
Impact Factor 3.582 Case Studies Journal ISSN (2305-509X) – Volume 7, Issue 9–Sep-2018

http://www.casestudiesjournal.com Page 58

Research Paper on Significance of Code Optimisation

Author’s Details:
(1)

 Swati Sharma-Dronacharya College of Engineering, Computer Science
(2)

Prerna Mangla-Dronacharya

College of Engineering, Computer Science
(3)

Preeti Kumari-Dronacharya College of Engineering,

Computer Science

Abstract:
Optimization is the field where most compiler research is prepared today. The tasks of the Front-end

(scanning, parsing, semantic analysis) are well implicit and optimized Code generation is moderately

straightforward. Optimization, on the other hand, still retains a sizable measure of mysticism. High-quality

optimization is more of an art than a science. Compilers for mature languages aren’t judged by how well

they analyse or analyse the code—you just suppose it to do it right with a minimum of hassle—but Instead

by the quality of the object code they produce. There is a need to diminish programmers’ burden so that

programmers give attention to high level concept without worrying about act issues. Optimization is the

process of converting a piece of code to make more efficient (either in terms of time or space) without

changing its output or side-effects. Leads to the enhancement of machine code and/or intermediate code

produced by other phases of the compiler. These developments can result in reduced run time and/or space

for the object program.

Keywords: Code Optimisation

1. INTRODUCTION

Optimization is still a sizable amount of theology. High-quality optimization is more of an art than a science.

Compilers for mature languages aren’t refereed by how well they parse or analyse the code—you just

suppose it to do it right with a minimum of hassle. Many optimization difficulties are NP-complete and thus

most optimization algorithms rely on heuristics and estimates. It may be possible to come up with a case

where a particular algorithm fails to create better code or perhaps even makes it worse. However, the

algorithms tend to do relatively well overall. Consider the following two code snippets where each walks

through an array and set every element to one. Which one is faster?

int arr[10000];

void Binky() {

int i;

for (i=0; i < 10000; i++)

arr[i] = 1;

}

int arr[10000];

void Winky() {

register int *p;

for (p = arr; p < arr + 10000; p++)

*p = 1;

}

You will perpetually encounter people who think the second one is faster. And they are Probably right….if

using a compiler without optimization. But, many modern Compilers produce the same object code for both,

by use of clever techniques (in particular, this one is called "loop-induction variable elimination") that effort

particularly well on Dogmatic usage.

2. CRITERIA FOR CODE IMPROVEMENT

3.1 Correctness of the code

 It is obvious that optimization should not change the correctness of the generated code. Transforming the

code to something that runs faster but incorrectly is of no value. It is anticipated that the unoptimized and

Impact Factor 3.582 Case Studies Journal ISSN (2305-509X) – Volume 7, Issue 9–Sep-2018

http://www.casestudiesjournal.com Page 59

optimized variants give the identical output for all inputs. This may not hold for an incorrectly written

program.

 3.2 When and Where To Optimize

There are a many tactics for attacking optimization. Some techniques are applied to intermediate code, to

restructure, rearrange, compress, etc. in an effort to reduce the size of the abstract syntax tree or shrink the

number of TAC instructions. Others are applied as part of final code generation—choosing which

instructions to emit, how to allocate registers and when/what to drop. And still other optimizations

may occur after final code generation, attempting to redraft the assembly code itself into something more

resourceful.

2.2.1 Profitability :-Optimization leads to improvement in code quality.

2.2.2 Others :-- A transformation must, on the average, speed up a program by a measurable amount.

Code-optimization for the code that run rarely or during debugging should be avoided.

2.2.3 Factors affecting optimization

3.2.3.1 The machine itself

Decision about which optimizations should be done depend on the characteristics of the target machine. It is

sometimes possible to parameterize some of these machine dependent factors, so that a single piece of

compiler code can be used to optimize different machines just by changing the machine description

parameters.

3.2.3.2 The architecture of the target CPU

Number of CPU registers, affect the choice of optimization. To a certain extent, the more registers, the

easier it is to optimize on the basis of performance. Local variables could be allocated in the registers and

not on the stack. Temporary/intermediate results can be left in registers without writing to and reading back

from memory.

RISC versus CISC: CISC instruction sets often have a larger number of possible instructions that can be

used, and each instruction could take differing amounts of time. RISC instruction sets are usually constant

length, with few exceptions, there are usually fewer combinations of registers and memory operations.

