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Graph Net—a network that operates on the topological space of 
molecules and consists of three update and three aggregation functions
—is capable of:

predicting:
-per-molecule attributes: energy, solubility, biophysical properties, etc;
-per-atom attributes: charges;
-per-bond attributes: Wiberg bond order;
-forcefield parameters

one-minute version in case you are really busy



part 0
what is Graph and what is Graph Net? 

🤔



Graph

proteins and molecules could be modeled as

• undirected,

• node-, edge-, and graph-attributed,

• unlabeled,

graphs.

G ={E ,V ,U}



Graph Nets

e 'k = φ
e(ek ,v r k ,v sk ,u)

v 'i = φ
v ( ′ei ,v i ,u)

′u = φu ( ′e , ′v ,u)

′ei = ρ e→v ( ′Ei )

′e = ρ e→u ( ′E )
′v = ρ v→u ( ′V )

G ={E ,V ,U}

Battaglia et al.(2018) arXiv:1806.01261



hyperedges

a i
(t+1) = φ a (e01

(t ) ,e02
(t ) ,v0

(t ) ,v1
(t ) ,v2

(t ) ,u(t ) );

di
(t+1) = φ d (e23

(t ) ,e12
(t ) ,e34

(t ) ,v1
(t ) ,v2

(t ) ,v3
(t ) ,v4

(t ) ,u(t ) );

a
(t+1)

= ρ a→u (A(t ) );

d
(t )

= ρ d→u (D(t ) ),



pairwise readout

hpairwise = fr (Attention(hv ,hv ))

Attention(hv ,hv ) =Wk (hv )Wq (hv )
T

hv

Wk(hv)

Wq(hv)

)    =Attention(



symmetry broken!!!

hypothesis  
 proven to be incorrect

hypothesis: 
since Google claims 

‘attention is all you need’, 
they use only attention in their 

translation app. 

reasoning: 
attention is permutation 

equivariant, hence no symmetric 
phrase in any given language 

should be translated into 
an asymmetric phrase in another 

language. 

experiment:



hypergraph 

Etot = Ebond + Eangle + Etorsion + Epairwise

hu = hv + he + ha + hd + hpairwise

inspired by forcefields:



–Andreas Loukas (2019) arXiv:1907.03199

 
“a graph plays a double role: 

it is both the input of the system and captures the network 
topology of the distributed system that solves the problem”
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e 'k = φ
e(ek ,v r k ,v sk ,u)



v 'i = φ
v ( ′ei ,v i ,u)′ei = ρ e→v ( ′Ei )

′ei



′u = φu ( ′e , ′v ,u)′v = ρ v→u ( ′V )′e = ρ e→u ( ′E )
′e

′v



Battaglia et al.(2018) arXiv:1806.01261https://github.com/choderalab/gimlet/blob/master/gin/probabilistic/gcn.py



Graph Inference on MoLEcular Topology       github.com/choderalab/gimlet





popular choice of functions: trainable Neural 
Networks

φ e = NNe

φ v = NNv

φu = NNu

ρ e→v = ρ v→u = ρ e→u =∑



Battaglia et al.(2018) arXiv:1806.01261



Message Passing Neural Nets (MPNN)

Battaglia et al.(2018) arXiv:1806.01261



Message Passing Neural Nets (MPNN)

′ei = ρ e→v ( ′Ei ) = Mt (hv
t ,hw

t ,evw)
w∈N (v )
∑ = mv

t+1

v 'i = φ
v ( ′ei ,v i ,u) =Ut (hv

t ,mv
t+1) = hv

t+1



mv
t+1



Message Passing Neural Nets (MPNN)
Convolutional  

Duvenaud  
et al. (2015)

Gated
Li  

et al. (2016)

Interaction
Battaglia  

et al. (2016)

Deep Tensor 
Shutt 

et al. (2017)

(.,.) (.,.) +

FC FC

FC FC

citation arXiv:1509.09292 arXiv:1511.05493 arXiv:1612.00222 10.1038/
ncomms13890 

Ut (hv
t ,mv

t+1)

Mt (hv
t ,hw

t ,evw)

R f ( softmax
v ,t
∑ (Wthv

t ))

( hw
t∑ , evw∑ ) Aevwhw

t

f ( hv
T )

v∈G
∑

GRU(hv
t ,mv

t+1)



part 1
discriminative models: per-graph 

attributes



results of per-molecule task

dataset R2 

of GIMLET
RMSE 

of GIMLET SOTA R2 

of SOTA
RMSE 

of SOTA

ESOL 0.8682 0.5372 MPNN 0.939 0.58

SAMPL 0.9537 0.7388 MPNN 0.923 1.15

Lipophilicity

(mean agg.)  
0.5178

(mean agg.)  
0.6990

GC 0.655 0.662
(sum agg.) 

