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This paper serves as an electronic companion to the paper [1]. Section 1 presents the
nomenclature used along the document. Sections 2, 3 and 4 introduces mathematical defini-
tions regarding, respectively, the Wasserstein ambiguity set, the worst-case expectation inside
the objective function and the CVaR approximation for Distributionally Robust Chance Con-
straints (DRCCs). Sections 5, 6 and 7 presents the final model following each technique used to
reformulate the DRCCs, namely, the CVaR approximation, the exact MILP reformulation and
the exact reformulation with support (or physical bounds), respectively. The real-time stage
optimization problem is given in Section 8. Finally, Section 9 introduces the economical and
technical network parameters of the considered IEEE 24-node reliability test system.

1 Nomenclature

Sets
g ∈ G : Set of generators.
l ∈ L : Set of transmission lines.
d ∈ D : Set of demands.
w ∈ W : Set of wind farms.
i ∈ {1, ..., N} : Set of in-sample database indices.
j ∈ {1, ..., Z} : Set of out-of-sample database indices.
P ∈ P : Ambiguity set collecting a family of distributions.
M (Ξ) : Set of all distributions on the support Ξ.
Y : Set of day-ahead decisions {p, r, r,Y}.
S(Y) : Safe set.
S(Y) : Unsafe set.

Parameters
c ∈ R|G| : Vector of production costs of generators [$/MWh].
c, c ∈ R|G| : Vector of upward and downward reserve capacity procurement costs

of generators [$/MW].
d ∈ R|D| : Vector of consumptions of demands [MW].
fmax ∈ R|L| : Vector of transmission line capacities [MW].
rmax ∈ R|G| : Vector of maximum regulation capability of generators [MW].
pmax ∈ R|G| : Vector of generator capacities [MW].
W ∈ R|W|×|W| : Diagonal matrix of wind farm capacities [MW].
TG ∈ R|L|×|G| : Matrix of power transfer distribution factors for generators.
TW ∈ R|L|×|W| : Matrix of power transfer distribution factors for wind farms.
TD ∈ R|L|×|D| : Matrix of power transfer distribution factors for demands.
εg, εg, εl : Violation probability of upward, downward regulation capability

constraints and line capacity constraints.
µ ∈ R|W| : Forecast wind power production [MW].
vShed ∈ R|D| : Value of shed load of demands [$/MWh].
ρ ∈ R : Wasserstein ball radius.
Q ∈ R2|W|×|W|,h ∈ R2|W| : Parameters for the support definition.
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Uncertain parameters
ξ ∈ R|W| : Random variable modeling the wind power deviation from its day-ahead

forecast.

ξ̂i ∈ R|W| : Observed sample of the random variable ξ.

ξ̃j ∈ R|W| : Realization of the uncertainty ξ in real time.
Variables

p ∈ R|G| : Power dispatch of generators [MW].
r, r ∈ R|G| : Upward and downward reserve capacity of generators [MW].
Y ∈ R|G|×|W| : Participation factor matrix.

2 Wasserstein Ambiguity set

The closeness between two distributions, namely P1 and P2, may be assessed via the Wasserstein
metric, whose mathematical formulation is given in Definition 2.1. This metric can be seen as an
optimal transportation problem that aims at minimizing the cost of transporting the probability
mass from P1 to P2.

Definition 2.1 (Wasserstein metric [2]) The Wasserstein metric dW : M(Ξ)×M(Ξ)→ R is defined
via

dW (P1,P2) =


min

∫
Ξ2

||ξ1 − ξ2||Π(dξ1, dξ2)

s.t.
Π is a joint distribution of ξ1 and ξ2

with marginals P1 and P2, respectively

 . (1)

The objective function of (1) represents the transportation cost of moving the probability
mass from P1 to P2. The chosen cost for moving each data sample is the norm ||ξ1 − ξ2||
and, is defined as the Wasserstein distance. The joint distribution Π ∈ M(Ξ), which is the
optimization variable, reflects the optimal transportation plan. Based on this definition, the
Wasserstein metric-based ambiguity set collects the closest distributions from an empirical one
P̂N , that is typically constituted of N observed samples, each assigned with probability 1

