

Deliverable reference number and title:

D1.3: List with the selected most promising industrial crops for marginal lands

Due date of deliverable: 31/11/17 Actual submission date: 28/2/18

Lead beneficiary: CRES

OTHER

Name of organization: Center for Renewable Energy Sources and Saving

Address of organization: 10th Km Marathonos Avenue, 19009 Pikermi Attikis, Greece

Beneficiaries website: www.cres.gr

		_						
Responsible Author Name: Efthymia Alexopoulou				Email: <u>ealex@cres.gr</u>		Telephone: +30 210 6603382		
Type R	Document, re	eport			Diss PU	emination Level	I	\boxtimes
DEM DEC	Demonstrato Websites, videos, etc.	r, pilot, pro patent	ototype fillings,		CO	Confidential, only the consortium Commission Serv	for members of (including the rices)	

Magic

Deliverable 1.3

Title: List with the selected most promising industrial crops for marginal lands

This project receives funding from the European Community's Horizon 2020 (H2020) under the grant agreement No. 727698.

The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the Research Executive Agency (REA) or the European Commission (EC). REA or the EC are not responsible for any use that may be made of the information contained therein.

www.magic-h2020.eu page 2 from 15

Title: List with the selected most promising industrial crops for marginal lands

Publishable executive summary

The aim of **D1.3** was to present the list with the **most promising industrial crops** to be grown on **marginal lands facing natural constraints**. The work started from a total number of **67 selected industrial crops** (old databases and/or projects) that was presented and discussed in the 2nd technical meeting of the project (27th and 28th of November 2017). In the same meeting it was selected the list of **industrial crops that will be included in the MAGIC-CROPS database** (38 crops) as well as **the list of the crops that will be included in the multi-criteria analysis of task 1.3** in order **the most promising industrial crops for MAGIC project** to be selected.

The **selection criteria in DoA** of the project were: a) maturity of knowledge on industrial crops on marginal land, b) crop performance for bio-based products, c) crops' productivity on marginal land, d) TRL of mechanical cultivation, e) crop adaptability under specific combinations of natural constrains in each M-AEZ, f) industry needs and g) market opportunities. In the 2nd technical meeting the criteria had been modified and the final criteria set were: a) experience with agricultural management of the proposed industrial crops, b) crop productivity for industrial applications (according to the main uses), c) expected crop performance on marginal land, d) industry needs and market opportunities. Each criterion had to be marked in a scale 1 to 5. It has been decided the weight of the final selected criteria not to be the same and to be as follows; 20% for the first two, 30% for the third and 15% for the last two. In the figure below (Figure 1) is presented the steps that had been followed for selection of the most promising industrial crops (D1.3).

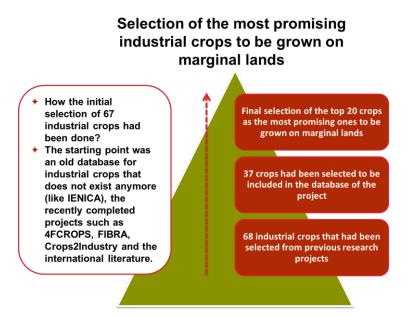


Figure 1 – Schematic view of the selection of the most promising industrial crops to be grown on marginal lands (MAGIC project); a) starting point: 68 industrial crops, b) 37 crops have been selected to be included to MAGIC-CROPS database, c) 31 crops had been included in the multicriteria analysis of task 1.3 and d) a total number of 20 crops have been selected (13 lignocellulosic (perennial grasses and woody species), 5 oilseeds (and/or specialty crops) and 2 carbohydrate ones.

www.magic-h2020.eu page 3 from 15

Title: List with the selected most promising industrial crops for marginal lands

1 Starting point for the selection

During the 2nd technical meeting in Athens (27th and 28th of November 2017) the work package leader of WP1 (Dr. Andrea Monti; University of Bologna) presented an initial list of promising industrial crops that can be grown on marginal lands. This list contained 68 industrial crops that presented in the table below.

