
A Blockchain-based Decentralized Self-balancing
Architecture for the Web of Things

Aleksandar Tošić1,2[0000−0001−5627−4420], Jernej Vičič2[0000−0002−7876−5009], and
Michael Mrissa1,2[0000−0002−2330−1004]

1 InnoRenew CoE,
Livade 6, 6310 Izola, Slovenia

{firstname.surname}@innorenew.eu
2 University of Primorska,

Faculty of Mathematics, Natural Sciences and Information Technology,
Glagoljaška ulica 8, 6000 Koper, Slovenia
{firstname.surname}@famnit.upr.si

Abstract. Edge computing is a distributed computing paradigm that
relies on the computational resources of end devices in a network to
bring benefits such as low bandwidth utilization, responsiveness, scala-
bility and privacy preservation. Applications range from large scale sen-
sor networks to IoT, and concern multiple domains (agriculture, supply
chain, medicine, etc.). However, resource usage optimization is a chal-
lenge due to the limited capacity of edge devices and is typically handled
in a centralized way, which remains an important limitation. In this pa-
per, we propose a decentralized approach that relies on a combination of
blockchain and a consensus algorithm to monitor network resources and,
if necessary, migrate applications at run-time. We integrate our solution
into an application container platform, thus providing an edge architec-
ture capable of general purpose computation. We validate and evaluate
our solution with a proof-of-concept implementation in a national cul-
tural heritage building.

Keywords: Edge computing · Internet of Things · Decentralized appli-
cations · Blockchain

1 Introduction

In the last few years, edge computing has received a lot of attention as an alter-
native to cloud computing, due to the multiple advantages it offers, such as low
bandwidth usage, responsiveness, scalability [10], and privacy preservation [17].
Edge computing has becomes possible due to the evolution of devices that offer
more computational power than ever. Combined with application container plat-
forms such as Docker [3] that mask heterogeneity problems, it becomes possible
for connected devices to form a homogeneous distributed run-time environment.
Additionally, orchestration engines (i.e., Kubernetes3) have been developed that

3 https://kubernetes.io/

https://kubernetes.io/


2 A. Tošić et al.

manage and optimize usage of network, memory, storage, or processing power
for edge devices and improve the global efficiency, scalability and energy man-
agement of edge platforms. However, such solutions are centralized, which means
that they represent a single point of failure (SPOF), which entails several draw-
backs, such as lack of reliability and security. The problem is so critical that
developments for high availability have been explored, for instance with Kuber-
netes4.

This paper proposes a solution that uses a decentralized algorithm that mon-
itors network resources to drive application execution to address this problem.
Our solution relies on an original combination of blockchain, a consensus algo-
rithm, and a containerized monitoring application to enable run-time migration
of applications, when relevant, according to the network state. It provides several
advantages, such as verifiable optimal usage of all devices on the network, bet-
ter resilience to disconnection, independence from cloud connection, improved
privacy and security.

The remainder of this paper is organized in 7 sections. Section 2 introduces
our motivating scenario related to a cultural heritage building and shows the
need for a decentralized approach. Section 3 overviews relevant related work
and highlights the originality of our approach. Section 4 details our proposed
architecture and shows how it drives run-time migration of applications on the
edge. Section 4.2 presents our network monitoring application and shows how
monitoring takes place. In Section 5, we propose a technical implementation, and
we validate and evaluate our solution with a proof-of-concept prototype related
to our cultural heritage scenario. Section 6 discusses the results obtained and
gives insights for possible future work.

2 Motivating Scenario

In this section, we illustrate the relevance of our approach with a scenario re-
lated to a Slovenian cultural heritage building located in Bled, Slovenia. This
building has been equipped with multiple sensors to monitor its dynamic envi-
ronment that affects the building and its contents. The collected data includes
temperature, CO2, relative humidity, Volatile Organic Compounds (VOC), am-
bient light and atmospheric pressure. In this scenario, the following constraints
motivate the need for a fully decentralized edge computing approach:

– Privacy: collected data about the state of the technological solution being de-
ployed is classified as sensitive information. Although data about the building
could be sent to the cloud, data about the state of resources needs to remain
local and only accessible for administration purpose and for the deployed
solution to self-manage.