N . We
thereby mathematically define the Wasserstein ambiguity set as follows:

P =
{
P ∈M (Ξ) : dW (P, P̂N ) ≤ ρ

}
. (2)

3 Reformulation of the objective function

The objective function (1a) in [1] optimizes the decisions for the worst-case distribution P
within the ambiguity set P, a Wasserstein ambiguity set with radius ρ. Using findings in [3],
a reformulation of the worst-case expectation problem can be determined. In this way, the
objective function can be written as:

max
P∈P

EQ [c>Yξ
]

= (3a)

min
λ,σi,γi

λρ+
1

N

N∑
i=1

σi

s.t. c>Yξ̂i + γ>i

(
h−Qξ̂i

)
≤ σi ∀i ∈ {1, ..., N}

||Q>γi − c>Y||∗ ≤ λ ∀i ∈ {1, ..., N}
γi ≥ 0 ∀i ∈ {1, ..., N}.

(3b)

In formulation (3), λ ∈ R, σ ∈ RN and γi ∈ R2|W| are new additional variables. The
support (e.g., defined by physical bounds) definition Qξ ≤ h restricts the worst distribution
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to take realistic values. The min operator can then be merged with the min operator over
day-ahead decisions, arising in a single level optimization problem.

4 Reformulation of the DRCCs with CVaR Approximation

Following the definition in [1], a generic DRCC can be written as (4). Replacing (4) by a
Conditional-Value-at-Risk (CVaR) formulation (5) allows to approximate the DRCC. Using the
mathematical definition of CVaR [4], the constraint can eventually be cast into (6).

min
P∈P

P
(
a>ξ ≤ b

)
≥ 1− ε (4)

max
P∈P

P-CVaRε(a
>ξ − b) ≤ 0 (5)

min
τ∈R

τ +
1

ε
max
P∈P

EP [da>ξ − be+] ≤ 0. (6)

We can next reformulate the worst-case expectation appearing in (6) following (3) as follows:

τ +
1

ε

(
λCVaRρ+

1

N

N∑
i=1

σCVaR
i

)
≤ 0 (7a)

a>ξ̂i − b− τ + γ>i,1

(
h−Qξ̂i

)
≤ σCVaR

i ∀i ∈ {1, ..., N} (7b)

γ>i,2

(
h−Qξ̂i

)
≤ σCVaR

i ∀i ∈ {1, ..., N} (7c)

||Q>γi,1 − a||∗ ≤ λCVaR ∀i ∈ {1, ..., N} (7d)

||Q>γi,2||∗ ≤ λCVaR ∀i ∈ {1, ..., N} (7e)

γi ≥ 0 ∀i ∈ {1, ..., N}. (7f)

The set of linear equations (7) involves dual variables λCVaR, σCVaR ∈ RN and γi,1,γi,2 ∈
R2|W| as well as τ ∈ R that comes from the definition of the CVaR. Those variables can be
merged with the dispatch decision variables Y resulting in a single level optimization problem.
This approximation leads to a conservative insight of uncertainty because the CVaR inherently
accounts for the amplitude of the probability violation, resulting in a lower violation probability
than the predefined one.
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5 Complete model formulation based on CVaR approximation
of DRCCs

The complete model formulation based on CVaR approximation reads as

min
p,r,r,Y,λ,σi,γi,

τl,λl,σl,i,γl,i,1,γl,i,2,

τg,λg,σg,i,γg,i,1,γg,i,2,τg,λg,σg,i,γg,i,1
,γ
g,i,2

c>p + c>r + c>r + λρ+
1

N

N∑
i=1

σi (8a)

s.t. p + r ≤ pmax (8b)

p− r ≥ 0 (8c)

0 ≤ r ≤ rmax; 0 ≤ r ≤ rmax (8d)

e>p + e>Wµ− e>d = 0 (8e)

