Country	Coverage	30 or less	30 to 60	60 to 90	90 or above	30 or less	
26			3.7	3.0	3.5	1.7	5.5	
27	Minimum		1.6	0.3	1.3	-1.8	0.8	
28	Maximum		5.4	4.9	10.2	3.6	13.3	
29								
30	US	1946-2009	n.a.	3.4	3.3	-2.0	n.a.	
31	UK	1946-2009	n.a.	2.4	2.5	2.4	n.a.	
32	Sweden	1946-2009	3.6	2.9	2.7	n.a.	6.3	
33	Spain	1946-2009	1.5	3.4	4.2	n.a.	9.9	
34	Portugal	1952-2009	4.8	2.5	0.3	n.a.	7.9	
35	New Zealand	1948-2009	2.5	2.9	3.9	-7.9	2.6	
36	Netherlands	1956-2009	4.1	2.7	1.1	n.a.	6.4	
37	Norway	1947-2009	3.4	5.1	n.a.	n.a.	5.4	
38	Japan	1946-2009	7.0	4.0	1.0	0.7	7.0	
39	Italy	1951-2009	5.4	2.1	1.8	1.0	5.6	
40	Ireland	1948-2009	4.4	4.5	4.0	2.4	2.9	
41	Стеесе	1970-2009	4.0	0.3	2.7	2.9	13.3	
42	Germany	1946-2009	3.9	0.9	n.a.	n.a.	3.2	
43	France	1949-2009	4.9	2.7	3.0	n.a.	5.2	
44	Finland	1946-2009	3.8	2.4	5.5	n.a.	7.0	
45	Denmark	1950-2009	3.5	1.7	2.4	n.a.	5.6	
46	Canada	1951-2009	1.9	3.6	4.1	n.a.	2.2	
47	Belgium	1947-2009	n.a.	4.2	3.1	2.6	n.a.	
48	Austria	1948-2009	5.2	3.3	-3.8	n.a.	5.7	
49	Australia	1951-2009	3.2	4.9	4.0	n.a.	5.9	
50								
51			4.1	2.8	2.8	=AVERAG	E(L30:L44)	

https://statmodeling.stat.columbia.edu/2013/04/16/memo-to-reinhart-and-rogoff-i-think-its-best-to-admit-your-errors-and-go-on-from-there https://www.bbc.co.uk/news/magazine-22223190

Academic errors have real world effects

0	В	С	1	J	K	L	M
2			Real GDP growth				
3			Debt/GDP				
4	Country	Coverage	30 or less	30 to 60	60 to 90	90 or above	30 or less
26			3.7	3.0	3.5	1.7	5.5
27	Minimum		1.6	0.3	1.3	-1.8	0.8
28	Maximum		5.4	4.9	10.2	3.6	13.3
29							
30	US	1946-2009	n.a.	3.4	3.3	-2.0	n.a.
31	UK	1946-2009	n.a.	2.4	2.5	2.4	n.a.
32	Sweden	1946-2009	3.6	2.9	2.7	n.a.	6.3
33	Spain	1946-2009	1.5	3.4	4.2	n.a.	9.9
34	Portugal	1952-2009	4.8	2.5	0.3	n.a.	7.9
35	New Zealand	1948-2009	2.5	2.9	3.9	-7.9	2.6
36	Netherlands	1956-2009	4.1	2.7	1.1	n.a.	6.4
37	Norway	1947-2009	3.4	5.1	n.a.	n.a.	5.4
38	Japan	1946-2009	7.0	4.0	1.0	0.7	7.0
39	Italy	1951-2009	5.4	2.1	1.8	1.0	5.6
40	Ireland	1948-2009	4.4	4.5	4.0	2.4	2.9
41	Greece	1970-2009	4.0	0.3	2.7	2.9	13.3
42	Germany	1946-2009	3.9	0.9	n.a.	n.a.	3.2
43	France	1949-2009	4.9	2.7	3.0	n.a.	5.2
44	Finland	1946-2009	3.8	2.4	5.5	n.a.	7.0
45	Denmark	1950-2009	3.5	1.7	2.4	n.a.	5.6
46	Canada	1951-2009	1.9	3.6	4.1	n.a.	2.2
47	Belgium	1947-2009	n.a.	4.2	3.1	2.6	n.a.
48	Austria	1948-2009	5.2	3.3	-3.8	n.a.	5.7
49	Australia	1951-2009	3.2	4.9	4.0	n.a.	5.9
50							
51			4.1	2.8	2.8	=AVERAG	E(L30:L44)

https://statmodeling.stat.columbia.edu/2013/04/16/memo-to-reinhart-and-rogoff-i-think-its-best-to-admit-your-errors-and-go-on-from-there https://www.bbc.co.uk/news/magazine-22223190

The humans are the hardest part of reproducibility

		Data		
		Same	Different	
Analysis	Same	Reproducible	Replicable	
	Different	Robust	Generalisable	

https://the-turing-way.netlify.com/reproducibility/03/definitions.html #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478 Is not considered for promotion

Held to higher standards than others

Publication bias towards novel findings

Requires additional skills

Barriers to reproducible research

Plead the 5th

Support additional users

Takes time

https://doi.org/10.6084/m9.figshare.5537101 #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

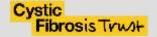
The Turing Institute

https://www.turing.ac.uk/news/enigma-machine-goes-display-alan-turing-institute #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

University network

#PyDataCambridge #TuringWay @kirstie_j
https://doi.org/10.5281/zenodo.3543478

The Institute's partners and collaborators



Challenges

Advance data science and artificial intelligence to...