Table 1 - Initial list of the industrial crops that could be grown on marginal lands

	1 - 0		<u> </u>	0-1
	Latin name	Family	Common name	Category
1	Sorghum bicolor L.	Poaceae	Biomass sorghum	Lignocellulosic
			(sweet / fiber)	(annual
				herbaceous)
2	Camelina sativa L.	Brassicaceae	Camelina	Oilseed
3	Crambe abyssinica	Brassicaceae	Crambe	Oilseed
4	Ricinus communis L.	Euphorbiaceae	Castor	Oilseed
5	Panicum virgatum L.	Poaceae	Switchgrass	Lignocellulosic
6	Miscanthus x Giganteus	Poaceae	Miscanthus	Lignocellulosic
7	Arundo donax L.	Poaceae	Giant reed	Lignocellulosic
8	Helianthus tuberosus L.	Asteraceae	Jerusalem	Carbohydrate
			artichoke	
9	Agropyron elongatum	Poaceae	Tall wheat grass	Lignocellulosic
				(perennial grass)
10	Lunaria annua L.	Brassicaceae	Honesty	Oilseed
11	Coriandrum sativum L.	Apiaceae	Coriander	Specialty
12	Amaranthus retroflexus L.	Amaranthaceae	Amaranth	Multipurpose
13	Carum carvi L.	Apiaceae	Caraway	Specialty
14	Calendula officinalis L.	Asteraceae	Pot marigold	Oilseed/Specialty
15	Dimorphoteca pluvialis L.	Asteraceae	Rain daisy	Oilseed/Specialty
16	Helianthus annus L.	Asteraceae	Sunflower	Oilseed
17	Stokesia laevis	Asteraceae	Stokes aster	Oilseed
18	Chicorium intybus L.	Asteraceae	Chichory	Oilseed/Specialty
19	Borago officinalis L.	Boraginaceae	borage	Oilseed/Specialty
20	Echium vulgare L.	Boraginaceae	bugloss	Oilseed/Specialty
21	Linum usitatissimum L.	Linaceae	Flax	Multipurpose
				(oilseed/fibre)
22	Hibiscus cannabinus L.	Malvaceae	Kenaf	Lignocellulosic
				(fiber)
23	Brassica napus L.	Brassicaceae	Rapeseed	Oilseed
24	Brassica carinata	Brassicaceae	Ethiopian mustard	Oilseed
25	Isatis tinctoria L.	Brassicaceae	Woad	Oilseed
26	Cannabis sativa L.	Cannabinaceae	Hemp	Multipurpose
				(fiber/Oilseed)
27	Crotalaria juncea	Fabaceae	Sunn hemp	Lignocellulosic
28	Chenopodium quinoa	Amaranthaceae	Quinoa	Oilseed/
			_	Carbohydrate
29	Euphorbia lathyris L.	Euphorbiaceae	Caper spurge	Specialty
30	Knautia arvensis	Caprifoliaceae	Field scabious	Specialty
31	Euphorbia lagascae Spreng	Euphorbiaceae	Caper spurge	Specialty
32	Limnanthes alba	Limmanthaceae	Meadowfoam	Oilseed/ Specialty
33	Cuphea spp.	Lythraceae	Cuphea	Oilseed
34	Althaea spp. / Malva spp.	Malvaceae	mallows	Oilseed/ Specialty
35	Oenothera spp.	Onagraceae	Evening primrose	Specialty
36	Papaver somniferum L.	Papaveraceae	Рорру	Specialty