– Reliability: centralized orchestration is not appropriate as data collection
needs to be resilient to failure of any device. The network of devices needs to
adjust to device disconnection at any time and keep operating in an optimal
way.

4 https://kubernetes.io/docs/setup/independent/setup-ha-etcd-with-kubeadm

https://kubernetes.io/docs/setup/independent/setup-ha-etcd-with-kubeadm


Title Suppressed Due to Excessive Length 3

– Cost: reducing the overall cost by avoiding investing in a cloud infrastructure
that involves monthly payments and permanent connection to maintain.

– Scalability: as the number of devices will evolve over time, it is necessary for
the solution to be able to adjust to changes and homogeneously spread the
computation over the network.

– Performance: reactivity to external events is improved if processing is per-
formed on-site.

– Cost effectiveness: using existing devices that control sensors to perform nec-
essary processing reduces the resource requirements of cloud based solutions,
which reduces cost.

In this context, it is relevant to equip devices with the capacity to run appli-
cations locally and to self-manage the global network load and distribute it over
connected devices, according to the state of the network. In the next section,
we present related work and show the need for a decentralized self-managed
platform on the edge. We also overview existing solutions to abstract from plat-
form heterogeneity and justify the technological choice of a container platform
to support our solution.

3 Background Knowledge and Related Work

A recent study by Taherizadeh et al. [19] shows that no widely-used cloud moni-
toring tools yet provide an integrated monitoring solution within edge computing
frameworks, as some monitoring requirements have not been thoroughly met by
any of them. Diallo et al. [6] present AutoMigrate, which incorporates a selection
algorithm for deciding what services to migrate that maximizes the availability
of migration. The system addresses most of the problems that are discussed in
our paper. However, it relies on a single agent to manage services introducing a
Single Point Of Failure (SPOF). The most notable difference in our implemen-
tation is a decentralized architecture that eliminates the SPOF.

3.1 Choreography solutions for edge computing

Strictly observing the definition of orchestration, it always represents control
from one party’s perspective. This differs from choreography, which is more
collaborative and allows each involved party to describe its part in the interaction
[16]. However, to the authors’ knowledge, there are no choreography solutions
that tackle the problems defined in the previous section. Existing orchestration
solutions typically rely on a master/slave model where a node is put in charge
of the network and decides to allocate applications to nodes according to an
optimization algorithm.

Containers as used in the purpose of this paper are run as a group of names-
paced processes within an operating system, avoiding the overhead of starting
and maintaining virtual machines (at the same time providing most of the func-
tionalities).



4 A. Tošić et al.

The selected platform for our research was Docker [3] as it is the most widely
used platform and one of the few that can migrate apps at runtime and enables
easy communication. The migration is done by pausing the container, dumping
the context of the paused container, transferring the context on a different host
that can resume the execution given the context.

3.2 Decentralized Self-managing IoT Architectures

Kubernetes [8] is the most widely used orchestration tool, it is the go-to tool for
orchestration in the Google cloud, and is the most used in the Microsoft Azure
platform and similar products. It is also the most feature-filled orchestration
tool available [12]. It has strong community support across many different cloud
platforms (in addition to Google cloud, OpenStack, AWS, Azure).

AWS Elastic Container Service (AWS ECS) [1], Amazon’s native container
orchestration tool, is the best option for orchestration of AWS services as it is
fully integrated into the Amazon ecosystem. It thus integrates easily with other
AWS tools. The biggest limitation is that it is limited to Amazon services.

Docker Swarm 5 ships directly with Docker (integrates with Docker-compose)
and is supposed to have the simplest configuration. However, it lacks some ad-
vanced monitoring options as compared to other products like Kubernetes.

Apache Mesos’ based DC/OS 6 is a “distributed operation system” running
on private and public cloud infrastructure that abstracts the resources of a cluster
of machines and provides common services.

All presented architectures still have a common flaw: single point of failure
and a lack of integration with edge computing.