Core capabilities

Ethics of data science and artificial intelligence

Martin O'Reilly

"Make reproducible research too easy not to do."

https://www.turing.ac.uk/people/researchers/martin-oreilly #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

Martin O'Reilly

"Make reproducible research too easy not to do.

Do you need a biscuit?"

https://www.turing.ac.uk/people/researchers/martin-oreilly #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

Martin O'Reilly

"Make reproducible research too easy not to do.

Do you need a biscuit?

If we can't do it here, we

can't do it at all."

https://www.turing.ac.uk/people/researchers/martin-oreilly #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

The Turing Way

#PyDataCambridge #TuringWay @kirstie_j
https://doi.org/10.5281/zenodo.3543478

1. Introduction

- 2. Reproducibility
- 3. Open Research
- 4. Version Control
- 5. Collaborating on GitHub/GitLab
- 6. Research Data Management
- 7. Reproducible Environments
- 8. Testing
- 9. Reviewing
- 10. Continous Integration
- 11. Reproducible Research with Make
- 12. Risk Assessment

Welcome to the Turing Way

The Turing Way is a lightly opinionated guide to reproducible data science.

Our goal is to provide all the information that researchers need at the start of their projects to ensure that they are easy to reproduce at the end.

This also means making sure PhD students, postdocs, PIs and funding teams know which parts of the "responsibility of reproducibility" they can affect, and what they should do to nudge data science to being more efficient, effective and understandable.

A bit more background

Reproducible research is necessary to ensure that scientific work can be trusted. Funders and publishers are beginning to require that publications include access to the underlying data and the analysis code. The goal is to ensure that all results can be independently verified and built upon in future work. This is sometimes easier said than done. Sharing these research outputs means understanding data management, library sciences, sofware development, and continuous integration techniques: skills that are not widely taught or expected of academic researchers and data scientists.

The Turing Way is a handbook to support students, their supervisors, funders and journal editors

https://the-turing-way.netlify.com/introduction/introduction #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

1. Introduction

- 2. Reproducibility
- 3. Open Research
- 4. Version Control
- 5. Collaborating on GitHub/GitLab
- 6. Research Data Management
- 7. Reproducible Environments
- 8. Testing
- 9. Reviewing
- 10. Continous Integration
- 11. Reproducible Research with Make
- 12. Risk Assessment

Welcome to the Turing Way

The Turing Way is a lightly opinionated guide to reproducible data science.

Our goal is to provide all the information that researchers need at the start of their projects to ensure that they are easy to reproduce at the end.

This also means making sure PhD students, postdocs, PIs and funding teams know which parts of the "responsibility of reproducibility" they can affect, and what they should do to nudge data science to being more efficient, effective and understandable.

A bit more background

Reproducible research is necessary to ensure that scientific work can be trusted. Funders and publishers are beginning to require that publications include access to the underlying data and the analysis code. The goal is to ensure that all results can be independently verified and built upon in future work. This is sometimes easier said than done. Sharing these research outputs means understanding data management, library sciences, sofware development, and continuous integration techniques: skills that are not widely taught or expected of academic researchers and data scientists.

The Turing Way is a handbook to support students, their supervisors, funders and journal editors

https://the-turing-way.netlify.com/introduction/introduction #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

1. Introduction

- 2. Reproducibility
- 3. Open Research
- 4. Version Control
- 5. Collaborating on GitHub/GitLab
- 6. Research Data Management
- 7. Reproducible Environments
- 8. Testing
- 9. Reviewing
- 10. Continous Integration
- 11. Reproducible Research with Make
- 12. Risk Assessment

Welcome to the Turing Way

The Turing Way is a lightly opinionated guide to reproducible data science.

Our goal is to provide all the information that researchers need at the start of their projects to ensure that they are easy to reproduce at the end.

This also means making sure PhD students, postdocs, Pls and funding teams know which parts of the "responsibility of reproducibility" they can affect, and what they should do to nudge data science to being more efficient, effective and understandable.

A bit more background

Reproducible research is necessary to ensure that scientific work can be trusted prinder and publishers are beginning to require that publications include access to the underlying data are the analysis code. The goal is to ensure that all results can be independently verified and built upon in future work. This is sometimes easier said than done. Sharing these research outputs means understanding data management, library sciences, sofware development, and continuous integration techniques: skills that are not widely taught or expected of academic researchers and data scientists.