www.magic-h2020.eu page 4 from 15

Deliverable 1.3

Title: List with the selected most promising industrial crops for marginal lands

37	Phalaris arundinaceae L.	Poaceae	Reed canary grass	Lignocellulosic/Spe cialty
38	Phragmites australis	Poaceae	Common reed	Lignocellulosic
39	Spartium junceum L.	Fabaceae	Spanish broom	Multipurpose
40	Stipa tenacissima L.	Poaceae	esparto grass	Lignocellulosic/ Specialty
41	Spartina spp.	Poaceae	cordgrass	Lignocellulosic
42	Carthamus tinctorius L.	Asteraceae	Safflower	Oilseed
43	Pyrethrum cinerariaefolium	Asteraceae	Pyrethrum	Oilseed/Specialty
44	Simmondsia chinensis	Simmondsiaceae	Jojoba	Specialty
45	Urtica dioica L.	Urticaceae	Nettle	Multipurpose (fiber/speciatly)
46	Cynara cardunculus L.	Asteraceae	Cardoon	Lignocellulosic (perennial herbaceous)
47	Parthenium argentatum	Asteraceae	Guayule	Multipurpose
48	Beta vulgaris L.	Amaranthaceae	Energy (industrial) beet	Carbohydrate
49	Musa textilis	Musacaceae	Abaca	Multipurpose
50	Thlaspi arvense L.	Brassicaceae	Pennycress	Oilseed
51	Salix spp	Salicaceae	Willow	Lignocellulosic (woody species)
52	Populus spp	Salicaceae	Poplar	Lignocellulosic (woody species)
53	Betula spp	Betulaceae	Birch	Lignocellulosic (woody species)
54	Robinia pseudoacacia L.	Fabaceae	Acacia	Lignocellulosic (woody species)
55	Agave spp.	Asparagaceae	Agave	Specialty
56	Leymus cinereus	Poaceae	basin wildrye	Lignocellulosic (perennial grass)
57	Leymus triticoides	Poaceae	creeping wildrye	Lignocellulosic (perennial grass)
58	Thinopyrum intermedium	Poaceae	intermediate wheatgrass	Lignocellulosic (perennial grass)
59	Penisetum glaucum	Poaceae	pearl millet	Lignocellulosic (perennial grass)
60	Saccharum spontaneum L.	Poaceae	Wild sugarcane	Lignocellulosic (perennial grass)
61	Brassica juncea	Brassicaceae	Indian mustard	Oilseed
62	Eucalyptus spp.	Myrtaceae	Eucalyptus	Lignocellulosic (woody species)
63	Hippophae ramnoidea L.	Elaeagnaceae	Sea buckthorn	Specialty
64	Silphium perfoliatum L.	Asteracea	Cup plant	Specialty/Lignocellu losic
65	Nicotiana glauca L.	Solanaceae	Wild tobacco	Multipurpose
66	Opuntia spp.	Cactacaceae	Opuntia	Multipurpose
67	Ulmus pumila L.	Ulmaceae	Siberian elm	Lignocellulosic (woody species)
68	Artiplex spp.	Amaranthaceae	Artiplex	Multipurpose

The above list was presented and discussed by the partners and a total number of 37 crops had been selected to be included in MAGIC-CROPS database. In table 2 these crops are being presented.

www.magic-h2020.eu page 5 from 15

Table 2 - List of the selected crops for the multi-criteria analysis (name, origin, where can be grown in Europe, why can be grown on marginal lands, crop category and products and markers).

	Name (common & Latin) and family	Origin	Where can be grown in Europe	References about its suitability to be grown on marginal lands	Category	Products and markets
1	Sorghum (sweet/fiber) Sorghum bicolor L. Poaceae	Northern Africa	South (S), Central (C)	High drought resistant crop, deep rooting system, can be grown on toxic soils. Currently, is being investigated in BeCool project (www.becoolproject.eu). Recently, had been evaluated in Sweetfuel project (www.sweetfuel-project.eu).	Carbohydrate, Lignocellulosic (annual)	Bioethanol production (1 st generation and advanced biofuels), biogas production, animal feed, human feed. Fiber sorghum is a great fiber source.
2	Camelina Camelina sativa L. Brassicaceae	Southern Europe	South (S), Central (C), North (N)	In ITAKA project (www.itaka-project.eu), it had been cultivated on marginal lands in Spain for aviation biofuels. Currently, in COSMOS project (http://cosmos-h2020.eu) the best cultural practices in several sites in EU are being investigated. It exists both winter and spring varieties, winter camelina can resist up to -20°C.	Oilseed (annual)	Its oil seeds characterized by high content of erucic acid). Its oil has a large variety of high-added value bioproducts (chemical industry). The cake of the seeds has high protein content and is a valuable source for animal feeding.
3	Crambe Crambe abyssinica L. Brassicaceae	Eastern Africa domesticated in Mediterranean	South (S), Central (C), North (N)	Relatively drought tolerant, it tolerates soil pH from 5.0 to 7.8. It can be adapted to <i>marginal land</i> areas with mild winters as an autumn crop, or as a spring one in short season environments. Currently, in COSMOS project (http://cosmos-h2020.eu) the best cultural practices in several sites in EU are being investigated.	Oilseed (annual)	Its oil has high erucic acid and has several industrial applications, while the seed cake can be used for soil bio fumigation.
4	Castor bean Ricinus communis L. Euphorbiaceae	Mediterranean area	South (S)	It cannot tolerate low temperatures. It can be grown on <i>marginal lands</i> (grows best on moderately fertile), which are not	Oilseed (annual or perennial)	Source of ricin oleic acid, several chemical and medicinal applications. Its oil has

