Graph Nets for Learning Molecular Physics

\{yuanqing.wang, josh.fass, chaya.stern, john.chodera*\} @choderalab.org

oct 14,2019

one-minute version in case you are really busy

Graph Net-a network that operates on the topological space of molecules and consists of three update and three aggregation functions -is capable of:
predicting:
-per-molecule attributes: energy, solubility, biophysical properties, etc;
-per-atom attributes: charges;
-per-bond attributes: Wiberg bond order;
-forcefield parameters

part 0 what is Graph and what is Graph Net?

Graph

proteins and molecules could be modeled as

- undirected,
- node-, edge-, and graph-attributed,

$$
\mathcal{G}=\{\mathcal{E}, \mathcal{V}, \mathcal{U}\}
$$

- unlabeled,
graphs.

Graph Nets

\[

\]

hyperedges

$$
\begin{array}{ll}
\mathbf{a}_{i}^{(t+1)} & =\phi^{a}\left(\mathbf{e}_{\mathbf{0 1}}{ }^{(t)}, \mathbf{e}_{\mathbf{0} 2}{ }^{(t)}, \mathbf{v}_{\mathbf{0}}{ }^{(t)}, \mathbf{v}_{\mathbf{1}}{ }^{(t)}, \mathbf{v}_{\mathbf{2}}{ }^{(t)}, \mathbf{u}^{(t)}\right) ; \\
\mathbf{d}_{i}^{(t+1)} & =\phi^{d}\left(\mathbf{e}_{23}{ }^{(t)}, \mathbf{e}_{12}{ }^{(t)}, \mathbf{e}_{34}{ }^{(t)}, \mathbf{v}_{\mathbf{1}}{ }^{(t)}, \mathbf{v}_{\mathbf{2}}{ }^{(t)}, \mathbf{v}_{\mathbf{3}}{ }^{(t)}, \mathbf{v}_{\mathbf{4}}{ }^{(t)}, \mathbf{u}^{(t)}\right) ; \\
\overline{\mathbf{a}}^{(t+1)} & =\rho^{a \rightarrow u}\left(A^{(t)}\right) ; \\
\overline{\mathbf{d}}^{(t)} & =\rho^{d \rightarrow u}\left(D^{(t)}\right),
\end{array}
$$

pairwise readout

$\bar{h}_{\text {pairwise }}=f_{r}\left(\operatorname{Attention}\left(h_{v}, h_{v}\right)\right)$
$\operatorname{Attention}\left(h_{v}, h_{v}\right)=W_{k}\left(h_{v}\right) W_{q}\left(h_{v}\right)^{T}$

hypergraph

inspired by forcefields:

$$
E_{\mathrm{tot}}=E_{\mathrm{bond}}+E_{\text {angle }}+E_{\text {torsion }}+E_{\text {pairwise }}
$$

$$
h_{u}=h_{v}+h_{e}+h_{a}+h_{d}+h_{\text {pairwise }}
$$

"a graph plays a double role:
it is both the input of the system and captures the network topology of the distributed system that solves the problem"
-Andreas Loukas (2019) arXiv:1907.03199

 \mathcal{V}
 \mathcal{E}

$$
\mathbf{e}_{k}^{\prime}=\phi^{e}\left(\mathbf{e}_{k}, \mathbf{v}_{r k}, \mathbf{v}_{s k}, \mathbf{u}\right)
$$

$$
\vec{e}_{i}^{\prime}=\rho^{e \rightarrow v}\left(E_{i}^{\prime}\right) \quad \mathbf{v}_{i}^{\prime}=\phi^{v}\left(\overline{\mathbf{e}}_{i}^{\prime}, \mathbf{v}_{i}, \mathbf{u}\right)
$$