There have been some proposed solutions that enable fully decentralized self-
managing architectures for the IoT. For example, [11] focuses on a decentralized
solution for energy management in IoT architectures connected to smart power
grids. In [7], the authors propose a distributed IoT approach for electrical power
demand management problems based on “distributed intelligence” rather than
“traditional centralized control,” with the system improving on many levels.
Souzdalenko et al. [18] further develop the former approach by creating a de-
centralized distributed model of an IoT; where consumers can freely join and
leave the system automatically at any time. Niyato et al. [13] present a system
that uses machine-to-machine (M2M) communication to reduce the cost of a
home energy management system. A distributed and decentralized microscopic
simulation that eliminates the central entity and thus avoids the bottleneck
in synchronization is presented in dSUMO [4]. In [2], the authors demonstrate
the effectiveness of utilizing a publish/subscribe messaging model as connec-
tion means for indoor localization utilizing Wireless Sensor Networks (WSNs)
through a middle-ware, the results showed that RSS reaches an acceptable level
of accuracy for multiple types of applications.

5 https://github.com/docker/swarm
6 https://dcos.io/

https://github.com/docker/swarm
https://dcos.io/


Title Suppressed Due to Excessive Length 5

However, all the aforementioned contributions are different from the solution
we propose in this paper, at two levels. First, they mostly focus on a single
specific aspect and find an optimal solution for it, without considering the fact
that an IoT architecture involves multiple criteria that require optimization. In
our work, we already consider multiple criteria to optimize application migration,
while envisioning that this number of criteria can increase in the future. Second,
as far as we know, there is no approach that combines a blockchain data structure
with a consensus algorithm in a single framework with the objective to drive
application migration at run-time on the edge, which is the main contribution
of this paper.

4 A Decentralized Self-managing Architecture

In the following, we describe the general architecture that support our edge
computing platform. Devices on the edge are nodes running node software and
containerization software. A node can join the network by following a network
protocol for exchanging known nodes and participate by executing the consensus
algorithm. Nodes keep discovering the network by asking connected nodes for
peers. For the sake of simplicity, in this paper we consider that the number of
nodes remains reasonably limited, so that large scale discovery issues remain out
of the scope of this paper.

4.1 General Architecture

Our devices are equipped to allow a specific containerized application (called
node app) to introspect the state of the node and handle the diffusion of this in-
formation over the network. It also is responsible for maintaining the information
about the other nodes up to date, for participating in the consensus algorithm,
and for listening to messages coming from the exposed node API.

Figure. 1: Architecture of an edge device software platform: a Node App that
deals with the consensus algorithm, accesses shared data and exposes the query-
ing API is deployed into the container (in our case Docker).

Figure 1 shows the key components of Nodes in the system. The node software
is deployed into the container, in our case Docker. The container mounts a direct



6 A. Tošić et al.

socket to the containerization service for querying the state of the system and
managing local containers. Docker is useful here to alleviate from the typical
heterogeneity problems encountered in the IoT world (different processors and
OSes).

4.2 Node Application

Every 500 milliseconds, each device collects information about the state of its
neighbours. Typically, a state is a vector of scores that describes the device state
and the applications being executed by the node. In this work we define a state
to be a matrix of vectors

S(APP,CPU,RAM,DISK,NETWORK,TIMESTAMP )

where each vector represents an application being executed by the node and
the corresponding resource consumption. Resources are reported as a fraction of
the total available. In order to have comparable values between nodes, reporting
on CPU usage and network utilization the CPU is normalized with the num-
ber of cores whereas network bandwidth(download/upload) is measured when
transferring containers between nodes.

Monitoring resources within the P2P network is done by having nodes main-
tain a list of scores of all other nodes (neighbours or not). All nodes periodically
send digitally signed messages containing their score to all neighbour nodes. All
nodes follow simple P2P broadcasting rules that guarantee finality and efficiency
in message propagation.

– If elapsed time greater then ∆ST , send signed a message containing own
score to all neighbour nodes.

– When receiving a new score message, check if the message was received before
(compare digital signatures).

– If the message was not seen before, send it to all connected nodes with the
exception of the originating node.

Where ∆ST is the time interval in which the container statistics are collected
and it is configurable and should depend on the time interval of the consensus
algorithm. The score pool hence contains scores of all nodes participating in
the network. Each score has a corresponding time-stamp which is later used by
elected nodes to create a migration strategy.