Deliverable 1.3

Title: List with the selected most promising industrial crops for marginal lands

				competitive with food (economic viable solution for non-productive lands). It can tolerate pH 5.5-6.5 and saline soils.		international market with more than 700 uses. Castor cake can be used as nematicide
5	Switchgrass Panicum virgatum L. Poaceae	Native of USA	South (S), Central (C), North (N)	It has been selected by OPTIMA project (www.optimafp7.eu) as a promising crop to be grown on <i>marginal lands</i> . Large variety of cultivars and thus can be successfully been cultivated in all Europe.	Lignocellulosic (perennial with lifespan 10-20 years).	Solid biofuels, advanced biofuels, other industrial applications.
6	Miscanthus Miscanthus x giganteus Poaceae	Native of Asia	South (S), Central (C), North (N)	It has been selected by OPTIMA (www.optima.fp7.eu) and OPTIMISC (https://optimisc.uni-hohenheim.de/en) projects as a promising crop to be grown on <i>marginal lands</i> . Currently, has been included in GRACE project (BBI, Demo) to be grown on marginal lands and/or contaminated lands.	Lignocellulosic (perennial with lifespan 10-20 years).	Solid biofuels, advanced biofuels, other industrial applications
7	Giant reed Arundo donax L. Poaceae	Mediterranean area	South (S)	It has been selected by OPTIMA project (www.optimafp7.eu) as a promising crop to be grown on marginal lands. Before that it had been investigated in Bioenergy Chains project (www.cres.gr/bioenergy_chains) on marginal lands.	Lignocellulosic (perennial with lifespan 10-20 years).	Solid biofuels, advanced biofuels, other industrial applications.
8	Tall wheatgrass Agropyron elongatum Poaceae	Native of Eurasia	South (S)	A very tolerant plant, able to grow in a wide range of conditions. It succeeds in soils with a pH of 5.3 - 9.0 , and thrives in areas subject to <i>inundation by saline</i> water, such as seashores and saline meadows as well as on alkaline soils.	Lignocellulosic (perennial crop)	It is used as forage and for hay in many places. Source of biomass (lignocellulose). It can be used for soil reclamation.
9	Amaranth Amaranthus spp. Amaranthaceae	Many species	South (S), Central (C)	It is considered <i>drought tolerant crop</i> . It is considered only of the easiest crops to be cultivated on agricultural marginal lands.	Carbohydrate Specialty / Medicinal uses (annual)	It can be used as alternative of wheat.
10	Sunflower	Native of north	South (S),	It is considered drought tolerance crop .	Oilseed (annual)	Oil from its seeds (edible uses

www.magic-h2020.eu page 7 from 15

Deliverable 1.3 Title: List with the selected most promising industrial crops for marginal lands

	Helianthus annus L. Asteraceae	America	Central (C)	It has a tap rooting system. It is an important crop for the Mediterranean region for biodiesel production.		as well as first generation biofuels)
11	Ethiopian mustard Brassica carinata L. Brassicaceae	Native of Africa (Ethiopia)	South (S)	It is considered <i>drought tolerance crop</i> . Soils with pH 5.5-8.0. It had been tested in FAIR981946 project (1998-2001).	Oilseed (annual)	Its oil has high erucic acid and has several industrial applications, while the seed cake can be used for soil bio fumigation.
12	Industrial hemp Cannabis sativa L. Cannabinaceae	Central Asia	South (S), Central (C), North (N)	Currently has been selected by GRACE project (BBI, Demo) as industrial crop for <i>marginal lands</i> . It had been investigated in MULTIHEMP project (http://multihemp.eu). In Poland had been used for soil reclamation.	Oilseed/Fiber crop/Multipurpose (annual)	Multipurpose crop, from its stems (fibers, paper and pulp, building materials, insulation mats, etc.), from its seeds (oil, seeds)
13	Flax Linum usitatissimum L. Linaceae	South Europe, near East and/or central Asia	South (S), Central (C), North (N)	It has very shallow rooting system. In India and China has been often grown on <i>marginal lands</i> and rarely received adequate fertilization. Best grown on soils with pH 6.0.	Oilseed/Fiber crop/Multipurpose (annual)	Several industrial applications from its oilseeds and its fiber stems. Important nutraceutical and pharmaceutical uses. In EPOXY project (www.ecoxy.eu , BBI) value added products produced from flax.
14	Reed canary grass Phalaris arundinaceae L. Poaceae	North of Europe (perennial crop with lifespan 10- 15 years)	Central (C), North (N)	It is reported as appropriate to be cultivated on <i>marginal lands</i> of the north (where it can grow well on both dry and wet areas), pH 4.9 to 8.2.	Lignocellulosic; 20000 ha in North of Europe.	Solid biofuels, advanced biofuels, other industrial applications.
15	Common reed Phragmites australis Poaceae	It is considered cosmopolitan species	Central (C), North (N) South (S)	It prefers to grow on wet areas (such as pounds and lakesides).	Lignocellulosic	It can be used for phytoremediation water treatment.
16	Spanish broom Spartium junceum L. Fabaceae	Native of Mediterranean region	South (S)	It can be easily found in South Europe in sunny and dry areas with sandy soils.	Lignocellulosic/Sp ecialty crop	Multipurpose crop, from its stems (fibers, paper and pulp, building materials, insulation mats, etc.). From the flowers it is possible to extract compounds with pharmaceutical applications.

