Highlights:

The ENAtool routine relies on an ensemble paranestgon technique

It incorporates the uncertainty in EWE inputs itite calculation of ENA indices

The ENAtool routine was applied on the Bay of Biscantinental shelf Ecopath model

The previously ENA-derived structural and functibpioperties were strengthened

Ecosystem comparative studies will now integraatistical analyses on ENA indices
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Abstract

Ecological network analysis (ENA) provides numereassystem level indices offering a
valuable approach to compare and categorize tHegcal structure and function of ecosystems.
The inclusion of ENA methods in Ecopath with Eco$fwE) has insured their continued
contribution to ecosystem-based management. In EMA-derived ecological conclusions are
currently based on single values of ENA indiceswatted from a unique input flow matrix.
Here, we document an easy-to-use routine that allbwE users to incorporate uncertainty in
EwE input data into the calculation of ENA indic&is routine, named ENAtool, is a suite of
Matlab functions that performs three main stepsiribort of an existing Ecopath model and its
associated parameter uncertainty values in the &mumcertainty intervals into Matlab; (2)
generation of an ensemble of Ecopath models wélséime structure as the original, and with
parameter values varying based on the prescribeeramty limits; and (3) calculation of a set
of 13 ENA indices for each ensemble member (onefdtdw values) and of summary statistics
across the whole ensemble. This novel routine ttee opportunity to calculate ENA indices
ranges and confidence intervals, and thus to parfprantitative data analyses. An application of
ENAtool on a pre-existing Ecopath model of the BaBiscay continental shelf is presented,
with a focus on the robustness of previously-piiglisENA-based ecological traits of this
ecosystem when the newly-introduced uncertaintyesbre added. We also describe the
sensitivity of the ENAtool results to both the nienbf ensemble members used and to the
uncertainty interval set around each input paramBtological conclusions derived from EwE,
particularly those regarding the comparison ofatral and functional elements for a range of
ecosystem types or the assessment of ecosysterriesmlong gradients of environmental

conditions or anthropogenic disturbances, will gaistatistical interpretability.
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1. Introduction

Marine ecosystems are affected by climate changauy@and, 2004; Hoegh-Guldberg and
Bruno, 2010) and by other natural or human-caugstdrdances (Pauly et al., 1998; Borja et al.,
2010). Ecosystem models are useful to get a batigerstanding of the structure andction of

a system and for predicting how it may change tives when facing single or multiple
pressures (Plaganyi, 200Bcopath with Ecosim (EwE) is a widely-used modellapproach to
represent marine food webs (Polovina, 1984; Chnsgte and Walters, 2004; Christensen et al.,
2008).Since its development in the early 198flsput 400 EWE models representing a wide
variety of ecosystems worldwide have been publig@adléter et al., 2013a; Colléter et al.,
2013b).Coupling EWE models to Ecological Network AnalydNA; Ulanowicz, 1986) was
proposed as a relevant method to estimate enargy thnd to characterize emergent properties
of food webs, i.e. characteristics not directlyarvable that can only be detected by analysis of
within-system interactions (Christensen and Pal®@2). ENA is a suite of tools that include
input-output analysis, trophic structure analysethway analysis, biogeochemical cycle
analysis, and information analysis (Dame and Ghris2006; Borrett and Lau, 2014). The main
challenge for ENA is to capture the propertiesrdfre food web in terms of a limited number of
indices. In the scope of the European Marine Sirateramework Directive (MSFD;
http://ec.europa.eu; Directive 2008/56/EC), theé&mber States have to report on the
environmental status of the seas under their jististh and to worlon achieving“Good
Environmental Status” (GES) using food-web indicait@s one possible metric. In this direction,
nine food-web indicators are currently under evibueas potential indicators of GES; the
Ecological Network Analysis indices are among themsdidate indicatoi®Rombouts et al.,

2013; Niquil et al., 2014).
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The EwWE network analysis plugin has been emplogedany instances, notably to stuty
stability of ecosystems and their response to geations (Patricio et al., 2006; Lobry et al.,
2008; Baeta et al., 2011; Selleslagh et al., 20t2nore recently, to assetbe dynamical food-
web reorganization and redirection of energy flathgvays under environmental changes
(Tomczak et al., 2013). Nonetheless, these holistinclusions relied on single values of ENA
indices which were derived from a single input datgtrix with no specified uncertainty.
Moreover, the ecological interpretation of these sgle values mostly relies on non-statistical
comparisons with values obtained for ecosystems thfe same typeGiven that data
uncertainties may translate to uncertainties inehodtputs (e.g. Niiranen et al., 2012), it is
generally agreed that important scientific questishould be scrutinized with as many models as
possible (Fulton, 2010; Gardmark et al., 2012). @we¢hod of incorporating uncertainty into
Ecopath model analysis is to use an ensemble ptedaration technique, building several
Ecopath models each representngotential manifestationof a food web and falling within the
uncertainty ranges of the observed data (Aydin.e2@07; Kearney, 2012). This approach
results in distributions of parameters rather thecific values, while still meeting basic
thermodynamic requirements. Kearney et al. (20i1@)iged a suite of Matlab functions to
construct such a distribution of parameters baseaihoEcopath model and its data pedigree, i.e. a
quantification of the parameter certainty tiedhe parameter’s origin. In this study, we extend
the Kearney et al. (2012) code for generatingtipe of ensemble to feed into calculations of
ENA indices.This work will allow parameter uncertainty to be incorporated into model-
derived ENA indices, and will also improve interpreation of these indices by allowing
statistical analysesWhen overhauling the EWE source code between thelease of EWE
versions 5 and 6, the EwWE developers chose not tontinue support of the Ecoranger

module, which had allowed users to explore parameat@ncertainty ranges in a Bayesian
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context (Christensen et al., 2005). The code preged in this paper now offers an

alternative method for analyzing this uncertainty.