3.2.3.3 The architecture of the machine

Cache size (256 kiB–12 MiB) and type (direct mapped, 2-/4-/8-/16-way associative, fully associative)

affects optimization. Techniques such as inline expansion and loop unrolling may increase the size of the

generated code and decrease code locality. The program may slow down drastically if a highly utilized

section of code (like inner loops in various algorithms) cannot fit in the cache memory. Also, caches which

are not fully associative have higher likelihood of cache collisions even in an unfilled cache.

2.2.4 Catogories of Optimizations

Techniques used in optimization can be broken up among various scopes which can affect anything from a

single statement to the entire program. Generally speaking, locally scoped techniques are easier to

implement than global ones but result in smaller gains. Some examples of scopes include:

3.3 Local Optimizations

Optimizations performed solely within a basic block are called "local optimizations". They are typically the

easiest to perform since we never consider any control-flow information, we just work with the statements

within the block. Many of the local optimizations have corresponding global optimizations that operate on

the same principle, but require additional analysis to perform. Local optimization techniques normally are

Impact Factor 3.582 Case Studies Journal ISSN (2305-509X) – Volume 7, Issue 9–Sep-2018

http://www.casestudiesjournal.com Page 60

concerned with transformations on small sections of code (involving only a few instructions) and usually

operate on the machine language instructions which are formed by the code generator.

3.4 Global Optimizations

Optimizations which are generally concerned with larger blocks of code, or even multiple blocks or modules

are called "global optimizations". Worst case assumptions have to be made when function calls occur or

global variables are accessed (because little information about them is available).

3.5 Inter-procedural optimizations

Inter-procedural optimization mechanism on the whole program, across procedure and file boundaries. It is

accepted out with the cooperation of a local part and global part. Characteristic inter-procedural

optimizations are: procedure inlining, inter-procedural dead code elimination, inter-procedural constant

propagation, and procedure reordering. As usual, the compiler needs to accomplish inter-procedural analysis

before its actual optimizations. Inter-procedural analyses include alias analysis, array access analysis, and

the creation of a call graph.

 Due to the extra time and space required by inter-procedural analysis, most compilers do not perform it by

default. Users must use compiler options clearly to tell the compiler to enable inter-procedural analysis and

other exclusive optimizations.

 3.6 Register Allocation

One machine optimization of particular position is register allocation, which is perhaps the only most

effective optimization for all architectures. Registers are the Fastest kind of memory available, but as a

resource, they can remain scarce. The problem is How to reduce traffic between the registers and what lies

beyond them in the Memory hierarchy to eliminate time wasted sending data back and forth through the bus

And the different levels of caches.

3.7 Instruction Scheduling

Another particularly important optimization of the final code generator is instruction scheduling. Because

many machines, with most RISC architectures, have some Sort of pipelining capability, effectively

harnessing that capability needs judicious ordering of instructions. In MIPS, each instruction is issued in one

cycle, but some take several cycles to complete. It takes an additional cycle before the value of a load is

accessible and two Cycles for a branch to reach its destination, but an instruction can be located in the

"delay slot" after a branch and executed in that slack time. On the left is one procedure of a Set of

instructions that requires 7 cycles. It accepts no hardware interlock and thus Explicitly stalls between the

second and third slots while the load concludes and has a 15 dead cycle after the branch because the delay

slot holds a noon. On the right, a more favorable rearrangement of the same guidelines will execute in 5

cycles with no dead

cycles.

lw $t2, 4($fp)

lw $t3, 8($fp)

noop

add $t4, $t2, $t3

subi $t5, $t5, 1

goto L1

3. THE PRINCIPAL SOURCES OF OPTIMIZATION

There are several ways in which a compiler can improve a program without affecting the function it

computes. Following are function-preserving transformations:

1. Code Motion

2.Operator Strength Reduction

3. Dead-Code Elimination

4. Algebraic Simplification And Reassociation

Impact Factor 3.582 Case Studies Journal ISSN (2305-509X) – Volume 7, Issue 9–Sep-2018

http://www.casestudiesjournal.com Page 61

4. CODE MOTION

Code motion (also called code hoisting) combines sequences of code common to one or more basic blocks to

reduce code size and possibly avoid expensive re-evaluation. The most common form of code motion is

loop-invariant code motion that transfers statements That evaluate to the same value every iteration of the

loop to somewhere outside the loop. What declarations inside the following TAC code can be moved outside

the loop body?