www.magic-h2020.eu page 8 from 15

Deliverable 1.3

Title: List with the selected most promising industrial crops for marginal lands

17	Safflower Carthamus dictorius L. Asteraceae	It can be found in Asia, Africa and Europe.	South (S), Central (C)	It has a strong taproot and thus thrives in dry climates . It can be cultivated as both winter and spring crop.	Oilseed	Seeds (birdfeed), Oil (edible), dyes, medicines, etc.
18	Nettle Urtica dioica L. Urticaceae	Native of Europe, Asia, northern Africa, and western North America	South (S), Central (C), North (N)	It prefers to be grown on waste ground, hedgerows, woods etc. It prefers a rich soil and avoids acid soils. It is an invasive perennial crop.	Fiber crop/ Multipurpose	It has several fiber applications as well as several medicinal uses. Due to numerous possible applications it is a multipurpose crop.
19	Cardoon Cynara cardunculus L. Asteraceae	South Europe (perennial 5-10 years; established by seeds)	South (S)	Drought resistant crop can be cultivated on <i>arid marginal areas</i> of south EU with the most recent example FIRST2RUN project (www.first2run.eu ; BBI project, Flagship) and OPTIMA (FP7 project).	Oilseed/Lignocellu Iosic/Multipurpose	From its seeds: oil, protein flour, active molecules. From its stems: solid biofuels (energy), paper and pulp, other chemicals, etc. From its roots: organic substances, chemicals, etc.
20	Guayule Parthenium argentatum Asteraceae	Native of South Western USA	South (S)	It grows well in arid and semi-arid areas. It grows in areas where food crops would fail. It is <i>considered low input crop</i> .	Specialty	Source of latex and resin.
21	Pennycress Thlaspi arvense L. Brassicaceae	Native to temperate regions of Eurasia	South (S), Central (C), North (N)	It has a short growing cycle (shorter than camelina) and it can be cultivated as a winter annual crop on <i>unused land</i> . Low demand on soil and water nutrition and water. It is really frost tolerant (up to - 20°C). Nowadays, it is been investigated as a promising oilseed crop in USA.	Oilseed	Oilseed for biodiesel production and aviation biofuels. Its seedcake has high protein content and can be used for bio fumigation.
22	Willow Salix spp.	Native of North Europe	Central (C), North (N)	Grows in a variety of soils with pH 5-7.5. Its roots stand highly anoxic conditions and thus can be planted in waterlogged conditions. Due to its high tolerance to soils with heavy metals it can be used for phytoremediation.	Lignocellulosic (short rotation forestry)	Solid biofuels, advanced biofuels, biobased products (construction materials, packaging materials, etc.) paper & pulp.
23	Poplar Populus spp. Salicaceae	Native to most of the northern Hemisphere	South (S), Central (C), North (N)	In multibiopro project (www.multibiopro.eu) poplar had been selected as non-food crop that can be grown on marginal lands. Currently, poplar has been selected by	Lignocellulosic (short rotation forestry)	Solid biofuels, advanced biofuels, biobased products (construction materials, packaging materials, etc.) paper & pulp.