The aim of this software development is to pro\adesasy-to-use routine to EWE users to
generate a set of values for key ENA indices bytieitly taking into account uncertainty in

model input data. To this end, two characterisiresidentified as important: (i) a routine that can
be called by a single line of Matlab code and camum on all commonly-used operating systems
(recent Windows, Unix-based, and Mac platformsjependent of the EwE software versions
used for the pre-existing ecosystem model constrycand (ii) a routine based on formulas of
ENA indices currently in use in the last versiorited EWE software. The present work is also the
opportunity to harmonize ENA indices calculatiomsided from two main approaches for
constructing ecological flow networks, i.e. EwWE diméar inverse modelling (LIM; Vézina and
Platt, 1988). Different formulas for the same in@sist in the scientific literature and correspond
to different interpretations of the same idea. \WWednstrate the use of this tool by applying it to
a pre-existing Ecopath model of the Bay of Biscagtmental shelf (Lassalle et al., 2011) for
which data quality is already categorized usingidted scores (Lassalle et al., 2014). ENA
indices distributions derived from the ENAtool rimat are compared with previous point
estimate values obtained with this Ecopath mode&tdbfor robustness of ENA-derived
ecological conclusions. Finally, we test sensiidt ENA indices distributions to the number of
balanced ensemble members underlying their calonland to the level of uncertainty applied

to specific Ecopath model parameters.

2. Materials and Methods

2.1 The Ecopath concept and equations
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The Ecopath with Ecosim (EwE) modelling software embles the building and analysis of
food-web models(Polovina, 1984; Christensen and Walters, 2004ist&nsen et al., 2008)he
full software package includes several modules (e.Bcopath, Ecosim, Ecospace) to explore
food webs across both space and time. However, ftis study, we will focus only on the
Ecopath component, which calculates a static massdanced snapshot of the biomass and
energy fluxes between functional groups in a food &b. In this context, a functional group
refers to a species or group of species that occupyparticular niche in the food web, and
can range in resolution from a broad grouping (e.gpelagic fish) to specific life stage of a
species (e.g. juvenile herring).The Ecopath model calculation is based on two teras
equations. The first equation decomposes the ptimstuterm of eacliunctional group:
Production = fishery catch + predation mortalitpet migration + biomass accumulation + other
mortality

“Other mortality” includes natural mortality facksuch as mortality due to senescence, diseases,
etc.

The second equation describes the energy balanimwachunctional group:

Consumption = production + respiration + unassitaddood

More formally, the two equations can be writterf@®ws for functional groupi and its
predatoy:

B; X (P/B); = Y, + X,(B, x (¢/B); X DC;;) + Ex; + Bacc, + B,(1 — EE;) X (P/B), (1)

and

B, x(Q/B), =B, x(P/B), +R, + U. (2)

where the main input parameters are biomass de@sitere in kg C- k), production rate

(P/B, yeal'), consumption rateQ(B, yeaf’), proportion ofi in the diet of (DCjj; DC = diet
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composition), net migration rat&X, yeat'), biomass accumulatioBgcc, yeat'), total catchY;
kg C-km? year'), respiration R; kg C-kn¥*- yeat'), amount of consumed food that is
unassimilatedy; kg C- km?- yeaf") and ecotrophic efficiencyEE; amount of species production

used within the system).

2.2 The generalized intra-model ensemble routiftAtGoI

In keeping with our goal to provide a single user+fendly tool for ENA index ensemble
generation, we have packaged together a master Mab script (ENAtool.m) and two data
input templates, all of which are available via theSupplementary Materials. The
ENAtool.m script grew out of, and now incorporatesseveral sub-functions from, the
Matlab implementation of Ecopath (Kearney, 2015; D@10.5281/zenodo.17837), with
additional routines added to calculate ENA indice$rom the resulting model ensemble. The
key calculations performed by this tool are as fotlws. All the Matlab functions called

during the ENAtool routine operate only on Ecopathdata.