V

$$
\vec{e}=\rho^{\varrho \rightarrow u}\left(E^{\prime}\right) \bar{v}^{\prime}=\rho^{\nu \neg u}\left(V^{\prime}\right) \mathbf{u}^{\prime}=\phi^{u}\left(\overline{\mathbf{e}}^{\prime}, \overline{\mathbf{v}}^{\prime}, \mathbf{u}\right)
$$


```
Algorithm 1 Steps of computation in a full GN block.
    function GraphNetwork \((E, V, \mathbf{u})\)
    \(\cdots\) for \(^{\circ}{ }^{\circ}{ }^{\circ} \in\left\{1^{\circ} \ldots{ }^{\circ} N^{e}\right\}^{\circ}\) do \({ }^{\circ}\)
            \(\mathbf{e}_{k}^{\prime} \leftarrow \phi^{e}\left(\mathbf{e}_{k}, \mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}}, \mathbf{u}\right) \quad \triangleright 1\). Compute updated edge attributes
        end for
        for \(i \in\left\{1 \ldots N^{n}\right\}\) do
            let \(E_{i}^{\prime}=\left\{\left(\mathbf{e}_{k}^{\prime}, r_{k}, s_{k}\right)\right\}_{r_{k}=i, k=1: N^{e}}\)
            \(\overline{\mathbf{e}}_{i}^{\prime} \leftarrow \rho^{e \rightarrow v}\left(E_{i}^{\prime}\right) \quad \triangleright 2\). Aggregate edge attributes per node
            \(\mathbf{v}_{i}^{\prime} \leftarrow \phi^{v}\left(\overline{\mathbf{e}}_{i}^{\prime}, \mathbf{v}_{i}, \mathbf{u}\right) \quad \triangleright 3\). Compute updated node attributes
        end for
    let \(V^{\circ} V^{\prime}=\left\{\mathbf{v}^{\prime}\right\}_{i=1: N^{v}}\)
let \(E^{\prime}=\left\{\left(\mathbf{e}_{k}^{\prime}, r_{k}, s_{k}\right)\right\}_{k=1: N^{e}}\)
\(\overline{\mathbf{e}}^{\prime} \leftarrow \rho^{e \rightarrow u}\left(E^{\prime}\right)\)
\(\overline{\mathbf{v}}^{\prime}\)
        \(\overline{\mathbf{v}}^{\prime} \leftarrow \rho^{v \rightarrow u}\left(V^{\prime}\right) \quad \triangleright 5\). Aggregate node attributes globally
        \(\mathbf{u}^{\prime} \leftarrow \phi^{u}\left(\overline{\mathbf{e}}^{\prime}, \overline{\mathbf{v}}^{\prime}, \mathbf{u}\right) \quad \triangleright 6\). Compute updated global attribute
        return \(\left(E^{\prime}, V^{\prime}, \mathbf{u}^{\prime}\right)\)
    end function
```


Graph Inference on MoLEcular Topology

github.com/choderalab/gimlet

- gin/ the core (and fun) part of the package.
- i_o/ reading and writing popular molecule embedding/representing structures.
- deterministic/ property predictions, conformer and charge generations.
- probabilistic/ molecular machine learning through graph networks.
- lime/ auxiliary scripts.
- for_biologists/ ready-to-use modules and scripts.
- architectures/ off-the-shelf model architectures developed elsewhere.
- scripts/ fun scripts we used to generate data and hypothesis.
- trained_models/ Nomen est omen.

popular choice of functions: trainable Neural Networks

$$
\begin{aligned}
& \phi^{e}=\mathrm{NN}_{e} \\
& \phi^{v}=\mathrm{NN}_{v} \\
& \phi^{u}=\mathrm{NN}_{u} \\
& \rho^{e \rightarrow v}=\rho^{v \rightarrow u}=\rho^{e \rightarrow u}=\sum
\end{aligned}
$$

(a) Full GN block

(c) Message-passing neural network

(e) Relation network

(b) Independent recurrent block

(d) Non-local neural network

(f) Deep set

Battaglia et al.(2018) arXiv:1806.012

Message Passing Neural Nets (MPNN)

(c) Message-passing neural network

Message Passing Neural Nets (MPNN)

$$
\begin{aligned}
& \vec{e}_{i}^{\prime}=\rho^{e \rightarrow v}\left(E_{i}^{\prime}\right)=\sum_{w \in N(v)} M_{t}\left(h_{v}^{t}, h_{w}^{t}, e_{v w}\right)=m_{v}^{t+1} \\
& \mathbf{v}_{i}^{\prime}=\phi^{v}\left(\overline{\mathbf{e}}_{i}^{\prime}, \mathbf{v}_{i}, \mathbf{u}\right)=U_{t}\left(h_{v}^{t}, m_{v}^{t+1}\right)=h_{v}^{t+1}
\end{aligned}
$$