Messages containing blocks can become relatively large when the number of
applications in the system increases. For improved efficiency, every score message
broadcast is prefaced with a ”Do you need this” (DYNT) message coupled with
the digital signature of the message only. Messages are sent to nodes that reply
to the DYNT message to minimize bandwidth use.

Consensus algorithm The network requires a consensus algorithm to avoid
race conditions when migrating applications. The choice of a consensus algorithm



Title Suppressed Due to Excessive Length 7

depends on the requirements of the implementation and domain of application.
In general, any consensus based on leader election can be plugged in. Examples
of such consensus algorithms are Paxos [9], Raft [15], PoET [14], etc. However, in
our implementation PBFT [5] was used as it is relatively simple to implement and
all its properties satisfy our demands. The only real drawback of the algorithm is
that the number of messages increases exponentially with the number of nodes,
so it is not applicable to large networks. It was a viable alternative for our proof-
of-case implementation with a limited number of nodes. The elected leader is
responsible for creating a migration plan and including the resource consumption
estimates in a block. The block gets digitally signed so other nodes can verify
it originates from the elected leader. Nodes receiving a new block must verify
the migration plan by computing it locally and comparing the results. If the
migration plan is equal, they act on it, otherwise discard the block and wait for
a new one. With these simple protocol rules in place the network is Byzantine
fault tolerant [5]. The block verification step is necessary to minimize accidental
network forks. A migration strategy is analogous to blocks in block-chain based
systems. Blocks contain all the data shared among nodes in the network and
include a digital signature of the previous block thus creating a block chain. In
order to create a digital signature of block n+1 a node needs to have the digital
signature of node n. A well formed block can be verified by other nodes that also
have block n. In case of a malformed block, verification will fail, and nodes will
reject the block, thus forcing the nodes to agree on the shared data. The block
serves as an instruction set mapping applications to nodes. Consider a case with
4 nodes in set N denoted by A,B,C, and D respectively. All nodes share their
score and keep a local copy of reported scores of other nodes. Each node stores a
vector of applications v ∈ V that need to be executed. Each node has a canonical
list of block B of size k where k is the current block height. Table 1 shows an
example of a block k which assigns every v ∈ V to a node n ∈ N To create
block k + 1 a node elected as leader computes an assignment such that the use
of resources is optimized (improved). The input to the Algorithm 1 is limited to
block data to ensure determinism that can enforce consensus. The Algorithm 1
depends on the application domain and exploring available possibilities will be
subject to future work. In this paper, we use the simple described in Algorithm 1,
which is deterministic and can only take the block data as input for computation.
Once a block is created, currently reported scores are included that will be used
to compute block k + 2. Additionally, blocks are equipped with meta-data like
block hash, previous block hash, etc. to facilitate their utilization.

5 Implementation and Evaluation

5.1 Technical Implementation

As described in Section 2, we have implemented and evaluated our solution with
a set of sensors deployed in the cultural heritage building Mrakova Domačija in



8 A. Tošić et al.

Data: BlockData
Result: Migration plan
Max← FindMaxLoadedNode(BlockData);
Min← FindMinLoadedNode(BlockData);
if !AppQueue.isEmpty() then

while !AppQueue.isEmpty() do
Min← FindMinLoadedNode(BlockData);
Min.addApp(AppQueue.dequeue());

end

else
AppToMigrate←Max.MaxLoadApp;
CurrentDeltaScore← (Max.score−Min.score);
FutureDeltaScore←
(Max.score−AppToMigrate.score)−(Min.score+AppToMigrate.score);

if Math.abs(CurrentDeltaScore > FutureDeltaScore) then
Migrate AppToMigrate to Min;

end

end
Algorithm 1: Deterministic migration plan generation algorithm

Table 1: Block data
V Node RAM DISK CPU Average Latency

v0 A 50% 23% 90% 23ms
v1 B 47% 87% 23% 33ms
v2 C 12% 25% 15% 51ms
v3 A 35% 14% 56% 101ms
v4 D 25% 74% 16% 9ms