2.2.1 Import of a EWE model into Matlab

ENAtool first imports data from EwWEG6 databases itatlab, storing them in a variable format
we will refer to as EWE input structures (Fig. The original data import functiomdb2ewein,
relies on the ‘mdbtools’ (http://mdbtools.sourcgi@mnet/) set of utilities to read data from the
MS Access file format used by EwE. As an alterreafor those unwilling or unable to compile C
source code, we have provided a companion impadtion,excel 2ewein, which relies on an
Excel template to provide the necessary input (/ta 1). This function is based on a template
(see Template A provided in Supplementary Mat&jdahat must be filled with key input

parameters and other related information by fiperong the pre-existing EWE model with a

10



175 database program such as Microsoft Access or Opiee@ase. The template was provided as
176  an Excel file and can be completed using any sgiresat program (e.g. Microsoft Excel,

177  OpenOffice Calc etc.) but must be in the end sasean Excel file (.xIsx)Both functions

178  import all necessary Ecopath data, including basimputs, diet compositions, fleet catches
179  and discards, and multi-stanza group parameters, tthe EwWE input structure.

180

181  2.2.2 Generation of a set of balanced ensemble m&smb

182  This second step can be decomposed into two pHasésthe definition of uncertainty around
183  input parameters and then the construction of aerable of balanced Ecopath models (Fig. 1).
184 A probability distribution for all or certain inpgarameters (i.e. field biomass&, (production
185  over biomass ratio$(B), consumption over biomass rati€yB), ecotrophic efficiencieEE),

186  and diet composition®(C)) in the EWE input structure has to be definedddco, a level of

187  uncertainty around each single value entered ifEthE input structure needs to be fixed.

188  Uncertainty values were assigned as a percentatpe pbint estimate of each parameter.

189  Minimum and maximum values of the parameter digtidn can then be calculated as follows:
190 Limits = single value of the parameter +/- (pereget* single value of the parameter) (3)

191 In the present work, theeatepedigree function was developed to ease this step, paatiyuin

192  the case of pre-existing EWE models for which Pexdigcores were already estimated (Fig. 1;
193  Table 1). The Pedigree index (Funtowicz and Rav&120; Pauly et al., 2000) was designed to
194 evaluate whether an EWE model was based on exeefisld sampling performed within the

195  boundaries of the system during specific dates.Rddigree component in the EwWE software
196  allows marking/categorizing the data origin of eastyle input using pre-defined tables; the key
197  criterion being that inputs from local data have liest confidence and the highest level in the

198 scale (Christensen et al., 2005). In the pre-ddftables, each Pedigree score is associated with a

11
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default level of uncertainty expressed as E%.example, a Pedigree score of 1 (e.g. for d loca
biomass value) indicates a 10% uncertainty valhe.cfeatepedigree function builds a table of
uncertainties based on an Excel file which contéangach parameter and edahctional

group the level of uncertainty to be applied to the EBnglue (see Template B in Supplementary
Material 3). Again, this Excel file can be openethvany spreadsheet program but must be
finally saved as an Excel file. This Excel file damalso an export of the Pedigree table from the
EwE software. If the user has no estimate of treedtainty surrounding the input parameters in
the pre-existing EWE model, a level of uncertaicay be set and a matrix of the same dimension
as the uncertainty table will be automatically gated. With no specification from the user, the
default values will be 20% around single value<fRrdson et al., 2006).

As inputs, thecreateensemble function requires the uncertainty table built gsine

createpedigree function and the model imported into Matlab usindp2ewein or excel 2ewein

(Fig. 1). Thecreateensemble function generates a defined number of ensembiebraes that all

fall within the prescribed uncertainty ranges. Rater values can be sampled from a uniform
distribution within limits fixed by the uncertaintgble or a lognormal distribution with the mean
and standard deviation set according to the uniogrteable. Both Latin hypercube and Monte-
Carlo sampling methods can be used for random sagnipl this interval. In the present
application case, parameter values were randomhpleal using a Monte Carlo method from a
uniform distribution with bounds directly relatealthe level of uncertainty.

The ecopathlite function called by thereateensemble function is the one that reproduces the
main calculations performed by the Ecopath moduite@EWE software (Fig. 1). This function

is a ‘stripped-down’ version of the Ecopath aldams allowing an estimation of missing
parameters by solving the systennmaquations witm unknowns (see equations (1) and (2)).

Users can also choose whether they want ensemiidens that respect the biomass

12
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conservation hypothesis, i.e. here, that met tbé&@ghic efficiency balance requirements (EE
<1). Combiningcreateensemble andecopathlite functions allows the user to compuaepecific
number (referred to henceforth asnset) of balanced ensemble members before calculating
any ENA indices For multi-stanza configurations, adjustments of paameters are made
when calling subecopathens.m to calculate Ecopath values and check for balanc&o the
resulting ENA index values stemming from this cod&vill incorporate the same multi-stanza

relationships as in EwE.

2.2.3 Calculation of an ensemble of values for ENdices

Finally, theindices function was developed in this present work tecwaialte a set of 13 ENA
indices (Fig. 1; Table 2) for each ensemble mergkeerated by thereateensemble function.

The mathematical formulas for these indices reguar@armonization between the EwE and LIM
ecosystem modelling communities. We compared timadtas in use in EWE with those
currently in use by modelers working with lineavense models (LIMs) in Matlab (Leguerrier et
al., 2007; Johnson et al., 2009; Niquil et al., R08aint-Béat et al., 2013) (Table 2). Most
formulas were shared in common between both contiearand were as such already available
in Matlab. Ecological interpretations of ENA indg&care summarized in Table 2. Full details
regarding their links with ecosystem ecology thesigan be found, for instance, in Ulanowicz

(2004), Kones et al. (2009), and Saint-Béat &4l15).