Ye + W e = 0 (8f)
c>Yξ̂i + γ>i

(
h−Qξ̂i

)
≤ σi ∀i ∈ {1, ..., N}

||Q>γi − c>Y||∗ ≤ λ ∀i ∈ {1, ..., N}
γi ≥ 0 ∀i ∈ {1, ..., N}

(8g)



τg +
1

ε

(
λgρ+

1

N

N∑
i=1

σg,i

)
≤ 0

Ygξ̂i − rg − τg + γ>g,i,1

(
h−Qξ̂i

)
≤ σg,i ∀i ∈ {1, ..., N}

γ>g,i,2

(
h−Qξ̂i

)
≤ σg,i ∀i ∈ {1, ..., N}

||Q>γg,i,1 −Yg||∗ ≤ λg ∀i ∈ {1, ..., N}
||Q>γg,i,2||∗ ≤ λg ∀i ∈ {1, ..., N}
γg,i,1 ≥ 0;γg,i,2 ≥ 0 ∀i ∈ {1, ..., N}



∀g ∈ G (8h)



τg +
1

ε

(
λgρ+

1

N

N∑
i=1

σg,i

)
≤ 0

−Ygξ̂i − rg − τg + γ>
g,i,1

(
h−Qξ̂i

)
≤ σg,i ∀i ∈ {1, ..., N}

γ>
g,i,2

(
h−Qξ̂i

)
≤ σg,i ∀i ∈ {1, ..., N}

||Q>γ
g,i,1

+ Yg||∗ ≤ λg ∀i ∈ {1, ..., N}

||Q>γ
g,i,2
||∗ ≤ λg ∀i ∈ {1, ..., N}

γ
g,i,1
≥ 0;γ

g,i,2
≥ 0 ∀i ∈ {1, ..., N}



∀g ∈ G (8i)



τl +
1

ε

(
λlρ+

1

N

N∑
i=1

σl,i

)
≤ 0

(
TGl (p + Yξ) + TWl W (µ+ ξ)−TDl d− fmax

l

)
− τl + γ>l,i,1

(
h−Qξ̂i

)
≤ σl,i ∀i ∈ {1, ..., N}

γ>l,i,2

(
h−Qξ̂i

)
≤ σl,i ∀i ∈ {1, ..., N}

||Q>γl,i,1 −
(
TGl Y + TWl W

)
||∗ ≤ λl ∀i ∈ {1, ..., N}

||Q>γl,i,2||∗ ≤ λl ∀i ∈ {1, ..., N}
γi ≥ 0 ∀i ∈ {1, ..., N}



∀l ∈ L.

(8j)
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6 Complete model formulation based on the exact MILP refor-
mulation of DRCCs

The complete model formulation based on the exact MILP reformulation of DRCCs reads as

min
p,r,r,Y,λ,σi,γi,

tg,βg,qg,tg,βg
,q
g
,tl,βlql,

c>p + c>r + c>r + λρ+
1

N

N∑
i=1

σi (9a)

s.t. p + r ≤ pmax (9b)

p− r ≥ 0 (9c)

0 ≤ r ≤ rmax; 0 ≤ r ≤ rmax (9d)

e>p + e>Wµ− e>d = 0 (9e)

Ye + W e = 0 (9f)
c>Yξ̂i + γ>i

(
h−Qξ̂i

)
≤ σi ∀i ∈ {1, ..., N}

||Q>γi − c>Y||∗ ≤ λ ∀i ∈ {1, ..., N}
γi ≥ 0 ∀i ∈ {1, ..., N}

(9g)


εNtg − e>βg ≥ ρN ||Yg||∗
rg −Ygξ̂i +Mqg,i ≥ tg − βg,i ∀i ∈ {1, ..., N}
M
(
1− qg,i

)
≥ tg − βg,i ∀i ∈ {1, ..., N}

qg ∈ {0, 1}
N
, β ≥ 0

 ∀g ∈ G (9h)