L0:

tmp1 = tmp2 + tmp3 ;

tmp4 = tmp4 + 1 ;

PushPram tmp4 ;

LCall _PrintInt ;

PopParams 4;

tmp6 = 10 ;

tmp5 = tmp4 == tmp6 ;

IfZ tmp5 Goto L0 ;

We have an intuition of what makes a loop in a flowgraph, but here is a more recognized definition. A loop

is a set of basic blocks which mollifies two conditions: 1. All are strongly connected, i.e. there is a path

between any two blocks. 2. The set has a unique entry point, i.e. every path from outside the loop that

spreads any block inside the loop enters done a single node. A block n dominates m if all paths from the

starting block to m must travel complete n. Every block dominates itself.

13

For loop L, moving invariant statement s in block B which describes variable v outside the loop is a safe

optimization if:

1. B governs all exits from L

2. No other statement allocates a value to v

3. All uses of v inside L are from the definition in s.

Loop invariant code can be moved towards just above the entry point to the loop.

5. Operator Strength Reduction

Operator strength reduction changes an operator by a "less expensive" one. Given each group of identities

below, which operations are the most and least costly, assuming f is a float and i is an int? (Trick question: it

entirely depends on the architectures—you need to know your target machine to optimize well!)

i*2 = 2*i = i+i = i << 1

i/2 = (int)(i*0.5)

0-1 = -i

f*2 = 2.0 * f = f + f

8

f/2.0 = f*0.5

Strength reduction is often executed as part of loop-induction variable elimination. An idiomatic loop to

zero all the elements of an array capacity look like this in Decaf and its Corresponding TAC:

while (i < 100) {

arr[i] = 0;

i = i + 1;

}

L0:_tmp2 = i < 100;

IfZ _tmp2 Goto _L1 ;

_tmp4 = 4 * i ;

_tmp5 = arr + _tmp4 ;

*(_tmp5) = 0 ;

i = i + 1 ;

L1:

Impact Factor 3.582 Case Studies Journal ISSN (2305-509X) – Volume 7, Issue 9–Sep-2018

http://www.casestudiesjournal.com Page 62

Each time finished the loop, we multiply i by 4 (the element size) and add to the array base. Instead, we

could retain the address to the current element and instead just add 4 each time:

_tmp4 = arr ;

L0:_tmp2 = i < 100;

IfZ _tmp2 Goto _L1 ;

*_tmp4 = 0;

_tmp4 = _tmp4 + 4;

i = i + 1 ;

L1:

This eliminates the multiplication entirely besides reduces the need for an extra temporary. By re-writing the

loop termination test in terms of art, we might remove the variable I Entirely and not bother tracking and

incrementing it at all.

 Dead Code Elimination

If an instruction’s result is never used, the instruction is measured "dead" and can be removed from the

instruction stream. So if we have

tmp1 = tmp2 + tmp3 ;

and tmp1 is never used again, we can remove this instruction altogether. However, we have to be a little

suspicious about making assumptions, for example, if tmp1 holds the Result of a function call:

tmp1 = LCall _Binky;

Even if tmp1 is never used again, we cannot remove the instruction because we can’t be sure that called

function has no side-effects. Dead code can happen in the original source program but is more likely to have

caused from some of the optimization Techniques run previously.

For example, the program in under contains an assignment to the variable which has no effect on the output

since a is not used subsequently, but prior to extra assignment to the variable a.

{

a = b + c *d; //This statement has no effect and can be removed

b = c*d/e;

c = b - 3;

a = b - c;

cout << a << b << c ;

}

 Algebraic Simplification And Reassociation
Simplifications use algebraic properties or specific operator-operand combinations to simplify expressions.

Reassociation refers to using things such as associativity, commutativity and distributives to rearrange an

expression to allow other optimizations such as constant-folding or loop-invariant code motion. The most

clear of these are the optimizations that can remove useless instructions entirely via algebraic identities. The

rules of arithmetic can come in nearby when looking for redundant calculations to remove. Consider the

examples below, which allow you to replace an expression on the left with a humbler equivalent on the

right:

x+0 = x

0+x = x

x*1 = x

1*x = x

0/x = 0

x-0 = x

b && true = b

b && false = false

b || true = true

b || false = b

Impact Factor 3.582 Case Studies Journal ISSN (2305-509X) – Volume 7, Issue 9–Sep-2018

http://www.casestudiesjournal.com Page 63

The use of algebraic rearrangement can rearrange an expression to enable constant folding or corporate

sub-expression elimination and so on. Consider the Decaf code on the far left, unoptimized TAC in

middle, and reorganized and constant-folded TAC on far right:

b = 5 + a + 10 ; _tmp0 = 5 ;