Message Passing Neural Nets (MPNN)

	Convolutional Duvenaud et al. (2015)	Gated Li et al. (2016)	Interaction Battaglia et al. (2016)	Deep Tensor Shutt et al. (2017)
$U_{t}\left(h_{v}^{t}, m_{v}^{t+1}\right)$	(.,.)	$\operatorname{GRU}\left(h_{v}^{t}, m_{v}^{t+1}\right)$	(.,.)	+
$M_{t}\left(h_{v}^{t}, h_{w}^{t}, e_{v w}\right)$	$\left(\sum h_{w}^{t}, \sum e_{v w}\right)$	$A_{e_{v w}} h_{w}^{t}$	FC	FC
R	$f\left(\sum_{v, t} \operatorname{softmax}\left(W_{t} h_{v}^{t}\right)\right)$	FC	$f\left(\sum_{v \in \mathcal{G}} h_{v}^{T}\right)$	FC
citation	arXiv:1509.09292	arXiv:1511.05493	arXiv:1612.00222	$\begin{gathered} \text { 10.1038/ } \\ \text { ncomms13890 } \end{gathered}$

part 1
 discriminative models: per-graph attributes

results of per-molecule task

dataset	\mathbf{R}^{2} of GIMLET	RMSE of GIMLET	SOTA	$\begin{gathered} \mathbf{R}^{2} \\ \text { of SOTA } \end{gathered}$	RMSE of SOTA
ESOL	0.8682	0.5372	MPNN	0.939	0.58
SAMPL	0.9537	0.7388	MPNN	0.923	1.15
Lipophilicity	$\begin{gathered} \text { (mean agg.) } \\ 0.5178 \end{gathered}$	$\begin{gathered} \text { (mean agg.) } \\ 0.6990 \end{gathered}$	GC	0.655	0.662
	$\begin{gathered} \text { (sum agg.) } \\ 0.3493 \end{gathered}$	(sum agg.) 0.9432			

ESOL: Water solubility data(log solubility in mols per litre) for common organic small molecules

FreeSolv: Experimental and calculated hydration free energy of small molecules in water.

Lipophilicity: Experimental results of octanol/water distribution coefficient $(\log D$ at pH 7.4$)$.

To answer this question, we prepared two toy task:
-issquacterwaiphtasssobsikation between the sum in hidden - mean at\&pacegnandentiee sum in physical space?
with molecules in ESOL dataset.
sum aggregation
molecule weight

mean aggregation

invariance and equivariance

For every graph G and every permutation matrix P, we call function f invariant if

$$
f(\mathbf{P} \star \mathcal{G})=f(\mathcal{G})
$$

and equivariant if

$$
f(\mathbf{P} \star \mathcal{G})=\mathbf{P} \star f(\mathcal{G})
$$

invariance and equivariance

The following conditions are sufficient for an operation on a graph to be invariant for per-graph attributes and equivariant for per-node and per-edge attributes:

- perform on an unlabelled graph or discard node and edge label at readout level
- perform on nodes and edges in synchronous manner

is invariance and equivariance always a good thing?
 "cycle graph"
 Δ

 ule weight (12n)
 task: predicting averaged atom weight (12) and molecule weight (12n)

for all edges and all nodes in all graphs this collection:

- at $t=0$, they are initialized to have the same attributes. $h_{v i}=h_{v j}$ for all $i, j ; h_{e i}=$ $h_{e j}$ for all i, j. We call this state of such set locally isomorphic.
- if at $t=T$, the set is locally isomorphic, and we update h_{v} and h_{e} by:

$$
\begin{aligned}
\mathbf{e}_{k}^{\prime} & =\phi^{e}\left(\mathbf{e}_{k}, \mathbf{v}_{r k}, \mathbf{v}_{s k}\right) \\
\mathbf{v}_{i}^{\prime} & =\phi^{v}\left(\overline{\mathbf{e}}_{i}^{\prime}, \mathbf{v}_{i}\right)
\end{aligned}
$$

- then the set is locally isomorphic at $t=T+1$.
hence this set is locally isomorphic for all t.
To get the final readout, if we apply a sum function, then the graphs in this set have different values; if we apply a mean function, then the graphs in this set have same value.