The Turing Way is a handbook to support students, their supervisors, funders and journal editors

https://the-turing-way.netlify.com/introduction/introduction #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478 Is not considered for promotion

Held to higher standards than others

Publication bias towards novel findings

Requires additional skills

Barriers to reproducible research

Plead the 5th

Support additional users

Takes time

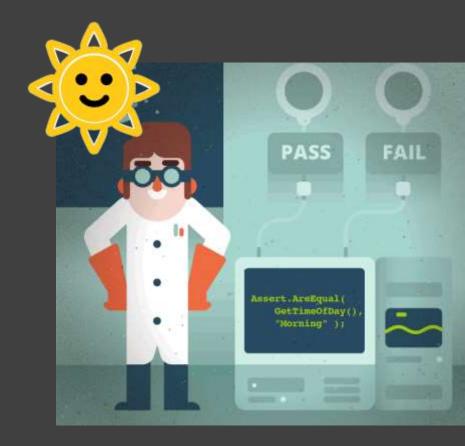
https://doi.org/10.6084/m9.figshare.5537101 #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

#PyDataCambridge #TuringWay @kirstie_j
https://doi.org/10.5281/zenodo.3543478

Catherine Lawrence

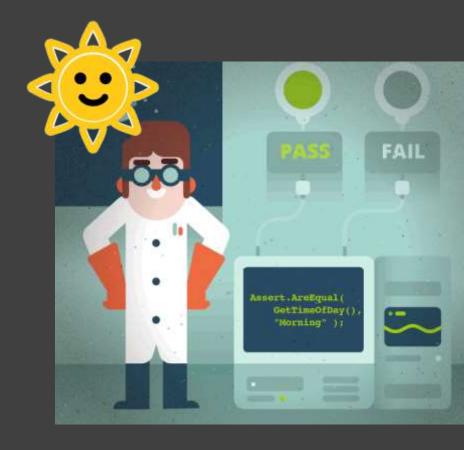
"We should ensure all our processes for running programmes are FAIR.

- Findable (intranet)
- Accessible (EDI)
- Interoperable across programmes and projects


- Reusable (bus factor)" https://www.turing.ac.uk/people/business-team/catherine-lawrence #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

Testing for research

#PyDataCambridge #TuringWay @kirstie_j
https://doi.org/10.5281/zenodo.3543478



Assert.AreEqual(

GetTimeOfDay(),

"Morning")

Assert.AreEqual(

GetTimeOfDay(),

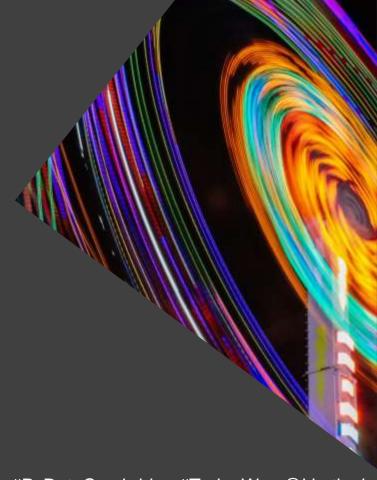
"Morning")

Louise Bowler

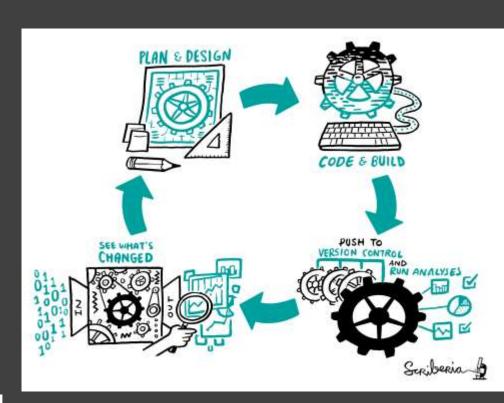
"Add a test before you change anything."

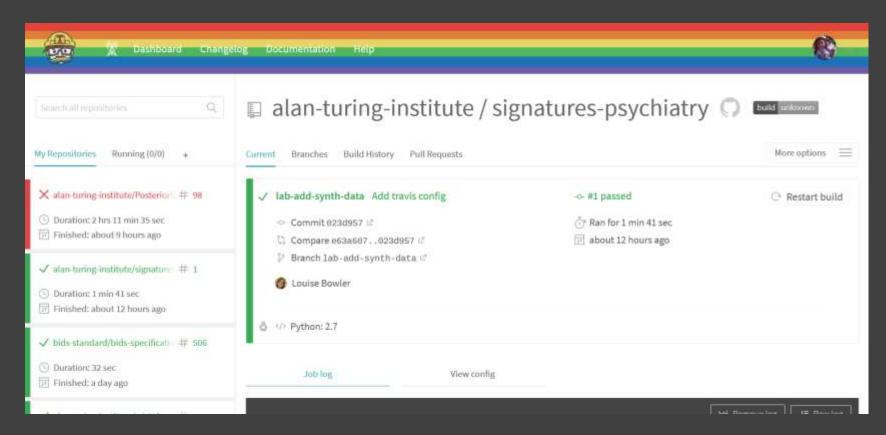
https://www.turing.ac.uk/people/researchers/louise-bowler #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