www.magic-h2020.eu page 9 from 15

Deliverable 1.3

Title: List with the selected most promising industrial crops for marginal lands

				Dedromas4Europe project (BBI, Demo).		
24	Black locust	Native to	South (S),	It has high drought resistance and is	Lignocellulosic	Solid biofuels, advanced
	Robinia pseudoacacia L.	eastern USA	Central (C)	nitrogen fixing. It is suitable for soil	(short rotation	biofuels, biobased products
	Fabaceae			regeneration and reclaiming former	forestry)	(furniture, construction
				mining sites. It has high ability to be		materials, packaging materials,
				grown on <i>marginal lands</i> .		etc.) paper & pulp.
25	Eucalyptus	Native to	South (S)	Most species of eucalyptus tolerate poor	Lignocellulosic	Paper and pulp, solid biofuels,
	Eucalyptus spp.	Australia		soils. Eucalyptus can be grown on soils	(short rotation	pharmaceutical /nutraceutical
	Myrtaceae			of high pH. It is a drought tolerant crop.	forestry)	uses from its oil. In EUCALIVA
						project (<u>www.eucaliva.eu</u> , BBI)
						produced advanced material
						and carbon fibers from
						Eucalyptus wastes (lignin).
26	Siberian elm	Native to central	South (S),	Ulmus pumila is often found in	Lignocellulosic	Solid biofuels, advanced
	Ulmus pumila L.	Asia	Central (C),	abundance along railroads and in	(perennial crop)	biofuels, biobased products
	Ulmaceae		North (N)	abandoned lots and on disturbed ground.		paper & pulp.
27	Wild sugarcane	Native to ?	South (S),	It had been tested in OPTIMA project	Lignocellulosic	Solid biofuels, advanced
	Saccharum spontaneum L.		Central (C)	(<u>www.optimafp7.eu</u>) as a native perennial		biofuels, other industrial
	Poaceae			grass that can be grown on marginal		applications
				lands in the Mediterranean region.		
28	Lupin	Native of	South (S),	It has been selected by LIBBIO project	Oilseed/Multipurp	Oil (20%) and protein (40%) can
	Lupinus mutabilis	Andean region	Central (C)	as an industrial crop that can be grown	ose	be obtained from lupin seeds.
	Fabaceae	of Ecuador,		on <i>marginal lands</i> (<u>www.libbio.net</u>). It		
		Peru and		tolerates the acid soils and it is		
		Bolivia.		considered drought tolerance.		
29	Wild tobacco (tree)	Native of South		In multibiopro project	Oilseed	Several medicinal uses. It has
	Nicotiana glauca	America		(<u>www.multibiopro.eu</u>) wild tobacco has		been investigated as source for
	Solanaceae			been selected as non-food crop that can		biodiesel production. High value
				be grown on marginal lands.		biobased products.
30	Saltbush	Native to Asia	South (S),	It can grow on saline and alkaline soils.	Lignocellulosic/mu	It fodder crop for saline soils.
	Atriplex spp.	and Europe	Central (C),	It has been used for reclamation of saline	Itipurpose	
	Amaranthanceae		North (N)	soils as well as for rehabilitating eroded	(perennial crop)	
				or scorched soils.		
31	Jerusalem artichoke	Native of	South (S),	It can be grown on saline soils and	Carbohydrate	Source of inulin, food and feed
	Helianthus tuberosus L.	eastern of	Central (C),	tolerates soils with pH 4.5-8. It can be	(perennial	use. It can be used for

www.magic-h2020.eu page 10 from 15

Deliverable 1.3

Title: List with the selected most promising industrial crops for marginal lands

	Asteraceae	Northern	North (N)	used for soil for soil reclamation in	herbaceous crop).	bioethanol production.
		America		disturbed industrial sites.		
32	Kenaf <i>Hibiscus cannabunus</i> L. Malvaceae	Native of Africa	South (S)	It is better adapted to poor and/or marginal lands compared to many commercial (food and feed) crops. In BIOKENAF project (www.cres.gr/biokenaf) when cultivated	Oilseed/Fiber crop/ Multipurpose (annual)	Several industrial applications from its fiber stem (insulation mats, building & absorption materials, paper & pulp, etc.)
				on <i>marginal soils</i> gave 12t/ha DMY.		
33	Sunn hemp Crotalaria juncea L. Fabaceae	Native of India, native of tropics	South (S)	It can perform well on sandy poor soils. It can grow best on soils with pH 5 to 7.5. It can be grown in rotation to kenaf. It is a leguminous crop. Currently, is being investigated in BeCool project (www.becoolproject.eu).	Lignocellulosic crop (annual fiber crop)	Green manure, fodder, source of fiber
34	Caper spurge / euphorbia Euphorbia lagascae L. Euphorbiaceae	Native of South Europe	South (S)	It is considered as <i>drought tolerance</i> crop. It seems tolerant to damp sites of saline nature.	Oilseed	50% oil in the seeds (80-90% of oil is oleic acid). Medicinal uses. Source of latex.
35	Sugar beets Beta vulgaris Amaranthaceae	Important crop for Europe (from 18 th century)	South (S), Central (C)	Pulp2Value project (http://pulp2value.eu , BBI) demonstrates an integrated biorefinery system to refine sugar beet pulp to high value biobased products.	Carbohydrate	20% of the sugar world production is from sugar beets.
36	Calendula Calendula officinalis L. Asteraceae	Mediterranean area, can be grown on temperate regions of EU	South (S), Central (C)	It has <i>deep tap root system</i> . It can be grown in soils with pH 5.5-7.0.	Oilseed/Specialty (high percentage of calendic acid)	It has several applications (medicinal uses, coatings, paints, varnishes, cosmetics, etc.)
37	Lavender Lavandula angustifolia L. Lamiaceae	Native of the Mediterranean region	South (S), Central (C)	It thrives in any poor or moderately fertile, free-draining soils in full sun, and is ideal for chalky or alkaline soils	Specialty (perennial herbaceous)	Several applications (nutraceutical, pharmaceuticals, etc.)