Bled, Slovenia. Each sensor is connected to a Raspberry Pi device that hosts a
Linux Alpine OS in a Docker container. The container has access to the docker
daemon via unix socket. We developed our node application inside a container,
it relies on the Docker introspection capacity (docker stats command called
from our Java program) to collect information about each device. The devices
simply collect temperature and relative humidity measurements and calculate
their averages. It also hosts a HTTP server7 that exposes a RESTful API pro-
viding access to the system. In such a decentralized system, interaction can be
done by any node in the network as follows:

– HTTP GET gives a representation of the target node, which includes infor-
mation about the state of the device as well as all the necessary information
about the node (i.e., last connection time, average connection time, etc.).
HTTP GET enables users to view the shared pool of resource stats nodes
maintain. Most importantly, it gives a list of all applications in the system.

7 Please note that CoAP could be used for energy saving purposes.



Title Suppressed Due to Excessive Length 9

– HTTP PUT/POST enables users to queue an application to be run by the
system.

– HTTP DELETE is utilized when an application must be deleted from the
queue.

In order to deploy our prototype, we use 5 Raspberry Pi 3 Model B+ con-
nected to Arduino Nano via USB (Universal Serial Bus), the Arduino is con-
nected to the sensors via UART (Universal Asynchronous Receiver Transmit-
ter) ports. We have connected DHT22 sensors to the Arduino boards to capture
temperature and humidity.

5.2 Validation and Evaluation

To validate the feasibility of our approach and test its scalability we ran perfor-
mance simulation test cases. In each test case, a fixed number of nodes formed a
P2P network. Nodes were assigned applications to execute. Each application had
a random execution time and preset resource consumption expressed in fractions
between 5% - 40%. For the sake of simplicity, only one resource was used (CPU).
The simulation ran for 100 blocks with a block time of 1 second. Applications
were queued until the average load of the entire system rose above 90%. The
migration strategy was implemented based on the algorithm described in Sec-
tion 4.2. Applications arrived in the queue with certain probability, which was
gradually increased with the number of nodes in the system. From the reported
resource loads of nodes (reported in %), we compute the standard deviation as
a measure of how balanced resource consumption is.

In Fig. 2, we observe that the standard deviation remains low even when
the number of applications in the system grows. The lower load cases where
we can observe higher swings in standard deviations are expected due to the
low number of applications in the system. The crossover happens when the
number of applications exceeds the number of nodes and migrations can be
beneficial. Below the threshold, there are bound to be nodes that do not run any
applications. We can observe from Fig. 2a that as the number of nodes is low,
resource balancing between nodes is effective earlier, which explains why the
measures are less marked than with the other figures, that correspond to test
cases where it takes the simulation a longer time to reach the point of crossover
where a higher number of applications is distributed over a lower number of
nodes.

Figures 2b, 2c, 2d show that the architecture can scale with the growing
number of nodes in the network. Additionally, the naive algorithm for creating
a migration strategy performed well in distributing load across the system.

6 Discussion and Conclusion

In this paper, we propose a decentralized solution to the resource usage optimiza-
tion problem, a typical issue in edge computing. Our solution avoids the single



10 A. Tošić et al.

(a) 5 nodes (b) 25 nodes

(c) 50 nodes (d) 100 nodes

Figure. 2: Simulation results, error bars are standard deviation of the system
load

point of failure that centralized architectures suffer from and improves network
resilience as it does not depend on a master node. To design our solution, we
have combined a blockchain shared data structure and a consensus algorithm
with a monitoring application that runs on top of the Docker platform. Such
combination allows edge devices to check at run-time if there is a need for mi-
grating an application, and to reach consensus on a decision to do so. With our
contribution, edge devices become a completely decentralized and distributed



Title Suppressed Due to Excessive Length 11

run-time platform. We have implemented and evaluated our solution with a set
of sensors deployed in a cultural heritage building in Bled, Slovenia.

Results show that our approach is able to adjust and normalize the appli-
cation load over a set of nodes. It also provides, thanks to the fact that the
algorithm we use is deterministic and that all the data is stored in a distributed
structure, the possibility to verify all the decisions that have been taken to opti-
mize the usage of edge devices. The consensus algorithm that we use also allows
adjustments to the global network behaviour for entering or leaving nodes.