2.3 The ENAtool application
2.3.1 Description of the Bay of Biscay Ecopath mode
A full description of the Bay of Biscay Ecopath gareterization can be found in Lassalle et al.

(2011). The model considered for this zone wasictstl to the central part of the shelf between

13
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the 30-m and 150-m isobaths with a surface ard@»$585 km (Fig. 2). The model represented
a typical year between 1994 and 2005, i.e. befueecollapse of the European anchovy
(Engraulis encrasicolus) and the subsequent five-year closure of the fisfog this species.
Thirty-two functional groups were retained, including two seabirds, fnegine mammals, nine
fish, eight invertebrates, three zooplankton, twopry producers, one bacteria, discards from
commercial fisheries, and pelagic detritus. Cepgbads were included in the form of two classes
relating to their main oceanic domain (pelagic/bent The five main pelagic forage fish were
given their owrfunctional groups and demersal fish were divided into four multisps
functional groups on the basis of their diet regime. Marirs@mmals were included in the form
of five mono-specifidunctional groups representing the small-toothed cetaceans most

frequently encountered in the area.

2.3.2 Summary of previous ENA-derived results

Some insights regarding the Bay of Biscay struc&ne function have been derived from ENA
indices calculated with the EWE model of Lassallale(2011) (see Table 2 for single estimates).
In this previous work, single point estimates wieterpreted by comparison to those obtained for
ecosystems of the same type or for other Ecopatlels@f the same ecosystem. The high Finn’s
Cycling Index (FCI) value, which measures the reéaimportance of cycling to the total flow
(Finn, 1980), highlighted the strategic positiordefritus as a perennial reservoir of energy in the
Bay of Biscay. The System Omnivory Index (SOI) wegarded as an index reflecting the
complexity of the inner linkages within the ecogyst(Christensen and Pauly, 1992). It is
correlated with system maturity, since the intemretivork organization is expected to increase as
the system matures (Odum, 1969). The relativelyerate value for this output suggested a

“web-like” food chain with an intermediate levelioternal flow complexity. The Bay of Biscay
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also appeared as relatively immature, as indidayetie Ascendency (A), and has a high
resistance to external perturbations according/siedn Overhead (O). Ascendency (A) merges
the quantification of the system activity and tlegie of specialization of flows in the network
(Ulanowicz, 1986; Ulanowicz and Wulff, 1991). Dugimaturation, ecosystem structure evolves
towards an increase in ascendency (Ulanowicz e2@0D6). System Overhead (O) represents the
amount of development capacity that does not apgearganized structure or constraints
(Ulanowicz, 1986) and as such it corresponds teyiseem reserves when facing perturbations

(Heymans and Baird, 2000).

2.3.3 The Bay of Biscay Ecopath ensemble and EN&mible

The ENAtool routine was used to generate 1000 bathensemble members based on the
uncertainty values assigned to each input parametarding to Pedigree scores (Table 1)
(Lassalle et al., 2014); for this particular foodhythe search for 1000 balanced ensemble
members took between three and five days to rusa single-processor machine. For each ENA
index listed in Table 2, the single value obtainaith the EWE software was graphically
compared to the 1000 values derived from the ENtmatine as to whether it falls between the
boxplot whiskers. Then, the coefficient of variatioetween the mean value and the single
Ecopath estimate was calculated.

The ‘balance’ constraint can move the parameteriloligion of the balanced ensemble members
away from the initial sampling distribution. It ddumake a crucial difference as to whether the
ensemble experiment applied to the Bay of Biscayngply adding error bars onto the input to
the ENA index equations, or if it is adding errardand shifting the mean/median value of the
inputs variables. As such, an additional 1000-meareheemble based on the Bay of Biscay input

dataset and Pedigree scores was generated, wiimgdsoth balanced and unbalanced members.
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Then, the ensemble mean parameter values of tWesensembles were statistically compared

using two-sample Kolmogorov-Smirnov goodness-ofefdts (alpha = 0.05).

2.3.4 The preliminary sensitivity study

The ENAtool routine requires as main input argure¢iné number of ensemble members to
generate and the level of uncertainty to be apmief, P/B, Q/B, andDC. Therefore, it was
important to study the influence of these argumentthe output variables, namely ENA indices.
1. Afirst exercise was performed to assess in wproportions ENA indices distributions were
impacted by the number of ensemble members to genand by the uncertainty set around
input parameters in the ENAtool routine. Valuesrfsat of 1000, 100 and 10 were tested. The
point value of each parameter was changed by Z404Up or down following equation (3). All
combinations ohset and levels of uncertainty were run for the preserg Ecopath model of the
Bay of Biscay continental shelf. 2. A second exsd¢ested which type of input parameter g.e.
P/B, Q/B, andDC) influenced the ENA index distributions most sghn To do so, the ENAtool
routine was run with aset of 1000 and a level of uncertainty of 20% alteiredy applied to

each input parameter type of the pre-existing Ettopedel of the Bay of Biscay continental
shelf (Richardson et al., 2006).