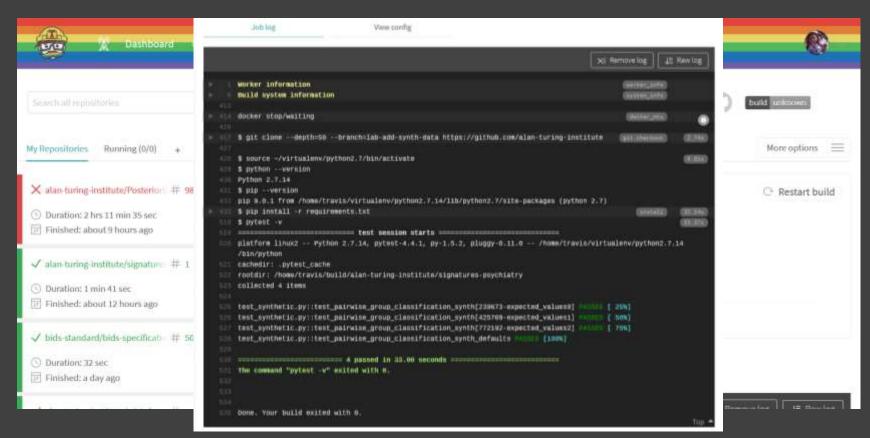
Louise Bowler


"Add a test before you change anything.

Particularly if you're just going to tidy up your code before sharing it."


https://www.turing.ac.uk/people/researchers/louise-bowler #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478


Continuous Analysis


#PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

- Plan and design your experiment
- Write down those steps in code
- Push to version control and run the analyses
 - Traditionally done on the cloud,
 but the important part is that <u>all</u>
 <u>steps</u> are run <u>every time</u>
- Test to see what's changed


https://github.com/alan-turing-institute/signatures-psychiatry #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

https://github.com/alan-turing-institute/signatures-psychiatry

https://the-turing-way.netlify.com/continuous_integration/continuous_integration.html

#PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

4 passed in 33.00 seconds == 530 The command "pytest -v" exited with 0. 531

529

532

```
Finished: about 12 hours ago
                                              test_synthetic.py::test_pairwise_group_classification_synth[239873-expected_values8]
                                              test_synthetic.py::fest_mairwise_group_classification_synth[425709_expected_values1]
                                              test_synthetic.py::test_pairwise_group_classification_synth[??2102-expected_values2]

√ bids-standard/bids-specificati # 50

                                              test synthetic.py::test_pairwise_group_classification_synth_defaults
                                                      4 passed in 33.00 seconds
Duration: 32 sec
                                              The command "pytest -v" exited with a
Finished: a day ago
                                              Done. Your build exited with 0.
```

https://github.com/alan-turing-institute/signatures-psychiatry

https://the-turing-way.netlify.com/ continuous integration/continuous integration.html #PyDataCambridge #TuringWay @kirstie_i https://doi.org/10.5281/zenodo.3543478

- Run the analysis from start to finish as you work
- Many times tests will fail as expected: you're developing the analysis!
- Sometimes tests will fail unexpectedly
- CI makes you be explicit about what has changed

1. Introduction

- 2. Reproducibility
- 3. Open Research
- 4. Version Control
- 5. Collaborating on GitHub/GitLab
- 6. Research Data Management
- 7. Reproducible Environments
- 8. Testing
- 9. Reviewing
- 10. Continous Integration
- 11. Reproducible Resea
- Make
- 12. Risk Assessment

Welcome to the Turing Way

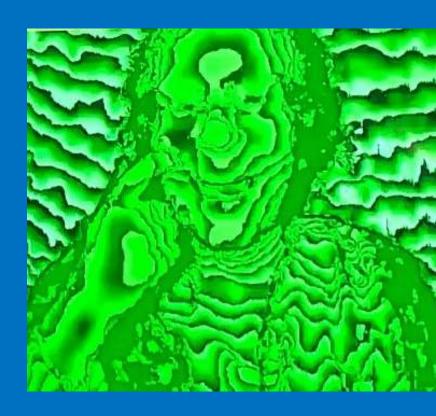
The Turing Way is a lightly opinionated guide to reproducible data science.

Our goal is to provide all the information that researchers need at the start of their projects to ensure that they are easy to reproduce at the end.

This also means making sure PhD students, postdocs, Pls and funding teams know which parts of the "responsibility of reproducibility" they can affect, and what they should do to nudge data science to being more efficient, effective and understandable.

A bit more background

Reproducible research is necessary to ensure that scientific work can be trusted. Funders and publishers are beginning to require that publications include access to the underlying data and the analysis code. The goal is to ensure that all results can be independently verified and built upon in future work. This is sometimes easier said than done. Sharing these research outputs means understanding data management, library sciences, sofware development, and continuous integration techniques: skills that are not widely taught or expected of academic researchers and data scientists.


The Turing Way is a handbook to support students, their supervisors, funders and journal editors

https://the-turing-way.netlify.com/introduction/introduction #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

Becky Arnold

"There are a lot of things you need to know before you can jump into continuous integration.

Version control is a prerequisite for pretty much everything."

