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ABSTRACT

A sound event detection (SED) method typically takes as an input a
sequence of audio frames and predicts the activities of sound events
in each frame. In real-life recordings, the sound events exhibit some
temporal structure: for instance, a “car horn” will likely be followed
by a “car passing by”. While this temporal structure is widely ex-
ploited in sequence prediction tasks (e.g., in machine translation),
where language models (LM) are exploited, it is not satisfactorily
modeled in SED. In this work we propose a method which allows a
recurrent neural network (RNN) to learn an LM for the SED task.
The method conditions the input of the RNN with the activities of
classes at the previous time step. We evaluate our method using F1

score and error rate (ER) over three different and publicly available
datasets; the TUT-SED Synthetic 2016 and the TUT Sound Events
2016 and 2017 datasets. The obtained results show an increase of
9% and 2% at the F1 (higher is better) and a decrease of 7% and
2% at ER (lower is better) for the TUT Sound Events 2016 and
2017 datasets, respectively, when using our method. On the con-
trary, with our method there is a decrease of 4% at F1 score and an
increase of 7% at ER for the TUT-SED Synthetic 2016 dataset.

Index Terms— sound event detection, language modelling, se-
quence modelling, teacher forcing, scheduled sampling

1. INTRODUCTION

Sound event detection (SED) consists in detecting the activity of
classes (onset and offset times) in an audio signal, where the classes
correspond to different sound events. (e.g., “baby cry”, “glass shat-
ter”). This task finds applications in many areas related to ma-
chine listening, such as audio surveillance for smart industries and
cities [1, 2], smart meeting room devices for enhanced telecom-
munications [3, 4], or bio-diversity monitoring in natural environ-
ments [5, 6]. SED is a challenging research task since the sound
events are of very diverse nature, which might be unknown a pri-
ori in real-life recordings. Besides, they often overlap in time, a
problem termed as polyphonic SED. Significant advances in SED
were made recently thanks to the advent of deep learning [7]. The
recurrent neural network (RNN) have proven particularly promis-
ing [8, 9] as they are able to model the temporal discriminant repre-
sentations for sound events. More recently, these have been stacked
with convolutional layers, resulting in convolutional recurrent neu-
ral networks (CRNN) which yield state-of-the-art results [10, 11].

In real-life recordings, the various sound events likely tempo-
ral structures within and across events. For instance, a “footsteps”
event might be repeated with pauses in between (intra-event struc-
ture). On the other hand, “car horn” is likely to follow or precede
the “car passing by” sound event (inter-events structure). Although

these temporal structures vary with the acoustic scene and the ac-
tual sound events classes, they exist and can be exploited in the
SED task. Some previous studies focus on exploiting these tempo-
ral structures. For example, in [9], the authors propose to use hidden
Markov models (HMMs) to control the duration of each sound event
predicted with a deep neural network (DNN). Although the results
show some improvement with the usage of HMMs, the approach is
a hybrid one and it requires a post processing step, which might be
limited compared to an non-hybrid, DNN-based approach. In [12]
and [13], the connectionist temporal classification (CTC) [14] loss
function is used for SED: the output of the DNN is modified in or-
der to be used with the CTC. Although the usage of CTC seems
to be promising, CTC needs modification in order to be used for
SED, it is a complicated criterion to employ, and it was developed
to solve the problem where there is no frame-to-frame alignment
between the input and output sequences [14]. Thus, there might be
the case that using a different method for SED language modelling
could provide better results than CTC. Finally, in [13], the authors
also employ N-grams, which require pre and post processing stages,
and use the class activities as extra input features. However, the lat-
ter approach did not perform better than a baseline which did not
employ any language model.

In this paper we propose an RNN-based method for SED that
exploit the temporal structures within and across events of audio
scenes without the aforementioned drawbacks of the previous ap-
proaches. This method is based on established practices from other
scientific disciplines that deal with sequential data (e.g., machine
translation, natural language processing, speech recognition). It
consists in using the output of the classifier as an extra input to
the RNN in order to learn a model of the temporal structures of the
output sequence (referred to as language model), a technique called
teacher forcing [15]. Besides, this extra input of the RNN is chosen
as a combination of the ground truth and predicted classes. This
strategy, known as schedule sampling [16], consists in first using
the ground truth activities and further replacing them by the pre-
dictions. This allows the RNN to learn a robust language model
from clean labels, without introducing any mismatch between the
training and inference processes.