Therefore sum aggregation function can only be used to predict molecule weight but not atom weight, mean can only be used to predict mean atom weight but not molecule weight.

GNs are powerful when performed on labeled graphs

problem	bound	problem	bound
cycle detection (odd)	$d w=\Omega(n / \log n)$	shortest path	$d \sqrt{w}=\Omega(\sqrt{n} / \log n)$
cycle detection (even)	$d w=\Omega(\sqrt{n} / \log n)$	maximum independent set	$d w=\Omega\left(n^{2} / \log ^{2} n\right)$ for $w=O(1)$
subgraph verification*	$d \sqrt{w}=\Omega(\sqrt{n} / \log n)$	minimum vertex cover	$d w=\Omega\left(n^{2} / \log ^{2} n\right)$ for $w=O(1)$
minimum spanning tree	$d \sqrt{w}=\Omega(\sqrt{n} / \log n)$	chromatic coloring	$d w=\Omega\left(n^{2} / \log ^{2} n\right)$ for $w=O(1)$
minimum cut	$d \sqrt{w}=\Omega(\sqrt{n} / \log n)$	girth 2-approximation	$d w=\Omega(\sqrt{n} / \log n)$
diameter estimation	$d w=\Omega(n / \log n)$	diameter 3/2-approximation	$d w=\Omega(\sqrt{n} / \log n)$

Table 1: Summary of main results. Sugraph verification* entails verifying one of the following predicates for a given subgraph H of G : is connected, contains a cycle, forms a spanning tree of G, is bipartite, cuts G, is an s-t cut of G. All problems are defined in Appendix A.

part 2
 discriminative models: per-node and per-edge attributes

Weisfeiler-Lehman Test

Iteratively:

- aggregates the labels of nodes and their neighborhoods,
- hashes the aggregated labels into unique new labels

GNs could be as powerful as WL test

Xu et al. (2019) Theorem 3.
Let A: G -> Rd be a GNN. With a sufficient number of GNN layers, A maps any graphs that the Weisfeiler-Lehman test of isomorphism decides as non-isomorphic, to different embeddings if the following conditions hold:
a) A aggregates and updates node features iteratively with

$$
h_{v}^{(k)}=\Phi\left(h_{v}^{(k-1)}, f\left(h_{u}^{(k-1)}:\{u \in \mathcal{N}(v)\}\right)\right)
$$

where the functions f, which operates on multisets, and Φ are injective.
b) A's graph-level readout, which operates on the multiset of node features $\left\{h_{v}(k)\right\}$, is injective.

automorphic equivalence test

- Two vertices are automorphically equivalent if all the vertices can be relabeled to form an isomorphic graph with the labels of u and v interchanged.
- We can test automorphic equivalence through WL-like test, where we iteratively
- aggregates the attribute of nodes and their neighborhoods,
- hashes the aggregated attribute into unique new attribute

per-atom attributes: charges

Since charges of atoms are determined by the chemical environment thereof, we hypothesize that two atoms that are not automorphically equivalent have different charges, and thus could be distinguished by graph nets.

- Q: why we need a new charging method for Molecular Dynamics simulation?
- A: charging is critical for MD but current methods suck as they are either expensive (QM) or unreliable (empirical).

per-atom attributes: charges

Dataset:

- Bleiziffer et al. (2018) Density functional theory.
- In-house dataset: generated by AM1-BCC ELF (Electrostatically Leastinteracting Functional) method. Considered to be invariant w.r.t. conformation.

We can find such $\left\{q_{i}\right\}$ by minimizing the error between predicted and reference charges

$$
\{\hat{q}\}=\underset{\left\{q_{i}\right\}}{\operatorname{argmin}} \sum_{i} R M S E\left(q_{i}, q_{i 0}\right)
$$

subject to

$$
\sum_{i} q_{i}=\sum_{i} q_{i 0}
$$

Define the contribution of potential energy by atomic charge as $E_{A}(Q)$. It has been shown that the second-order Taylor expansion is sufficient to approximate.

$$
E_{A}(Q) \approx E_{A 0}+Q_{A}\left(\frac{\partial E}{\partial Q}\right)_{A 0}+\frac{1}{2} Q_{A}^{2}\left(\frac{\partial^{2} E}{\partial Q^{2}}\right)_{40}
$$

the first- and second-order derivates are termed electronegativity and hardness.