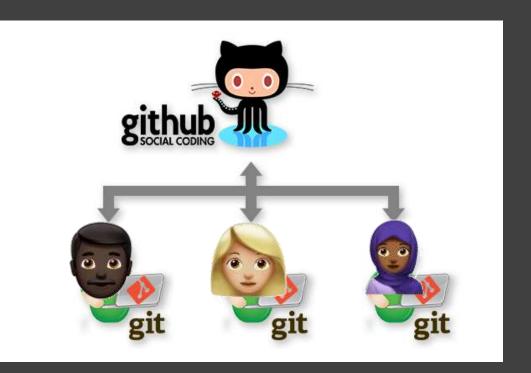
https://software.ac.uk/about/fellows/becky-arnold #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

- 1. Introduction
- 2. Reproducibility
- 3. Open Research
- 4. Version Control
- 5. Collaborating on GitHub/GitLab
- 6. Research Data Management
- 7. Reproducible Environments
- 8. Testing
- 9. Reviewing
- 10. Continous Integration
- 11. Reproducible Research with Make
- 12. Risk Assessment

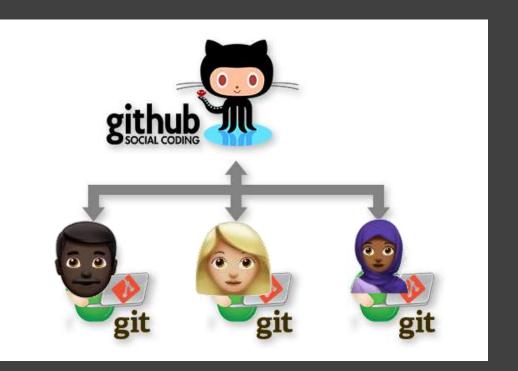
Continuous integration

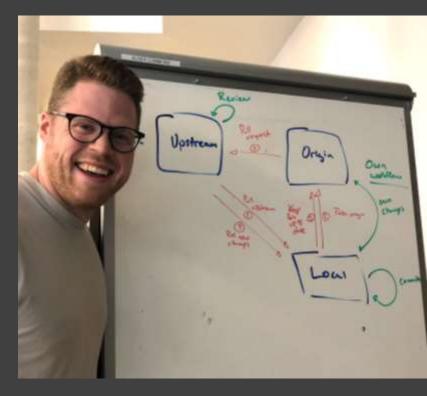
Notes	Importance	Prerequisite
A tutorial on working via the command line can be found here	Necessary	Experience with the command line
See the chapter on this for more information	Necessary	Version control
See the chapter on this for more information	Very helpful	Testing
See the chapter on this for more information, particularly the sections on YAML files and containers	Necessary	Reproducible computational environments

Table of contents


- Summary
- How this will help you/ why this is useful
 What are continuous delivery and continuous deployment?
- · What is Travis and how does it work?
- Setting up continuous integration with Travis
 - o Basic steps

 $https://the-turing-way.net lify.com/continuous_integration/continuous_integration.html\\$


Version control



#PyDataCambridge #TuringWay @kirstie_j
https://doi.org/10.5281/zenodo.3543478

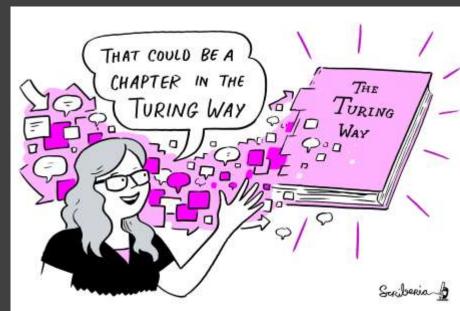
https://the-turing-way.netlify.com/collaborating_github/collaborating_github.html https://the-turing-way.netlify.com/version_control/version_control.html #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

https://the-turing-way.netlify.com/collaborating_github/collaborating_github.html
https://the-turing-way.netlify.com/version_control/version_control.html #PyDataCambridge #TuringWay @kirstie_j
https://neurohackademy.org https://doi.org/10.5281/zenodo.3543478

Neurohackademy

"Every hackathon should have a gong that you can ring when you complete your first pull request."

https://neurohackademy.org #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478


Beyond reproducibility

#PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

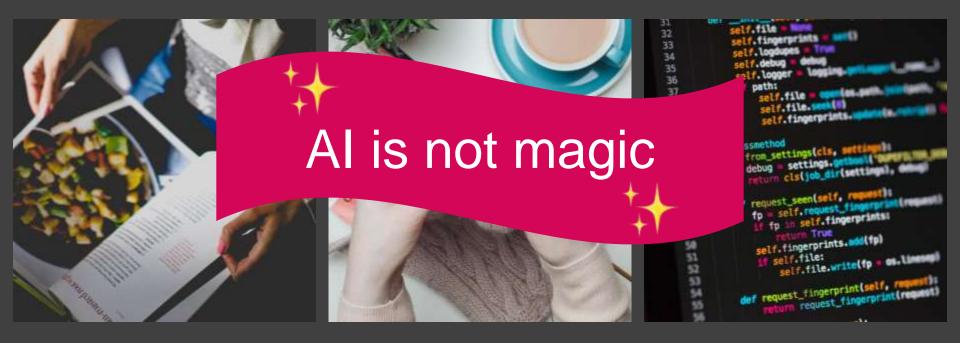
The expansion

- Create a handbook for all data science practices
 - Reproducibility
 - Scoping and designing a data science project
 - Communication and visualisation
 - Ethics
 - Collaborative working