εNtg − e>βg ≥ ρN || −Yg||∗

rg + Ygξ̂i +Mq
g,i
≥ tg − βg,i ∀i ∈ {1, ..., N}

M
(

1− q
g,i

)
≥ tg − βg,i ∀i ∈ {1, ..., N}

q
g
∈ {0, 1}N , β ≥ 0


∀g ∈ G (9i)


εNtl − e>βl ≥ ρN ||TGl Y + TWl W||∗
fmax
l −

(
TGl (p + Yξ) + TWl W (µ+ ξ)−TDl d

)
+Mql,i ≥ tl − βl,i ∀i ∈ {1, ..., N}

M (1− ql,i) ≥ tl − βl,i ∀i ∈ {1, ..., N}

ql ∈ {0, 1}N , β ≥ 0

 ∀l ∈ L.

(9j)
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7 Complete model formulation based on the proposed exact
and physically-bounded reformulation of DRCCs

The complete model formulation based on the proposed exact and physically-bounded reformu-
lation of DRCCs reads as

min
p,r,r,Y,λ,σi,γi,

tg,βg,wg,i,xg,i,tg,βg
,wg,i,xg,i,tl,βl,wl,i,xl,i

c>p + c>r + c>r + λρ+
1

N

N∑
i=1

σi (10a)

s.t. p + r ≤ pmax (10b)

p− r ≥ 0 (10c)

0 ≤ r ≤ rmax; 0 ≤ r ≤ rmax (10d)

e>p + e>Wµ− e>d = 0 (10e)

Ye + W e = 0 (10f)
c>Yξ̂i + γ>i

(
h−Qξ̂i

)
≤ σi ∀i ∈ {1, ..., N}

||Q>γi − c>Y||∗ ≤ λ ∀i ∈ {1, ..., N}
γi ≥ 0 ∀i ∈ {1, ..., N}

(10g)



εNtg − e>βg ≥ ρN

(rg −Ygξ̂i)wg,i +
(
h−Qξ̂i

)>
xg,i ≥ tg − βg,i ∀i ∈ {1, ..., N}

||Ygwg,i + Q>xg,i||∗ ≤ 1

wg,i ≥ 0, xg,i ≤ 0, βg ≥ 0


∀g ∈ G (10h)



εNtg − e>βg ≥ ρN

(rg + Ygξ̂i)wg,i +
(
h−Qξ̂i

)>
xg,i ≥ tg − βg,i ∀i ∈ {1, ..., N}

|| −Ygwg,i + Q>xg,i||∗ ≤ 1

wg,i ≥ 0, xg,i ≤ 0, β
g
≥ 0


∀g ∈ G (10i)



εNtl − e>βl ≥ ρN

(fmax
l −

(
TGl (p + Yξ) + TWl W (µ+ ξ)−TDl d

)
)wl,i +

(
h−Qξ̂i

)>
xl,i ≥ tl − βl,i ∀i ∈ {1, ..., N}

||
(
TGl Y + TWl W

)
wl,i + Q>xl,i||∗ ≤ 1

wl,i ≥ 0, xl,i ≤ 0, βl ≥ 0


∀l ∈ L.

(10j)

8 Real-time stage program

This section presents the real-time stage optimization problem (11) that is used to assess the
ex-post performance of the different sets of decisions.

min
Y,∆d,∆w

c>Yξ̃j + v>Shed∆d (11a)

s.t. 0 ≤∆d ≤ d (11b)

0 ≤∆w ≤W(µ+ ξ̃j) (11c)

− r ≤ Yξ̃j ≤ r (11d)

e>Yξ̃j + e>Wξ̃j + e>∆d− e>∆w = 0 (11e)

TGl

(
p + Yξ̃j)

)
+ TWl W

(
µ+ ξ̃j

)
−TDl d ≤ fmax

l ∀l ∈ L, (11f)
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The objective function (11a) models the real-time operational costs incurred by the energy
activation costs and the value of load shedding vShed ∈ R|D| (the wind spillage cost is assumed
to be equal to zero). Equations (11b) and (11c) imposes physical limitations on wind power
spillage ∆w ∈ R|W| and load shedding ∆d ∈ R|D|. The actual activation of reserves Yξ̃j is
limited by the capacity bound r and r determined in day-ahead (11d). The real-time power
balance and line limit capacity are ensured respectively by (11e) and (11f).