0.3493
(sum agg.) 

0.9432



ESOL: Water solubility data(log 
solubility in mols per litre) for 

common organic small molecules

Lipophilicity: Experimental results of 
octanol/water distribution 
coefficient(logD at pH 7.4).

FreeSolv: Experimental and 
calculated hydration free energy of 

small molecules in water.



is there an association between the sum in hidden 
space and the sum in physical space?

To answer this question, we prepared two toy task:

• molecule weight: extensive

• mean atom weight: intensive

with molecules in ESOL dataset.



sum aggregation mean aggregation

molecule weight

mean atom weight



invariance and equivariance
For every graph G and every permutation matrix P, we call function f

invariant if 

and equivariant if

f (P !G) = f (G)

f (P !G) = P ! f (G)



invariance and equivariance

The following conditions are sufficient for an operation on a graph to be 
invariant for per-graph attributes and equivariant for per-node and per-edge 
attributes:

• perform on an unlabelled graph or discard node and edge label at readout 
level

• perform on nodes and edges in synchronous manner



is invariance and equivariance always a good 
thing?

…
“cycle graph”

task: predicting averaged atom weight (12) and molecule weight (12n)

for all edges and all nodes in all graphs this collection:

• at t=0, they are initialized to have the same attributes. hvi=hvj  for all i, j; hei = 
hej for all i,j. We call this state of such set locally isomorphic.

• if at t=T, the set is locally isomorphic, and we update hv and he by: 
 

• then the set is locally isomorphic at t=T+1.

e 'k = φ
e(ek ,v r k ,v sk )

v 'i = φ
v ( ′ei ,v i )



hence this set is locally isomorphic for all t. 

To get the final readout,  if we apply a sum function, then the graphs in this 
set have different values; if we apply a mean function, then the graphs in this 
set have same value.

Therefore sum aggregation function can only be used to predict molecule 
weight but not atom weight, mean can only be used to predict mean atom 
weight but not molecule weight. 



GNs are powerful when  performed on labeled 
graphs

Loukas  (2019) arXiv:1907.03199 
 



part 2
discriminative models: per-node  

and per-edge attributes



Weisfeiler-Lehman Test

Iteratively:

• aggregates the labels of nodes and their neighborhoods,

• hashes the aggregated labels into unique new labels

Weisfeiler and Lehman (1968) 



GNs could be as powerful as WL test
Xu et al. (2019) Theorem 3. 

Let A: G -> Rd be a GNN. With a sufficient number of GNN layers, A maps any graphs 
that the Weisfeiler-Lehman test of isomorphism decides as non-isomorphic, to different 
embeddings if the following conditions hold:

a) A aggregates and updates node features iteratively with 

where the functions f, which operates on multisets, and Φ are injective.

b) A’s graph-level readout, which operates on the multiset of node features {hv(k)}, is 
injective.

Xu et al. (2019) arXiv:1810.00826 

hv
(k ) = Φ(hv

(k−1) , f (hu
(k−1) : u∈N (v){ }))



automorphic equivalence test

• Two vertices are automorphically equivalent if all the vertices can be re-
labeled to form an isomorphic graph with the labels of u and v 
interchanged.

• We can test automorphic equivalence through WL-like test, where we 
iteratively

• aggregates the attribute of nodes and their neighborhoods,

• hashes the aggregated attribute into unique new attribute



per-atom attributes: charges

Since charges of atoms are determined by the chemical environment thereof, 
we hypothesize that two atoms that are not automorphically equivalent have 
different charges, and thus could be distinguished by graph nets.

• Q: why we need a new charging method for Molecular Dynamics 
simulation?

• A: charging is critical for MD but current methods suck as they are either 
expensive (QM) or unreliable (empirical).



per-atom attributes: charges

Dataset:

• Bleiziffer et al. (2018) Density functional theory.

• In-house dataset: generated by AM1-BCC ELF (Electrostatically Least-
interacting Functional) method. Considered to be invariant w.r.t. 
conformation. 