www.magic-h2020.eu page 11 from 15

2 Multi-criteria analysis

In the descrioption of action (DoA) of the project it has been written that the criteria for the multicriteria analysis should be: a) maturity of knowledge on industrial crops on marginal land, crop performance for bio-based products, b) crops' productivity on marginal land, c) TRL of mechanical cultivation, d) crop adaptability under specific combinations of natural constrains in each M-AEZ, e) industry needs and f) market opportunities. Each criterion should be marked in a scale 1 to 5. During the 2nd technical meeting the above criteria presented and critically discussed and modified. The final criteria that the multi-criterial analysis had been carried out were:

- 1. Experience with agricultural management of the proposed industrial crops (20%) potential
- 2. Crop productivity for industrial applications (according to the main uses) (20%) potential
- 3. Expected crop performance on marginal land (30%) knowledge
- 4. Industry needs (15%) commercial
- 5. Market opportunities (15%) commercial

It was also discussed if the above five criteria should have the same weight in the total score. After a lot of discussion it was agreed the first two to have a weight of 20%, the third to have 30% and the last two to have 15% each.

During the same meeting it was also discussed who should contribute to this multi-criteria analysis. Initially, it was discussed the idea to be distrusted to the work package leaders and finally it was agreed to be distributed to the whole consortium since its majority have very long experience on industrial crops covering the whole production chain. In mid-December 2017 the table with the multi-criteria analysis (containing 31 industrial crops that had been included in table 3) had been sent to the consortium and the answers had been given by the end of January 2018. All answers had been counted and the results of this multi-criterion analysis are presented in table 3.

Although, the initial plan was the list of the most promising crops to contain up to 15 industrial crops it was finally decided to contain 20 since the crops that had been sorted out from place 16th to 20th were either crops that are being funded by EU in the view of EU projects (such as lupin in LIBBIO) or crops that some of the partners have carried out trials on marginal lands and they have sound results that supporting the idea to be tested by other members of the consortium in other EU regions/countries (sugarcane, Siberian Elm, crambe and Black locust).

Deliverable 1.3

Title: List with the selected most promising industrial crops for marginal lands

Table: 3 - Results from the multi-criterial analysis

Table. 5 - Ite	Suits from the					
	Experience	Crop	Expected	Industry	Market	Final
	with	productivity	crop	needs (15%)	opportunitie	score
	agricultural	for industrial	performance	commercial	s (15%)	
	management	applications	on marginal		commercial	
	of the	(according to	land (30%)			
	proposed	the main	knowledge			
	industrial	uses) (20%)				
	crops (20%)	potential				
	potential					
Sorghum	4.875	4.875	4.500	4.375	4.500	4.631
Camelina	4.900	4.700	4.300	3.600	4.400	4.410
Crambe	4.000	4.000	3.800	3.400	3.200	3.730
Castor	5.000	5.000	4.500	4.500	4.500	4.700
Switchgrass	4.625	4.750	4.875	4.375	4.625	4.687
Miscanthus	4.200	4.800	4.400	4.200	4.700	4.455
Giant reed	3.785	4.500	4.625	4.375	4.750	4.431
Tall Wheat	4.500	4.500	4.833	4.000	4.833	4.575
grass						
Amaranth	2.167	2.833	3.167	3.000	3.667	2.950
Sunflower	4.300	3.800	3.300	3.200	3.200	3.570
Ethiopian	4.250	4.125	4.000	4.375	4.250	4.168
mustard						
Hemp	4.700	4.500	3.600	4.300	4.600	4.255
Flax	4.667	3.583	2.583	4.417	3.833	3.633
Reed canary	4.875	5.000	4.625	4.250	4.250	4.637
grass						
Common	2.375	3.625	3.875	3.375	2.625	3.263
reed						
Spanish	1.500	1.167	3.167	2.500	2.500	2.233
broom						
Safflower	4.167	4.333	4.333	4.167	4.833	4.350
Nettle	1.333	2.667	3.167	2.167	2.500	2.450
Cardoon	4.500	4.833	4.833	4.167	4.833	4.667
Guayule	3.125	3.625	3.125	3.500	4.125	3.431
Pennycress	4.167	3.833	4.500	3.833	4.667	4.225
Willow	4.583	3.917	4.333	4.000	3.750	4.163
Poplar	4.500	4.083	4.083	4.417	3.750	4.103
Black locust	3.200	3.900	3.900	4.300	4.300	3.880
	3.833	3.833	3.000	4.167	4.167	3.683
Eucalyptus Siberian Elm	3.677	3.667	4.333	4.333	4.667	4.117
Lupin	4.400	3.520	3.500	3.600	3.600	3.714
Wild tobacco	2.250	3.125	3.250	2.375	2.750	2.819
	2.000	2 667	4 422	2,000	2.000	2 022
Saltbush	2.000	2.667	4.433	2.000	2.000	2.833
Wild	3.000	4.167	4.667	4.333	4.500	4.158
sugarcane						