The rest of the paper is organized as follows. In Section 2 we
present our method. Section 3 details the experimental protocol and
Section 4 presents the results. Section 5 concludes the paper.

2. PROPOSED METHOD

We propose a system that consists of a DNN acting as a feature
extractor, an RNN that learns the temporal structures withing and
across events (i.e. a language model), and a feed-forward neural
network (FNN) acting as a classifier. Since we focus on designing
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an RNN that is able to learn a language model over the sound events,
the RNN takes as inputs the outputs of both the DNN and the FNN.
The code for our method can be found online1.

2.1. Baseline system

The DNN takes as an input a time-frequency representation of an
audio signal denoted X ∈ RT×F≥0 , where T and F respectively de-
note the number of time frames and features. It outputs a latent
representation:

H = DNN(X), (1)

where H ∈ RT×F
′

is the learned representation with F ′ features.
Then, the RNN operates over the rows of H as

h′t = RNN(ht,h
′
t−1), (2)

where t = 1, 2, . . . , T , h′0 = {0}F
′′

, h′t ∈ [−1, 1]F
′′

, and F ′′

is the amount of features that the RNN outputs at each time-step.
Finally, the FNN takes h′t as an input and outputs the prediction ŷt
for the time-step t as:

ŷt = σ(FNN(h′t)), (3)

where σ is the sigmoid function, and ŷt ∈ [0, 1]C is the predicted
activity of each of the C classes.

The DNN, the RNN, and the FNN are simultaneously opti-
mized by minimizing the loss L(Ŷ,Y) =

∑
t Lt(ŷt,yt) with:

Lt(ŷt,yt) =
C∑
c=1

yt,c log(ŷt,c) + (1− yt,c) log(1− ŷt,c), (4)

where yt,c and ŷt,c are the ground truth and predicted activities,
respectively, of the c-th class at the t-th time-step.

2.2. Teacher forcing

The modeling in Eq. (2) shows that the RNN learns according to
its input and its previous state [15, 16]. In order to allow the RNN
to learn a language model over the output (i.e. the sound events),
we propose to inform the RNN of the activities of the classes of the
sound events at the time step t− 1. That is, we condition the input
to the RNN as:

h′t = RNN(ht,h
′
t−1,y

′
t−1), (5)

where y′t−1 is the vector with the activities of the classes of the
sound events at time step t− 1, and y′0 = {0}C . This technique is
termed as teacher forcing [15], and is widely employed in sequence
prediction/generation tasks where the output sequence has an in-
herent temporal model/structure (e.g., machine translation, image
captioning, speech recognition) [17, 18, 19]. By using this condi-
tioning of the RNN, the RNN can learn a language model over the
output tokens of the classifier [15, 16]. In SED, this results in letting
the RNN learn a language model over the sound events, e.g., which
sound events are more likely to happen together and/or in sequence,
or how likely is a sound event to keep being active, given the pre-
vious activity of the sound events. Teacher forcing is different from
what was proposed in [13], as the latter approach conditioned the
DNN (not the RNN) with the class activities: such an approach
yielded poor results, intuitively explained by having y′t−1 domi-
nated by the information in X through the sequence of the CNN
blocks.

1https://github.com/dr-costas/SEDLM
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Figure 1: Proposed method of teacher forcing with scheduled sam-
pling.

2.3. Scheduled sampling

The activity vector y′t−1 can be either the ground truth data (i.e.,
yt−1), or the predictions of the classifier (i.e., ŷt−1). In the for-
mer case, the RNN is likely to start learning the desired language
model from the first updates of the weights. At each time step t, the
RNN will take as input the ground truth activities of the classes, thus
being able to exploit this information from the very first weight up-
dates. However, these ground truth values are not available at the in-
ference stage: these would be replaced by the estimates ŷt−1, which
would create a mismatch between the training and testing processes.
Besides, an RNN trained using only the true class activities is very
likely to be sensitive to the prediction errors in ŷt−1. Finally, we
empirically observed that using yt−1 with the SED datasets, which
are of relatively small size, results in a very poor generalization of
the SED method.

A countermeasure to the above is to use the predictions ŷt−1

as y′t−1, which allows the RNN to compensate for the prediction
errors. However, during the first weight updates, the predicted ŷt−1

is very noisy and any error created at a time step t is propagated over
time, which results in accumulating more errors down the line of the
output sequence. This makes the training process very unstable and
is likely to yield a poor SED performance.