In both exercises, the variance of ENA indicesritigtions (i.e. standard deviation squared) was

the metric used to analyze the sensitivity reghltsugh graphical representations.

3. Results
First, based on the exploratory statistical conguenrs of the parameter distributions between the
balanced ensemble and the mixed ensemble (i.endeland unbalanced), 52 of the basic

estimates parameters shifted mean and 169 of theero diet components shifted too.
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For the pre-existing Ecopath model of the Bay ¢fdBy continental shelf, the value derived from
the EwE software for each ENA index was comparatfieaange of values obtained following
the application of the ENAtool routine to this mbdéh a nset of 1000 and levels of uncertainty
in accordance with Pedigree scor€alfle 3). For A, Ai/Ci, and MTL, the EwWE single estimates
fell within the range defined by thé' (25%) and the'3 (75%) quartile of ENA values (Fig. 3;
Table 2 for the list of ENA indices with their alebrations). For 9 of the 10 remaining ENA
indices, the EwWE single estimafied in the upper boxplot whiskers calculated as Irtes the
interquartile range. Regarding more specificallthat ENA indices usely Lassalle et al.

(2011) in their assessment of the Bay of Biscay fctioning, we calculated an FCI value with a
mean of 33.09% across ensembles, compared tortie sialue of 34.61% obtained by Lassalle
et al. (2011) (Fig. 3). The System Omnivory Ind8©O() presented the broader difference
between the Ecopath single estimate and the mdae,va. 0.19%ersus 0.179 respectively

(Fig. 3); the Ecopath SOI estimate being at theesuppd of the distribution. The mean
Ascendency (A) was of 84601&rsus 860882 flowbits for the pre-existing Ecopath modéie
mean Overhead (O) and the single Overhead estiweateof 2639671 and 2947325 flowbits,
respectively. The coefficients of variation betwélem mean values and the single Ecopath
estimates for those four indices were no greatar 10%(Table 3).

The first sensitivity exercise performed on thepots of the ENAtool routine showed that the
number of ensemble members generated inducedmob drethe variance of ENA indices
calculated as the standard deviation squared 4Eitable 3). Indeed, for all of the three levels of
uncertainty applied in the routine, i.e. 20, 40 &08b6 on all parameters, and for all ENA indices,
the variance of the distribution did not systenshcincrease with the number of ensemble
members generated as first suspected (Fig. 4)h®odntrary, when looking at a given number

of ensemble members to generate, i.e. at a spsb#ide of grey, the variance of the distribution
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systematically increased with the level of uncetiaapplied to the input parametéiable 3).
This trend was particularly marked for the Totas®yn Throughputs (TST) with variances that
almost doubled when the level of uncertainty waenged from 40 to 60% (Fig. 4). These results
were in line with the method, as parameters foretigemble members were here randomly
sampled from a uniform distribution with boundsedity related to the level of uncertainty;
every value in the interval having the same prdiiglaf being picked.

In the second sensitivity exercise, two input pagters appeared to be the most influential on
ENA indices (Fig. 5). On the one hand, the Compmsive Cycling Index (CCI), the Finn
Cycling Index (FCI), the Mean Trophic Level of caps (MTL) and the System Omnivory
Index (SOI) were the most sensitive to less comsthdiet compositiond(C) (Fig. 5).0n the
other hand, the relative Ascendency (A/C), the Adeacy (A), the Capacity (C), the Averaged
Path Length (APL), the Overheads (O) and the T®yatem Throughput (TST) were the most

sensitive to uncertainty in the Bioma&j parameter (Fig. 5).

4. Discussion

The present work provides EWE modellers, and movadly ecosystem ecologists, with a
routine that generates distributions of valuesafset of well-known indices synthesizing
structural and functional properties of ecosystbgntaking into account uncertainty in model
input parameters. In the first place, reanalyzhmgBay of Biscay continental shelf food web in
the light of the most probable estimates of una&taaround input parameters for this ecosystem
supported the main ENA-derived ecological conclasidndeed, ENA index distributions all
encompassed the single ENA values derived fronkthe software with mean values in the
same range as the initial Ecopath estim@able 3). The Bay of Biscay ensemble approach as

such supported and strengthened the main conclo$@amuletritus-based, and relatively mature
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367 ecosystem (Lassalle et al., 2011). In addition,mingerpreting and using ENA distributions, it
368  should be kept in mind that those values are derirem the propagation of parameter

369 uncertainty forward but also, to some point, toititerplay in parameters required to keep the
370 models balanced when any changes are made.

371  The ENAtool routine was developed with the primgogal of strengthening ecological

372 conclusions derived from comparative studies aridre&after impact evaluations.