9 Network Parameters

We build our model upon the IEEE 24-node Reliability Test System [5] and the economic data
available in [6]. The system is represented in Fig. 1.

Fig. 1: IEEE RTS 24-node network case study

The network data is given by Table 3. It includes generator parameters such as location
node, production cost cg in $/MWh, upward reserve capacity procurement cost cg in e/MW,
downward reserve capacity procurement cost cg in $/MW, maximum capacity pmax

g in MW,
maximum upward regulation capability rmax

g in MW and maximum downward regulation ca-
pability rmax

g in MW. The 12 generators total capacity is 2,362.5 MW, including 798 MW of
upward or downward total flexibility.

Wind farms are also connected to network on nodes 3, 5, 16 and 21 enabling power system
studies with high share of renewable generation. The corresponding day-ahead wind forecast µ
in MW, maximum wind farm capacity W(w,w) in MW and expected value in MW are also given
in Table 3.

The 17 loads gather 2,207 MW of power demand. Their respective location node, consump-
tion d in MW and value of curtailed load vShed in $/MWh are referred in Table 3. The lines
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are characterized by the nodes they connect, their per-unit inverse susceptance 1/B as well as
their maximum line capacity Fmax

mn in MW.

Table 3: Network parameters

Generators 1 2 3 4 5 6 7 8 9 10 11 12

Node 1 2 7 13 15 15 16 18 21 22 23 23
cg [$ /MWh] 13.32 13.32 20.7 20.93 26.11 10.52 10.52 6.02 5.47 7 10.52 10.89
cg [$ /MW] 1.68 1.68 3.30 4.07 1.89 5.48 5.48 4.98 5.53 8.00 3.45 5.11
cg [$ /MW] 2.32 2.32 4.67 3.93 3.11 3.52 3.52 5.02 4.97 6.00 2.52 2.89

Pmax
g [MW] 106.4 106.4 245 413.7 42 108.5 108.5 280 280 210 217 245

rg [MW] 48 48 84 216 42 36 36 60 60 48 72 48
rg [MW] 48 48 84 216 42 36 36 60 60 48 72 48

Wind farms 1 2 3 4

Node 3 5 16 21
Pmax
q [MW] 500 500 300 300

Expected value [MW] 120.54 115.52 53.34 38.16

Loads 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Node 1 2 3 4 5 6 7 8 9 10 13 14 15 16 18 19 20
d [MW] 84 75 139 58 55 106 97 132 135 150 205 150 245 77 258 141 100
VShed [$ /MWh] 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500

Lines: From node 1 1 1 2 2 3 3 4 5 6 7 8 8 9 9 10 10

To node 2 3 5 4 6 9 24 9 10 10 8 9 10 11 12 11 12
1/B [pu] 0.0146 0.2253 0.0907 0.1356 0.205 0.1271 0.084 0.111 0.094 0.0642 0.0652 0.1762 0.1762 0.084 0.084 0.084 0.084
Fmax [MW] 175 175 350 175 175 175 400 175 350 175 350 175 175 400 400 400 400

Lines: From node 11 11 12 12 13 14 15 15 15 16 16 17 17 18 19 20 21

To node 13 14 13 23 23 16 16 21 24 17 19 18 22 21 20 23 22
1/B [pu] 0.0488 0.0426 0.0488 0.0985 0.0884 0.0594 0.0172 0.0249 0.0529 0.0263 0.0234 0.0143 0.1069 0.0132 0.0203 0.0112 0.0692
Fmax [MW] 500 500 500 500 250 250 500 400 500 500 500 500 500 1000 1000 1000 500
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