_tmp1 = _tmp0 + a ;

_tmp2 = _tmp1 + 10 ;

b = _tmp2 ;

_tmp0 = 15 ;

_tmp1 = a + _tmp0 ;

b = _tmp1 ;

 Shortcomings of optimization

Optimizing compilers are by no means perfect. There is no way that a compiler can guarantee that, for all

program source code, the fastest (or smallest) possible equivalent compiled program is output; such a

compiler is fundamentally impossible because it would solve the halting problem.

There are a number of other more practical issues with optimizing compiler technology:

• Optimizing compilers focus on relatively trivial constant-factor performance improvements and do

not typically improve the algorithmic complexity of a solution. For example, a compiler will not

change an implementation of bubble sort to use merge sort instead.

• Compilers usually have to support a variety of contradictory objectives, such as cost of

implementation, compilation speed and quality of generated code.

• A compiler typically only deals with a part of a program at a time, often the code contained within a

single file or module; the result is that it is unable to consider relative information that can only be

obtained by processing the other files.

• The overhead of compiler optimization: Any extra work takes time; whole-program optimization is

time consuming for big programs.

 Optimization Soup

You might wonder about the interactions among the various optimization techniques.

Some transformations may description possibilities for others, and even the reverse is true,

one optimization may unclear or remove possibilities for others. Algebraic

16 rearrangement might allow for common subexpression elimination or code motion.

Constant folding usually paves the way for constant propagation and then it goes out to be valuable to run

another round constant-folding and so on.

 Conclusion :

As compiler technologies have improved, good compilers can often generate better code than human

programmers.

Work to improve optimization technology continues. One approach is the use of so-called post-pass

optimizers. A good post pass optimizer can improve highly hand-optimized code even further. These tools

take the executable output by an "optimizing" compiler and optimize it even further. Post pass optimizers

usually work on the assembly language or machine code level (contrast with compilers that optimize

intermediate representations of programs). Performance of post pass compilers are restricted by the fact that

much of the information available in the original source code is not always accessible to them.

Optimizations often interact with each other and need to be combined in precise ways. Some optimizations

may need to be applied multiple times. E.g., dead code elimination, redundancy elimination, copy folding.

Refrences

i. Aho, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques, and Tools, Reading, MA:

ii. Addison-Wesley, 1986.

http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Bubble_sort
http://en.wikipedia.org/wiki/Mergesort
http://en.wikipedia.org/wiki/Computational_overhead
http://en.wikipedia.org/wiki/Whole-program_optimization

Impact Factor 3.582 Case Studies Journal ISSN (2305-509X) – Volume 7, Issue 9–Sep-2018

http://www.casestudiesjournal.com Page 64

iii. Khalil Taleb nia, Kamran Yeganegi, Nabi alah Mohamadi, The Impact of Interest Rate on the Stock

Market Return Case Study: Tehran Stock Exchange, International Journal of Management Sciences

and Business Research 07(2018):12-18

iv. J.P. Bennett, Introduction to Compiling Techniques. Berkshire, England: McGraw-Hill, 1990.

v. R. Mak, Writing Compilers and Interpreters. New York, NY: Wiley, 1991.

vi. S. Muchnick, Advanced Compiler Design and Implementation . San Francisco, CA: Morgan

Kaufmann, 1997.

vii. BUYUNG, Small Business Empowerment Strategy in Indonesia , International Journal of

Management Sciences and Business Research 07(2018):55-59

viii. Shahbaz Tariq, Zeeshan Ur Rahman Awan, Raja Ased Azad Khan, An Investigation of

Corporate Governance and Firm Performance after Revised Code 2012 in Pakistan, International

Journal of Management Sciences and Business Research 07(2018):19-30

ix. HH Dedunu, IMS Weerasinghae, The effect of inventory management on Company Performance

Reference to Listed Manufacturing Companies in Sri Lanka, International Journal of Management

Sciences and Business Research 07(2018):49-54

x. Pyster, Compiler Design and Construction. Reinhold, 1988

xi. Wikipedia