$$
\begin{aligned}
& e_{A} \equiv\left(\frac{\partial E}{\partial Q}\right)_{A 0} \approx \frac{1}{2}\left(E_{A}(+1)-E_{A}(-1)\right)=\frac{1}{2}(\mathrm{IP}+\mathrm{EA}) \\
& s_{A} \equiv J_{A A}^{0} \equiv\left(\frac{\partial^{2} E}{\partial Q^{2}}\right)_{A 0} \approx E_{A}(+1)+E_{A}(-1)-2 E_{A}(0)=\mathrm{IP}-\mathrm{EA}
\end{aligned}
$$

where IP and EA are ionization potential and electron affinity.

Adapting the clever trick by Gilson et al., we predict the first- and second- order derivative of $E_{A}(Q)$, and form this problem as a double optimization, where,

$$
\left\{\hat{e}_{i}, \hat{s}_{i}\right\}=\underset{e_{i}, s_{i}}{\operatorname{argmin}}\left(\underset{q_{i}}{\operatorname{argmin}} \sum_{i} e_{i} q_{i}+\frac{1}{2} s_{i} q_{i}^{2}\right)
$$

subject to:

$$
\sum_{i} q_{i}=\sum_{i} q_{i 0}
$$

For the second minimization, i.e. solving \{qi\} with given $\{\mathrm{ei}\}$ and $\{\mathrm{si}\}$, it could be solved analytically using Lagrange multipliers,

$$
\hat{q}_{i}=-e_{i} s_{i}^{-1}+s_{i}^{-1} \frac{Q+\sum_{i} e_{i} s_{i}^{-1}}{\sum_{j} s_{j}^{-1}}
$$

whose Jacobian and Hessian are trivially easy to calculate.

Predicted versus reference charge on held-out test set.

Element	R^{2}	RMSE	Number of Data Points
C	$0.99388_{0.9930}^{0.993}$	$0.0222^{0.0219}$	116864
N	$0.9938_{0}^{0.998789}$	$0.0221_{0.0363}^{0.0375}$	19490
O	$0.99366_{0}^{0.97701}$	$0.0223_{0.0335}^{0.0348}$	21503
S	$0.9937_{0.9928}^{0.9941}$	$0.0222_{0.0496}^{00.055}$	2955
P	$0.9931_{0.7240}^{1.9929}$	$0.0222_{0.0347}^{0.09595}$	341
F	$0.9933_{0.9462}^{0.9574}$	$0.0226_{0.0126}^{0.0138}$	1967
Cl	$0.9938_{0.7526}^{0.9047}$	$0.0218_{0.0237}^{0.0270}$	1215
Br	$0.9940_{0.7885}^{0.855}$	$0.0211_{0.0215}^{00.0252}$	572
I	$0.9954_{-0.0297}^{0.6596}$	$0.0164_{0.1875}^{0.2017}$	105
H	0.99350 .97388	$0.0224_{0.0142}^{0.0145}$	134799
Overall	0.99360 .9935	$0.0223_{0.0221}^{0.0225}$	299811

Table 1: $R^{2}, R M S E$, and number of data points in held-out test set grouped by element type. The 95% confidence interval (by bootstrapping 1000 times is reported in brackets.)

ablation study

method	\mathbf{R}^{2}	RMSE
GN	0.9936	0.0223
MPNN without bond order	0.9930	0.0233
GN predicting \mathbf{q}	$-6.9242 \mathrm{E}-06$	0.280

- Cl

$$
t=0
$$

scalability of the model

absolute error

part 3 work(s)-in-progress

inter-hierarchical multitask learning

per-atom attributes: charges
per-bond attributes:
Wieberg bond orders

per-molecule attributes:

your favorite QM property

$$
U=\sum_{e \in \mathcal{E}} E_{\text {bond }}(e)+\sum_{a \in \mathcal{A}} E_{\text {angle }}(a)+\sum_{t \in \mathcal{T}} E_{\text {torsion }}(t)+\sum_{v_{0}, v_{1} \in \mathcal{V}, v_{0} \in \mathcal{N}^{v}\left(v_{1}\right)} E_{\text {non-bonded }}\left(v_{0}, v_{1}\right)
$$