https://github.com/ alan-turing-institute/the-turing-way/ blob/master/project_management/ tps-funding-application-20190429.md #PyDataCambridge #TuringWay @kirstie_j

https://doi.org/10.5281/zenodo.3543478

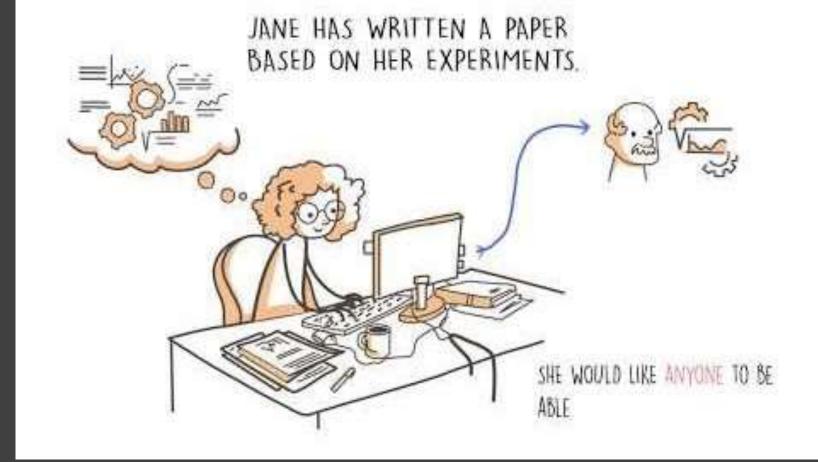
Scoping & designing a data science project


An algorithm is a set of instructions


```
self.file.write(fp =
```

An algorithm is a set of instructions

"Al is whatever hasn't been done yet."


- No agreed upon definition
- There is a lot of hype
- Setting appropriate
 expectations in
 collaborations is really
 important and hard to do!

Communicating your work

#PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

Drawing by Juliette Taka: https://twitter.com/mybinderteam/status/1082556317842264064

Animation by Pix Video, via Open Dream Kit project: #PyDataCambridge #TuringWay @kirstie_j

https://youtu.be/a5i42lSj-L4 https://doi.org/10.5281/zenodo.3543478

- Leave PDFs behind
- Share the responsibility of reproducibility with busy PIs
- Requires version
 control, capturing
 environment and new
 build for each change

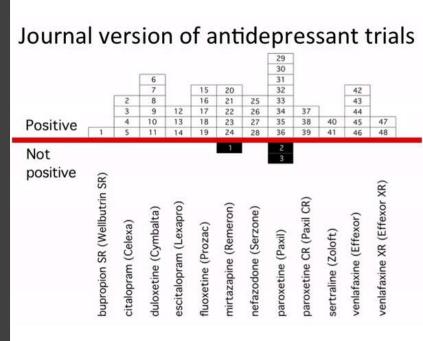
#PyDataCambridge #TuringWay @kirstie_j
https://doi.org/10.5281/zenodo.3543478

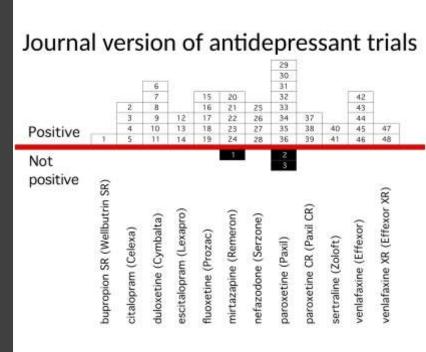
Sarah Gibson

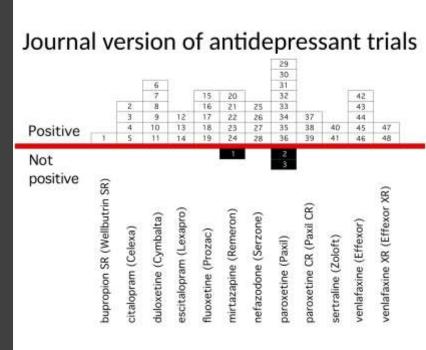
"It took me a while to feel like I knew enough to contribute to Binder. But the team are always so excited to have my input. Its really motivating to be part of such a welcoming community."