373 Interpretation will no longer rely only on single value comparisons The routine will permit
374  one to test differences between ENA indices thratgtistical tests as performed in Saint-Béat et
375 al. (2013) with LIM models. The LIM models have éxedl in the last decade from a single-

376  solution method (Vézina and Platt, 1988) to sta@$tapproaches with outputs composed of
377 uncertainty intervals (density probability funct®rof the flows and allowing the definition of
378 uncertainty intervals of ENA indices. These methiid$ based on Monte Carlo approaches
379  (Kones et al., 2006) are now used with a MonteCslidrkov Chain routine (Kones et al., 2009)
380 Several meta-analyses, based on a selection ofrBwetels, have been done, focusing either on
381 theoretical ecology and ecological concepts, oe@rsystems and species of particular interest
382 (see details in Colléter et al., 2013b), a growangportion being based on ENA indices (e.g.
383  Christensen, 1995; Pérez-Espafa and Afre§anchez, 2001; Lobry et al., 2008; Coll and

384 Libralato, 2012; Selleslagh et al., 2012). In thesent work, complementary analyses were
385 performed on the ENAtool routine to determine houcimthe ENA indices distributions were
386  sensitive to the main routine arguments, namelyntimber of ensemble members to be

387 generatedr(set) and the level of uncertainty to apply on the Bwaut parameters (Pedigree).
388  The first induced no remarkable trend on the distions whereas the latter was found positively
389 related to the variance of the distributigiable 3). As such, in future applications of the

390 ENAtool routine, we recommend keeping the levelarafertainty within a range compatible
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391  with known uncertainties on parameters. If no Pexigscores were filled for the EwWE model,
392 model builders or experts of the study area shbalohterviewed regarding the quality of data
393 used during model construction. This was even matyoangly suggested for field biomassB} (
394 and diet composition®©C) that appeared as the most influential input patans(Table 3). This
395 last result can be also interpreted as an uncgrtamalysis, showing that less constrained

396 biomasses and diet compositions in input matrices bad a marked influence enosystem-

397 level EWE model outputs such as ENA indices. Tigsforces the well-known need for extra

398 care to be used when setting these two parameté&wk models, and more importantly for

399  Dbetter information to be collected on these keyattaristics of biological taxa. In the particular
400 case of the Bay of Biscay, biomasses and diet ceitipas were both associated with low levels
401  of uncertainty in the pre-existing Ecopath modetaming they were already relatively well

402  constrained by data. Within the four ENA indiceattivere strongly influenced by variations in
403  diet compositions, the Mean Trophic Level (MTL) ahd System Omnivory Index (SOI) were
404  directly linked to trophic levels dtinctional groups compared to the Finn Cycling Index (FCI)
405 and the Comprehensive Cycling Index (CCI) for whiderpretation of diet compositions

406 influence was less intuitive. Nonetheless, FCI @@l were both calculated from a matrix of

407 internal exchanges that portrays the diet compostof predators (Allesina and Ulanowicz,

408 2004). Indeed, both of these indices include tha & (i.e. flow betweerunctional groups i

409  and j) in their definition, which is the same@gsin Ecopath, withQ;; = Bj* DC;;. FCI, CCl and

410 SOl were commonly used to assess key ecosystentwsabiand functional features such as

411  system maturity (Christensen, 1995), complexity stability (Libralato, 2008). From an applied
412  perspective, in a comparative study by Selleslagth. €2012), the SOI was also demonstrated to
413  be positively correlated with the degree of antbggmic perturbations in estuaries. In the context

414  of the European Water Framework Directive, the tgaent of more functional indicators
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based on fluxes of matters and energy, and traptizorks at the scale of the ecosystem was
recently listed as a critical way to improve thelementation of European policies (Reyjol et al.,
2014). In this scope, by using the ENAtool routamel by applying variations more specifically
to the diet compositions, the robustness of tHeimship ‘SOl/anthropogenic impacts’ is
planned to be statistically tested in an upcommmggarative study before presentation as a
potential indicator of “Good Environmental Statu&ttention will have to be paid to the
topology and the degree of aggregation anfangtional groups in the compared models as
these two factors were demonstrated to influencA Edues (Johnson et al., 2009).

Application of the ENAtool routine is not strictliynited to the generation of ENA indices
distributions for comparative studies; it can malsed to performed conventional uncertainty
analysesThere is a need to assess parameter uncertainty B%E outputs for decision

making processesln this scope, all balanced ensemble memberseatefrom the resampling
procedure in the ENAtool routine can be stored. &mh, the various graphical representations
proposed in the present work and more sophisticsttgdstical analyses can be performed to
assess the influence of less constrained paranwier®del estimate®arameter uncertainty
testing is also under development by the CEFAS (UKyhere alternate balanced EwE

models are generated to assess the impact of paraereuncertainty on fishing policies. A

new R package, called ‘Rpath’, is currently under évelopment and will address

uncertainty in input parameters allowing for a credtable interval around model outputs

(Lucey et al., 2014).

5. Conclusion
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ENA indices are increasingly considered as potentiendicators of ecosystem status. They
express, alone or in combinations, key structuralrad functional aspects of a given system.
The ENAtool routine will help to go a step furtherin ecosystem-based fisheries
management (EBFM) by communicating to natural resotces managers the distribution
and mean values of ecosystem-level indices surrowediby confidence intervals. Statistical
comparison of ENA index distributions, either betwen neighboring ecosystems or under
various management scenarios within a single ecosgm (i.e. before/after management
action evaluations) can be performed using this tépimproving ecological diagnosis for a
given system. Because the ENAtool routine is based an ensemble parameterization
technique, it will also contribute to the effort ofthe EWE community for parameter

uncertainty testing.
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Figure captions

Figure 1: Schematic representation of the diffeMatiab functions that compose the ENAtool
routine. The functions that were previously develbpy Kearney (2012) are given in italics. In
agreement with the developer, some modificationgeweade to these functions to enhance their
applicability to all operating systems and to alEEmodel versions. These modifications were
specified in the name of the function by “_mod” eTflanctions that were specifically built for the
present work were marked in bold. The origins ofrfolas used in thidices functions are

listed in Table 2.