www.magic-h2020.eu page 13 from 15

Deliverable 1.3 Title: List with the selected most promising industrial crops for marginal lands

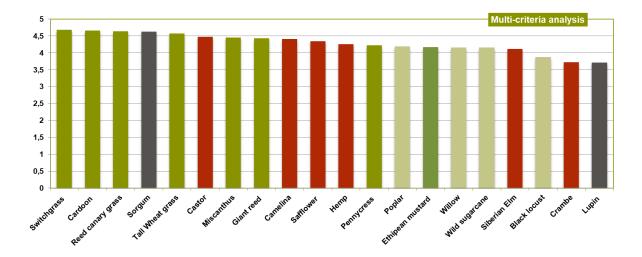
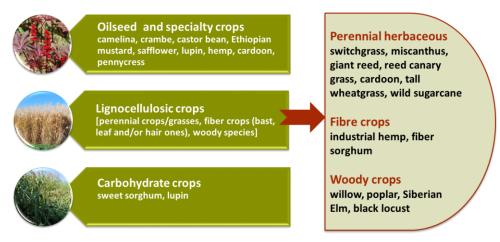



Figure 2 – Top 20 industrial crops that have been selected as the most promising to be grown on marginal lands facing natural constaints.

The final list of the 20 selected most promising crops is presented in Figure 2. In this list they were 6 perennial lignocellulosic crops, 7 oilseeds, 5 woody species and 2 carbohydrate crops. Some of the selected crops can be grouped in more than one categories and can be considered as multipurpose crops (figure 3). Eight of the selected crops can be grown by all partners (covering almost all Europe; figure 4).

Most promising industrial crops for MAGIC

- ◆ 20 industrial crops have been selected in total
- ◆ 8 of them can be grown in all partners of the project (camelina, crambe, switchgrass, miscanthus, industrial hemp, pennycress, poplar, Siberian elm)
- Some of them can be grouped in more than one category (such as cardoon, hemp, etc.).

Figure 3 – The final selected most promising industrial crops can be grouped in: oilseeds and specialty crops, lignocellulosic crops (perennial herbaceous, fiber crops and woody species) and carbohydrate.

www.magic-h2020.eu page 14 from 15

Deliverable 1.3

Title: List with the selected most promising industrial crops for marginal lands

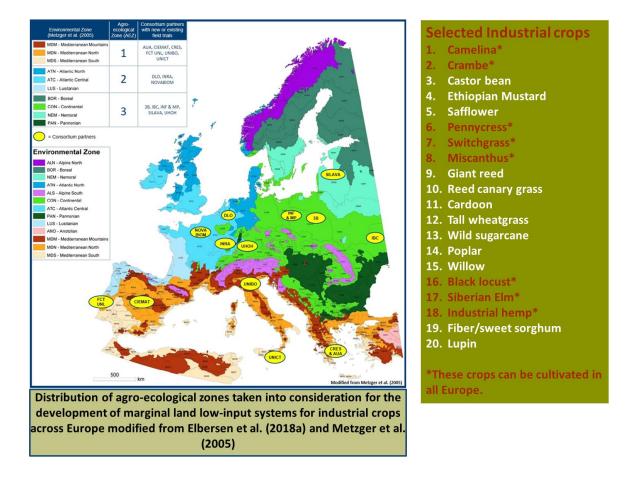


Figure 4 – Final selected industrial crops; 8 of them can be grown in whole Europe, while the rest can be grown in South or in north. In the map presented where the project partners are located and where the crops will be grown.

www.magic-h2020.eu page 15 from 15