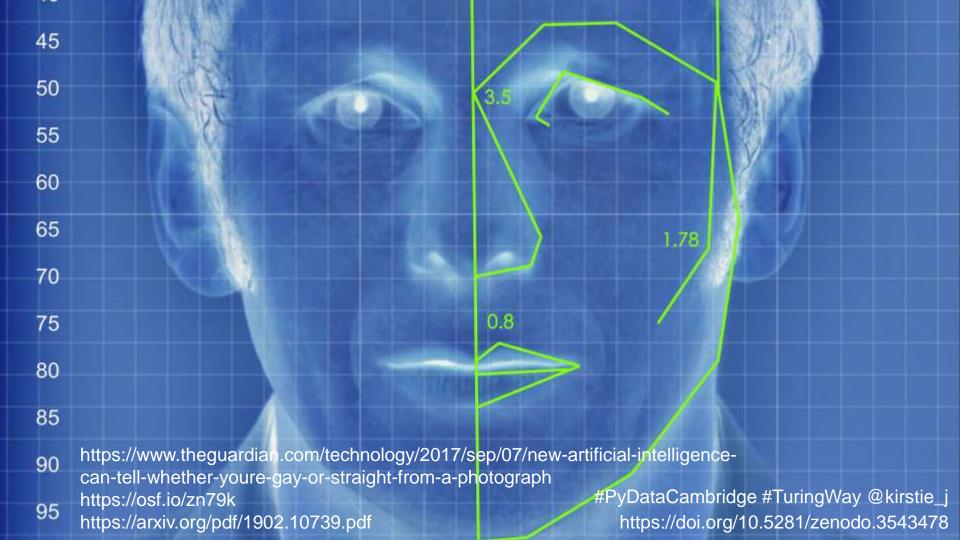
https://www.turing.ac.uk/people/researchers/sarah-gibson #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

https://chanzuckerberg.com/rfa/essential-open-source-software-for-science https://medium.com/@cziscience/ #PyDataCambridge #TuringWay @kirstie_j the-invisible-foundations-of-biomedicine-4ab7f8d4f5dd https://doi.org/10.5281/zenodo.3543478

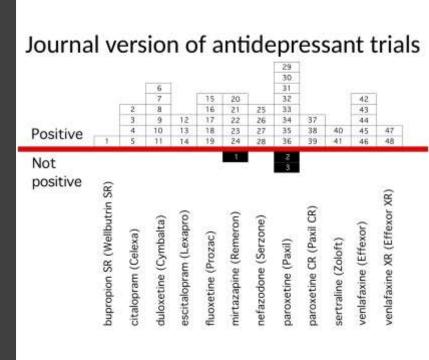

Ethical research


#PyDataCambridge #TuringWay @kirstie_j
https://doi.org/10.5281/zenodo.3543478


Transparent publishing

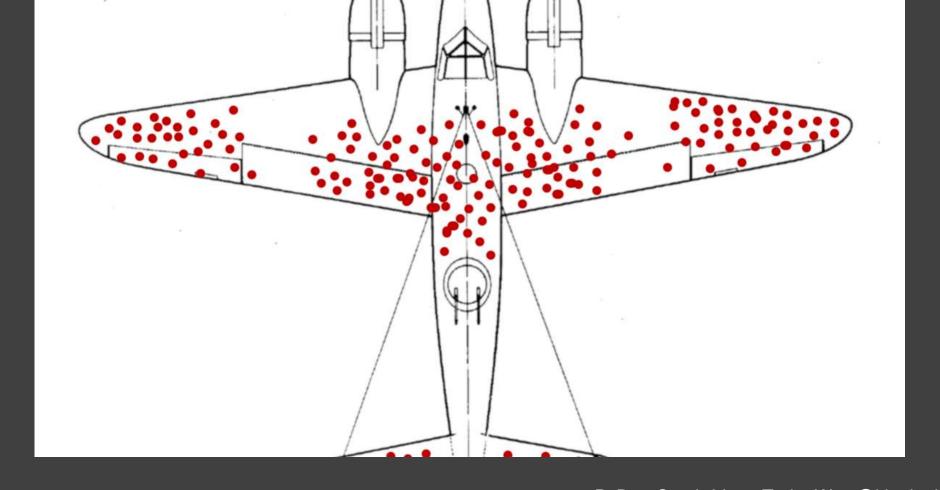


Transparent publishing

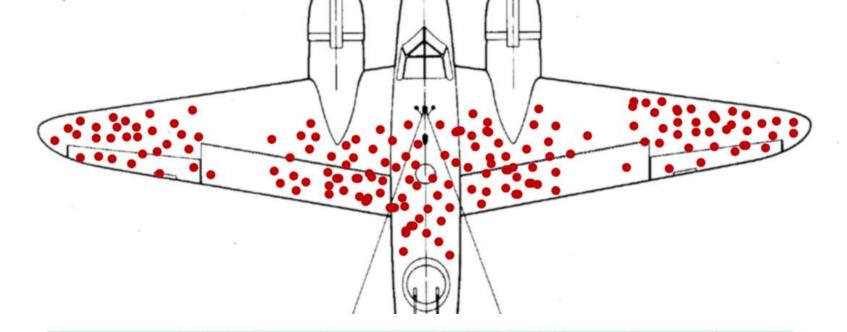


- Transparent publishing
- Consent (GDPR)
- Privacy (safe haven)
- Societal harm

- Transparent publishing
- Consent (GDPR)
- Privacy (safe haven)
- Societal harm
- Wellbeing of the research team



Collaboration



#PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

https://medium.com/@penguinpress/an-excerpt-from-how-not-to-be-wrong-by-jordan-ellenberg-664e708cfc3d

#PyDataCambridge #TuringWay @kirstie_j
https://doi.org/10.5281/zenodo.3543478

The armor, said Wald, doesn't go where the bullet holes are. It goes where the bullet holes aren't: on the engines.