Several limitations have been identified that give insights for future work.
First, it is important to observe how adding and removing devices affects network
behaviour and to explore how scalable our approach is over a large number of
devices. Second, it seems appropriate to find out what specific aspects of use cases
can help determine which consensus algorithm is most suitable for deploying our
solution, in order to best match the use case requirements. Third, it includes
semantically describing applications and the services that edge devices offer, to
support application migration, and combine in the same architecture the need for
efficiently managing network resources together with the needs of applications
in terms of functionality and quality of service.

7 Acknowledgment

The authors gratefully acknowledge the European Commission for funding the
InnoRenew CoE project (Grant Agreement #739574) under the Horizon2020
Widespread-Teaming program and and the Republic of Slovenia (Investment
funding of the Republic of Slovenia and the European Union of the European
regional Development Fund). The first author also acknowledges the support of
the ARRS grant N1-0093.

References

1. Acuña, P.: Amazon ec2 container service. In: Deploying Rails with Docker, Kuber-
netes and ECS, pp. 69–98. Springer (2016)

2. Al-Madani, B.M., Shahra, E.Q.: An energy aware plateform for iot indoor tracking
based on rtps. Procedia computer science 130(C), 188–195 (2018)

3. Anderson, C.: Docker [software engineering]. IEEE Software 32(3), 102–c3 (2015)
4. Bragard, Q., Ventresque, A., Murphy, L.: Self-balancing decentralized distributed

platform for urban traffic simulation. IEEE Transactions on Intelligent Transporta-
tion Systems 18(5), 1190–1197 (2017)

5. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI. vol. 99,
pp. 173–186 (1999)

6. Diallo, M.H., August, M., Hallman, R., Kline, M., Slayback, S.M., Graves, C.:
Automigrate: a framework for developing intelligent, self-managing cloud services
with maximum availability. Cluster Computing 20(3), 1995–2012 (2017)

7. Higgins, N., Vyatkin, V., Nair, N.K.C., Schwarz, K.: Distributed power system
automation with iec 61850, iec 61499, and intelligent control. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 41(1),
81–92 (2011)



12 A. Tošić et al.

8. Hightower, K., Burns, B., Beda, J.: Kubernetes: Up and Running: Dive Into the
Future of Infrastructure. ” O’Reilly Media, Inc.” (2017)

9. Lamport, L., et al.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)
10. Mach, P., Becvar, Z.: Mobile edge computing: A survey on architecture and com-

putation offloading. IEEE Communications Surveys & Tutorials 19(3), 1628–1656
(2017)

11. Maior, H.A., Rao, S.: A self-governing, decentralized, extensible internet of things
to share electrical power efficiently. In: 2014 IEEE International Conference on
Automation Science and Engineering (CASE). pp. 37–43. IEEE (2014)

12. Medel, V., Rana, O., Bañares, J.Á., Arronategui, U.: Modelling performance &
resource management in kubernetes. In: 2016 IEEE/ACM 9th International Con-
ference on Utility and Cloud Computing (UCC). pp. 257–262. IEEE (2016)

13. Niyato, D., Xiao, L., Wang, P.: Machine-to-machine communications for home
energy management system in smart grid. IEEE Communications Magazine 49(4),
53–59 (April 2011). https://doi.org/10.1109/MCOM.2011.5741146

14. Olson, K., Bowman, M., Mitchell, J., Amundson, S., Middleton, D., Montgomery,
C.: Sawtooth: An introduction. The Linux Foundation, Jan (2018)

15. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14). pp. 305–
319 (2014)

16. Peltz, C.: Web services orchestration and choreography. Computer 36(10), 46–52
(Oct 2003)

17. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39
(2017)

18. Suzdalenko, A., Galkin, I.: Instantaneous, short-term and predictive long-term
power balancing techniques in intelligent distribution grids. In: Doctoral Con-
ference on Computing, Electrical and Industrial Systems. pp. 343–350. Springer
(2013)

19. Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V.: Monitoring self-
adaptive applications within edge computing frameworks: A state-of-the-art re-
view. Journal of Systems and Software 136, 19–38 (2018)

https://doi.org/10.1109/MCOM.2011.5741146

	A Blockchain-based Decentralized Self-balancing Architecture for the Web of Things 