To exploit the best of both approaches, we propose to use the
scheduled sampling strategy [16]: the ground truth class activities
are used during the initial epochs, and they are further gradually
replaced by the predicted class activities. This gradual replacement
is based on a probability pTF of picking yt−1 over ŷt−1 as y′t−1

that decreases over epochs. Different functions can be used for the
calculation of pTF (e.g., exponential, sigmoid, linear). Here, we
employ a model of exponential decrease of pTF:

pTF = min(pmax, 1−min(1− pmin,
2

1 + eβ
− 1)), (6)

where β = −iγN−1
b , i is the index of the weight update (i.e., how

many weight updates have been performed), Nb is the amount of
batches in one epoch, and pmax, pmin, and γ are hyper-parameters
to be tuned. pmax and pmin are the maximum and minimum prob-
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abilities of selecting ŷt, and γ controls the slope of the curve of
pTF for a given Nb and as i increases. We use a minimum prob-
ability pmin because we experimentally observed that if we solely
use yt−1 as y′t−1 even in the first initial weight updates, then the
SED method overfits. The usage of pmin counters this fact. On the
other hand, we use a maximum probability pmax in order to allow
the usage of yt−1 as y′t−1 at the later stages of the learning process.
We do this because the length of a sequence in SED is usually over
1000 time-steps and any error in ŷt is accumulated in this very long
sequence, resulting in hampering the learning process. The usage
of pmax offers a counter measure to this, by allowing the usage of
ground truth values yt instead of predicted and noisy values. This
method is illustrated in Figure 1.

3. EVALUATION

We evaluate our method using the CRNN from [10], and we employ
synthetic and real-life recordings datasets to illustrate the impact of
the language model learned by our method.

3.1. Data and feature extraction

The synthetic dataset is the TUT-SED Synthetic 2016, used in [10],
and consisting of 100 audio files which are synthetically created
out of isolated sound events of 16 different classes. These classes
are: alarms and sirens, baby crying, bird singing, bus, cat meow-
ing, crowd applause, crowd cheering, dog barking, footsteps, glass
smash, gun shot, horse walk, mixer, motorcycle, rain, and thunder.
Each audio file contains a maximum of N number of randomly se-
lected target classes, where N is sampled from the discrete uniform
distribution U(4, 9), and the maximum number of simultaneously
active (polyphony) sound events is 5. The audio files do not con-
tain any background noise. The audio files amount to a total of 566
minutes of audio material, and according to the splits introduced
by [10], roughly 60% of the data are dedicated to training, 20% to
validation, and 20% to testing split. More information about the
dataset can be found online2.

We employ two real-life recording datasets, which were part
of the Detection and Classification of Acoustic Scenes and Events
(DCASE) challenge datasets for SED in real life audio task: the
TUT Sound Events 2016 and the TUT Sound Events 2017 [20]. The
TUT Sound Events 2016 dataset contains sound events recorded in
two environments: home (indoor), which contains 11 classes, and
residential area (outdoor), which contains 7 classes. The classes for
the home environment are: (object) rustling, (object) snapping, cup-
board, cutlery, dishes, drawer, glass jingling, object impact, people
walking, washing dishes, and water tap running. The classes for
the residential area environment are: (object) banging, bird singing,
car passing by, children shouting, people speaking, people walking,
and wind blowing. The TUT Sound Events 2017 dataset contains
recordings in a street environment and contains 6 different classes.
These classes are: brakes squeaking, car, children, large vehicle,
people speaking, and people walking. For both datasets, we use the
cross-fold validation split proposed in the DCASE 2016 and 2017
challenges. More information about the classes, the cross-fold set-
ting, and the recordings of the datasets can be found online3,4.

2http://www.cs.tut.fi/sgn/arg/taslp2017-crnn-
sed/tut-sed-synthetic-2016

3http://www.cs.tut.fi/sgn/arg/dcase2016
4http://www.cs.tut.fi/sgn/arg/dcase2017/
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Figure 2: The value of pTF with consecutive weight updates with
pmin = 0.05, pmax = 0.95, and Nb = 44. The vertical dashed
lines indicate steps of 25 epochs (i.e. 25, 50, 75 epochs).