Whose voices are missing?

- In this room
- In your friend group
- At work and in your open source communities

A global collaboration

PyDataCambridge #TuringWay @kirstie_jl https://doi.org/10.5281/zenodo.3543478

Patricia Herterich

"What really sets The Turing Way apart is HOW we're writing the book. The focus on community, the commitment to transparency and working open right from the beginning is an exciting (and terrifying) new way of working."

https://rd-alliance.org/users/patricia-herterich #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

Open Leadership Principles

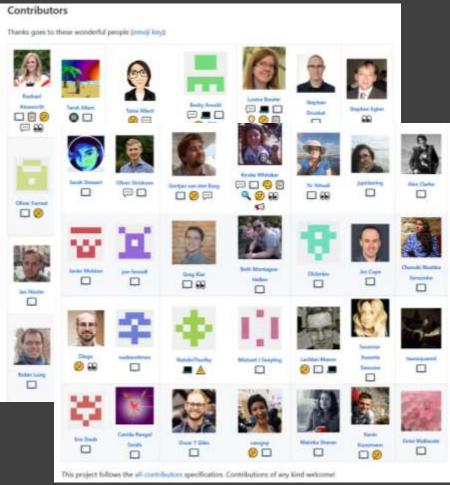
Understanding

You make the work accessible and clear

Read more

https://mozilla.github.io/olm-whitepaper

Sharing


You make the work easy to adapt, reproduce, and spread

Participation & Inclusion

You build shared ownership and agency to make the work inviting and sustainable for all.

#PyDataCambridge #TuringWay @kirstie_j
https://doi.org/10.5281/zenodo.3543478

question financial security bug fundingFinding tool blog translation ideas business infra test code tutorial content maintenance 6 talk doc platform userTesting design 8 plugin video examples projectManagement

eventOrganizing

88

review

https://github.com/alan-turing-institute/the-turing-way

https://github.com/alan-turing-institute/the-turing-way#contributors https://allcontributors.org/docs/en/emoji-key

#PyDataCambridge #TuringWay @kirstie_j
https://doi.org/10.5281/zenodo.3543478

Rosie Higman

"There's no point in running events when you're only preaching to the choir. We need to show researchers the selfish reasons to follow our recommendations."

https://rosiehigman.wordpress.com #PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

Book Dashes

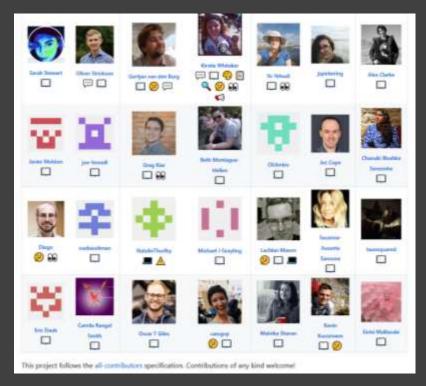
- Manchester and London
- 13 selected people to contribute to the book
- 1:3 support ratio: mentored support to contribute expertise

https://github.com/
alan-turing-institute/the-turing-way/
blob/master/
workshops/book-dash/
book-dash-[mcr|ldn]-report.md

#PyDataCambridge #TuringWay @kirstie_j
https://doi.org/10.5281/zenodo.3543478

Collaboration cafes

- 1st and 3rd Wednesdays of each month
- All remote participation
 - Zoom call
 - Pomodoro technique
 - Breakout rooms for mentored contributions
- Everyone welcome



#PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478

Thank you to current (& future) contributors

Thank you

The Alan Turing Institute

Book: https://the-turing-way.netlify.com

moz://a

Newsletter: https://tinyletter.com/TuringWay

- UNIVERSITY OF CAMBRIDGE
- GitHub: https://github.com/alan-turing-institute/the-turing-way
- Chat: https://gitter.im/alan-turing-institute/the-turing-way
- Next Collaboration Café: 20 November at 7pm UK time
- This work was supported by The UKRI Strategic Priorities Fund under the EPSRC Grant EP/T001569/1, particularly the "Tools, Practices and Systems" theme within that grant, and by The Alan Turing Institute under the EPSRC grant EP/N510129/1.
- Unsplash photos by Adolfo Felix, Austin Distel, Chris Ried, Dan Gold, Freddy Castro, James Pond,
 Kinson Leung, Mateo Vrbnjak, Med Badr, Michael Aleo, Mimi thian, Perry Grone, Rebecca Grant, Wei Ding. Noun Project icons by Luis Prado, Becris, Rose Alice Design, Hyemm.work.
- Original artwork by Scriberia: https://doi.org/10.5281/zenodo.3332807

#PyDataCambridge #TuringWay @kirstie_j https://doi.org/10.5281/zenodo.3543478