We can find such {qi} by minimizing the error between predicted and 
reference charges 

subject to

which could be greater than, equal to, or less than zero 😱 

{q̂}= argmin
{qi}

RMSE(qi ,qi0 )
i
∑

qi
i
∑ = qi0

i
∑



Define the contribution of potential energy by atomic charge as EA(Q). It has 
been shown that the second-order Taylor expansion is sufficient to approximate.

the first- and second-order derivates are termed electronegativity and hardness.

where IP and EA are ionization potential and electron affinity.

EA(Q) ≈ EA0 +QA(
∂E
∂Q
)A0 +

1
2
QA
2 (∂

2E
∂Q2 )A0

eA ≡ (
∂E
∂Q
)A0 ≈

1
2
(EA(+1)− EA(−1)) =

1
2
(IP + EA)

sA ≡ JAA
0 ≡ (∂

2E
∂Q2 )A0 ≈ EA(+1)+EA(−1)− 2EA(0) = IP − EA

Rappe and Goddard (1991)  
doi://10.1021/j100161a070?rand=h0p8l69f

doi://10.1021/j100161a070?rand=h0p8l69f


Adapting the clever trick by Gilson et al., we predict the first- and second- order 
derivative of EA(Q), and form this problem as a double optimization, where,

subject to: 

For the second minimization, i.e. solving {qi} with given {ei} and {si}, it could be 
solved analytically using Lagrange multipliers,

whose Jacobian and Hessian are trivially easy to calculate.
Gilson et al. (2003) doi://10.1021/ci034148o

{êi , ŝi}= argmin
ei ,si

(argmin
qi

eiqi +
1
2
siqi

2

i
∑ )

qi
i
∑ = qi0

i
∑

q̂i = −eisi
−1 + si

−1
Q + ei

i
∑ si

−1

sj
−1

j
∑



Predicted versus reference charge on 
held-out test set. 





ablation study

method R2 RMSE

GN 0.9936 0.0223

MPNN without 
bond order 0.9930 0.0233

GN predicting q -6.9242E-06 0.280



Cumulative fraction of samples as a 
function of absolute error in held-out test 
set.

Predicted electronegativity e and hardness 
s grouped by element.





Left: Principal Component Analysis 
(PCA) of latent representations of node 
attributes, at different time step (from left 
to right), and color-coded according to 
(from top to bottom) elements, 
hybridizations, aromaticity, 
electronegativity, and hardness.

Above: R2 of time-series linear 
regression on latent space. 



scalability of the model



part 3
work(s)-in-progress



inter-hierarchical multitask learning
per-atom attributes: 

charges

per-bond attributes: 
Wieberg bond orders

per-molecule attributes: 
your favorite QM property



U = Ebond
e∈E
∑ (e)+ Eangle

a∈A
∑ (a)+ Etorsion

t∈T
∑ (t)+ Enon-bonded

v0 ,v1∈V ,v0∉N
v (v1)

∑ (v0 ,v1)

Ebond (e) = 1
2
kbond (e)(r(e)− req (e))2

Eangle (a) = 1
2
kangle (a)(φ(a)−φeq (a))2

Etorsion (t) = ktorsion,i
n=1:Nphases (t )
∑ (t)(1+ cos(nφ(t)−φeq (t)))

Enon-bonded (v0 ,v1) = 4ε(v0 ,v1)
σ (v1,v2 )
r(v0 ,v1)

⎛

⎝⎜
⎞

⎠⎟

12

−
σ (v0 ,v1)
r(v0 ,v1)

⎛

⎝⎜
⎞

⎠⎟

6⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

van der Waals
! "####### $#######

+ 1
4πε0

q(v0 )q(v1)
r(v0 ,v1)

Coulombic
! "## $##



U = Ebond
e∈E
∑ (e)+ Eangle

a∈A
∑ (a)+ Etorsion

t∈T
∑ (t)+ Enon-bonded

v0 ,v1∈V ,v0∉N
v (v1)

∑ (v0 ,v1)

{{θv},{θe},{θa},{θd}}= f
r ({{v(t ) ,e(t ) ,a(t ) ,d(t ) ,u(t )},t = 1,2,...,T})

{θv}= NN r ,v ({v
(t )}),{θe}= NN r ,e({e

(t )}),{θa}= NN r ,a ({a
(t )}),{θd}= NN r ,d ({d

(t )})

{θpairwise}={NN r ,pairwise (θv ,0 ,θv ,1),v0 ∉Nv1

v}
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