$$
E_{\text {bond }}(e)=\frac{1}{2} k_{\text {bond }}(e)\left(r(e)-r_{\text {eq }}(e)\right)^{2}
$$

$$
E_{\text {angle }}(a)=\frac{1}{2} k_{\text {angle }}(a)\left(\phi(a)-\phi_{\text {eq }}(a)\right)^{2}
$$

$$
E_{\text {torsion }}(t)=\sum_{n=1: N_{\text {phases }}(t)} k_{\text {torsion }, i}(t)\left(1+\cos \left(n \phi(t)-\phi_{\text {eq }}(t)\right)\right)
$$

$$
E_{\text {non-bonded }}\left(v_{0}, v_{1}\right)=\underbrace{\left.4 \epsilon\left(v_{0}, v_{1}\right):\left(\frac{\sigma\left(v_{1}, v_{2}\right)}{r\left(v_{0}, v_{1}\right)}\right)^{12}-\left(\frac{\sigma\left(v_{0}, v_{1}\right)}{r\left(v_{0}, v_{1}\right)}\right)^{6}\right]}_{\text {van der Waals }}+\underbrace{\frac{1}{4 \pi \epsilon_{0}} \frac{q\left(v_{0}\right) q\left(v_{1}\right)}{r\left(v_{0}, v_{1}\right)}}_{\text {Coulombic }}
$$

$$
\begin{gathered}
U=\sum_{e \in \mathcal{E}} E_{\text {bond }}(e)+\sum_{a \in \mathcal{A}} E_{\text {angle }}(a)+\sum_{t \in \mathcal{T}} E_{\text {torsion }}(t)+\sum_{v_{0}, v_{1} \in \mathcal{V}, v_{0} \notin \mathcal{N}^{v}\left(v_{1}\right)} E_{\text {non-bonded }}\left(v_{0}, v_{1}\right) \\
E_{\text {bond }}(e)=\sum_{i=1}^{d}\left[\theta_{e}\right]_{i} r(e)^{i} ; \\
E_{\text {angle }}(a)=\sum_{i=1}^{d}\left[\theta_{a}\right]_{i} \phi(a)^{i} ; \\
E_{\text {torsion }}(t)=\sum_{i=1}^{d}\left[\theta_{t}\right]_{i} \phi(t)^{i} ; \\
E_{\text {pairwise }}\left(v_{0}, v_{1}\right)=\sum_{i=1}^{d}\left[\theta_{\text {pairwise }}\right]_{i}(r+\epsilon)^{-i} . \\
\left\{\left\{\theta_{v}\right\},\left\{\theta_{e}\right\},\left\{\theta_{a}\right\},\left\{\theta_{d}\right\}\right\}=f^{r}\left(\left\{\left\{\mathbf{v}^{(t)}, \mathbf{e}^{(t)}, \mathbf{a}^{(\mathrm{t})}, \mathbf{d}^{(t)}, \mathbf{u}^{(t)}\right\}, t=1,2, \ldots, T\right\}\right) \\
\left\{\theta_{v}\right\}=\mathrm{NN}_{r, v}\left(\left\{\mathbf{v}^{(t)}\right\}\right),\left\{\theta_{e}\right\}=\mathrm{NN}_{r, e}\left(\left\{\mathbf{e}^{(t)}\right\}\right),\left\{\theta_{a}\right\}=\mathrm{NN}_{r, a}\left(\left\{\mathbf{a}^{(t)}\right\}\right),\left\{\theta_{d}\right\}=\mathrm{NN}_{r, d}\left(\left\{\mathbf{d}^{(t)}\right\}\right) \\
\left\{\theta_{\text {pairwise }}\right\}=\left\{\mathrm{NN}_{r, \text { pairwise }}\left(\theta_{v, 0}, \theta_{v, 1}\right), v_{0} \notin \mathcal{N}_{v_{1}}^{v}\right\}
\end{gathered}
$$

acknowledgement

Chodera Lab:
Josh Fass
Chaya Stern
John Chodera
Uli Statistical Learning: Kun Luo

The City College of New York

MFA
PROGRAM IN CREATIVE WRITING

HIGH PERFORMANCE COMPUTING