Figure 2: Study area of the Bay of Biscay contiakshelf and locations of the main rivers
flowing into it. The shaded area corresponds tdRtesch part of the continental shelf between

30 and 150m depth, and represents the spatialteoftéme Ecopath model.

Figure 3: Boxplot of ENA indices values obtaineanfrthe ENAtool routine, run with raset of

1000 and a level of uncertainty specific to eagiutrparameter according to Pedigree scores for
the pre-existing Ecopath model of the Bay of Biscagtinental shelf of Lassalle et al. (2011). A
black circle corresponds to the mean of the 1008 idices values. A black cross represents
the single ENA indices values obtained from thegxisting Ecopath model using the EwWE
software. A black triangle is used for the ENA eB values calculated after the importation of
the pre-existing Ecopath model to Matlab with narge on the input parameters. Results are

depicted for the 13 ENA indices. Graphics are oghfollowing the order of Table 2.
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Figure 4: Variance of ENA indices values obtainexhf the ENAtool routine run with every
combinations ohset equal to 10 (light-grey bars), 100 (medium-gresshband 1000 (dark-grey
bars) and levels of uncertainty of 20, 40 and 60Pthe pre-existing Ecopath model of the Bay
of Biscay continental shelf of Lassalle et al. (PDResults are depicted for the 13 ENA indices.

Graphics are organized following the order of Tdble

Figure 5: Variance of ENA indices values obtainexhf the ENAtool routine run with aset
equal to 1000 and a level of uncertainty of 20%r aktively applied on each key input
parameter. The application case is the pre-exigicgpath model of the Bay of Biscay
continental shelf of Lassalle et al. (2011). Farhehistogram, from the left to the right, the field
biomasses are modified by +20%, then productidndmass ratios, consumption to biomass
ratios, and finally diet compositions. Results @epicted for the 13 ENA indices. Graphics are

organized following the order of Table 2.
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496  Table 1: Uncertainty applied to input parameterthefpre-existing Ecopath model of the Bay of
497  Biscay continental shelf by Lassalle et al. (20(LE) term ‘percentage’ in equation (3)). Values
498  were derived from pre-defined tables provided byisgEénsen et al. (2005) associating a Pedigree
499  score to each given level of uncertainty for eaasibinput parameter. Blank cells correspond to
500 parameters left to be estimated by the model, winer@arameter did not apply (e@B for

501 primary producers), or where the EWE software ditlaliow setting Pedigree scores (€2 of

502  primary producers). To run the ENAtool routine,rtdaells were replaced by zeros.

503

504 B P/B Q/B DC
505 Pursuit divers seabirds 0.1 0.9 50 0.8
506  Surface feeders seabirds 0.1 0.9 50 0.8
507  Striped dolphins 0.1 0.8 0.5 0.3
508 Bottlenose dolphins 0.1 0.8 0.5 0.3
509 Common dolphins 0.1 0.8 0.5 0.3
510 Long-finned pilot whales 0.1 0.8 50 0.3
511  Harbour porpoises 0.1 0.8 0.5 0.3
512  Piscivorous demersal fish 0.1 0.5 0.5 0.4
513  Piscivorous and benthivorous demersal fish 0.1 0.5 0.5 0.4
514  Suprabenthivorous demersal fish 0.1 0.5 0.5 0.4
515  Benthivorous demersal fish 0.1 0.5 0.5 0.4
516  Mackerel 0.6 0.5 0.5 30.
517 Horse mackerel 0.6 0.5 0.5 0.3
518  Anchovy 0.1 0.5 0.5 30.
519  Sardine 0.1 0.5 0.5 3 0.
520  Sprat 0.1 0.5 0.5 0.3
521  Benthic cephalopods 0.8 0.8 0.5
522  Pelagic cephalopods 0.8 0.8 0.5
523  Carnivorous benthic invertebrates 0.4 0.5 0.3
524  Necrophageous benthic invertebrates 0.4 0.5 0.3
525  Sub-surface deposit feeders invertebrates 0.4 0.5 0.3
526  Surface suspension and deposit feeders inv. 0.4 0.5 0.3
527  Benthic meiofauna 0.4 0.5 0.3
528  Suprabenthic invertebrates 0.4 0.5 0.3
529  Macrozooplankton 0.1 0.8 0.3
530 Mesozooplankton 0.1 0.8 0.3
531  Microzooplankton 0.1 0.8 0.3
532 Bacteria 0.1 0.1 0.3
533  Large phytoplankton 0.1

534  Small phytoplankton 0.1

535 Discards
536 Detritus
537
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Table 2: Formulas to calculate the 13 ENA indicetheindices function of the ENAtool routine. Formulas and thaiigins are

presented for EWE software v.6 as well as for itheglr inverse modelling approach. For each ENAxnds single value calculated

using the EWE model of the Bay of Biscay continkskelf of Lassalle et al. (2011) was preseniégis the trophic level of thd'i

functional group, Y; the captures (i.e. landings and discardsjudoctional group i, TST. the sum of flows involved in cycle$; the

magnitude of the unidirectional flow fromoj (inflow), Q; the consumption dtunctional group i, DC;; the proportion of in the diet

of i andBQB; (or Ol)) is the omnivory index for. The internal ascendengy; internal capacityZ; and internal relative ascendency

Ai/C; were also calculated by only considering inteflmals to the system and constitute indices 11,ri® 13 respectively.

Indices

Mean
trophic level
of captures
(MTL) / no
units

Total system
throughput
(TST) / kg

C: km? year

Finn cycling
index (FCI)
/ no units

General
interpretati
on

Fishing
down, up
or through
the food
web

Global
activity of
the system

Proportion
of flows in
a system
that is
recycled

EwE software formula

% TL XY,

Sum of all flows, i.e. consumption,
respiration, imports and exports

TST ¥ T.. + Imports,
R

TST ; TST

Single
value , . .
Reference of Linear inverse modelling Referenc
S ENA formula es
index
Pauly et
al. (1998) o703

Ulanowic 93557

z(1986) 8
Finn
(1980) 3461 -~
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Comprehens
ive cycling
index (CCl)

/ no units

Averaged
path length
(APL) / no
units

Ascendency
(A)/
flowbits

Capacity (C)
/ flowbits

Relative
ascendency

Proportion

of all flows

in a system 1.142 X FCI
that is

recycled

Average

number of

functional

groups that

an

atom of TST

carbon
passes
through
between its
entry into
the system
and its exit
Quantificati
on of the
system
activity in

association ZZ r. X log [ TST X T;
with the LT, XY, T

degree of
flows
specializati
on

Maximum

potential ZZT Xlog TST]

ascendency ¢
Fraction of 4

the system

2 Exports + X, Respiration

)

Allesina

and  agp53
Ulanowic

z (2004)

i TST — X, Imports
(Fl'ggo) 4.857 ?

X; Imports

Ulanowic 86088
z(1986) 2

Patricio et 38082
al. (2006) 06 E_
Ulanowic

7 (1986) 0226

YT
—T.:»:szﬁxio
TST

Kay et al.
(1989);
Baird et
al. (1991)

g [_ Ulanowic
17 (1986)
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546

(A/C)/no  thatis

units organized
Overheads Unorganize .
Ulanowic 29473
O)/ d part of C—A 7 (1986) 25
flowbits the system
. log [ ] X BQB,
mm(@] sis=0
S
System Zi g[ Q( j] X BQB, Villy Christens
Omnivory . minl@ Christens o, oc 2;0I; X log[gQ;] en and
Index (SOI) y en, pers. 2 loglQ;] Pauly
/ no units with s =%, ﬂﬂﬁ[ .@:J and comm. (1993)

BQB, = oI, = X, (TL,— (I, TL, ch)j

“See http://sources.ecopath.org/trac/Ecopath/titR48 for issues regarding calculation of Ol whepadnts are set in the diet matrix

in Ecopath with Ecosim v.6.
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Table 3: Summary of results from the application otthe ENAtool routine to the Bay of Biscay continerdl shelf ecosystem

model and of results from the preliminary sensitiviy analyses. ‘Global’ means that all input parametes were simultaneously

changed according to the level of uncertainty and_ocal’ that B, P/B, Q/B and DC were alternatively modified.

Application of the ENAtool routine
(nset of 1000 and levels of uncertainty based on
pedigrees)

Global / All combinations ofnset Local / nset of 1000 and level of

Preliminary sensitivity analyses

(10, 100, 1000) and levels of

uncertainty of 20%
uncertainty (20, 40, 60%)

» The single ENA indices values obtained from the pre
existing Ecopath model using the EwE software all
felt within the boxplot whisker intervals.

» The coefficients of variation between the single EN
indices values obtained from the pre-existing
Ecopath model using the EwE software and the
mean distribution values were comprised between
0.08 (MTL) and 11.45% (Ci).

No influence ofnset on the
variance of ENA indices
distributions.

» The variance of ENA indices
distributions changed the
most when variations were
applied toB and DC.

The variance of ENA indices

distributions systematically

increased with the level of

uncertainty.
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Step 1: importation of a pre-existing

Step 3: calculation of probability distributions

Ecopath model into Matlab

Step 2: generation of ensemble members

for ENA indices

mdb

Unix/Linux and
Macintosh Windows
operating systems operating system

| |

EwEG or MS Access Template A Excel
files file

l

EwE input structure

2ewein_mod excel2ewein

Number of
Template B compartmentsin Number of ensemble
Excel file / the pre-existing members to generate
default value Ecopath model (nset)
| |
createpedigree

Uncertainty matrix ————>»| createensemble_mod/ ecopathlite

Y

nset ensemble members
|

indices

ENA 1 |u

nset values for each of
the 13 ENA indices

l

Frequency

ENAvalues
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