The synthetic dataset has randomly selected and placed sound
events, therefore not exhibiting any underlying temporal structure
of sound events. We thus expect the performance of our method to
be similar to a method without language modeling on the synthetic
dataset. Contrarily, the real-life recording datasets exhibit some un-
derlying temporal structures in the sound events, therefore we ex-
pect our method to perform better than a method without language
modelling on these datasets.

As input features X we use non-overlapping sequences of
T = 1024 feature vectors. These consist of F = 40 log mel-bands,
extracted using a short-time Fourier transform using a 22 ms Ham-
ming window, 50% overlap and no zero padding. We normalize the
extracted feature vectors from each dataset to have zero mean and
unit variance, employing statistics calculated on the training split of
each corresponding dataset.

3.2. System and hyper-parameters

As our DNN we use the three convolutional neural network (CNN)
blocks from the system in [10], each consisting of a CNN, a batch
normalization function, a max-pooling operation, a dropout func-
tion, and a rectified linear unit (ReLU). The kernels of the CNNs
are square with a width of 5, a stride of 1, and a padding of 2 in
both directions. There are 128 filters for each CNN. The kernel and
the stride for the first max-pooling operation are {1, 5}, for the sec-
ond {1, 4}, and for the third {1, 2}. These result in F ′ = 128 for
H. All CNN blocks use a dropout of 25% at their input, and the last
CNN block also uses a dropout of 25% at its output. As our RNN
we use a gated recurrent unit (GRU) with F ′′ = 128 and our FNN
is a single-layer feed-forward network with the output size defined
according to the amount of classes in each dataset: C = 16 for
TUT-SED Synthetic 2016, C = 11 and C = 7 for the home and
residential area scenes of the TUT Sound Events 2016, and C = 6
for the TUT Sound Events 2017. To optimize the weights we em-
ployed the Adam optimizer [21] with default values. We employ a
batch size of 8 and we stop the training when the loss for the vali-
dation data is not decreasing for 50 consecutive epochs. Finally, we
set the hyper-parameters for pTF at γ = 12−1, pmin = 0.05, and
pmax = 0.9. In Figure 2 is the value of pTF for consecutive weight
updates of Nb = 44 and for 100 epochs.

Empirically we observed that when using the TUT Sound
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Events 2017, there are some irregular spikes of relatively high gra-
dients in different batches during training. To alleviate this issue, we
clipped the `2-norm of the gradient of all weights in each layer of
our system to a value of 0.5. Additionally, we also observed that for
the TUT Sound Events 2017 and TUT-SED Synthetic 2016 datasets,
our method performed significantly better when we decreased the
learning rate of the optimizer to 5e − 4. Therefore, we employed
the above mentioned gradient clipping and modified learning rate
for our method, when using the aforementioned datasets. Finally,
for the TUT Sound Events 2016, we employed a binarized version
of y′ denoted y′′, such that y′′t,c = 1 if y′t,c ≥ 0.5, and y′′t,c = 0
otherwise.

All the above hyper-parameters were tuned using the cross val-
idation set up for the TUT Sound Events 2016 and 2017 datasets
provided by DCASE challenges, and the validation split provided
in [10] for the TUT-SED Synthetic 2016 dataset.

3.3. Metrics

We measure the performance of our method using the frame based
F1 score and the error rate (ER), according to previous studies and
the DCASE Challenge directions [10, 13]. For the real-life datasets,
the F1 and ER are the averages among the provided folds (and
among the different acoustic scenes for the 2016 dataset), while for
the synthetic dataset theF1 andER are obtained on the testing split.
Finally, we repeat four times the training and testing process for all
datasets, in order to obtain a mean and standard deviation (STD) for
F1 and ER.

3.4. Baseline

As a baseline we employ the system presented in [10], that does
not exploit any language model. We do not apply any data augmen-
tation technique during training and we use the hyper-parameters
presented in the corresponding paper. This system is referred to as
“Baseline”.

When using our method with the TUT Sound Events 2017 and
TUT-SED Synthetic 2016 datasets, we employ a modified learning
rate for the optimizer and we clip the `2-norm of the gradient for
all weights. To obtain a thorough and fair assessment of the perfor-
mance of our method, we utilize a second baseline for this dataset:
we use again the system presented in [10], but we employ the above-
mentioned gradient clipping and modified learning rate. We denote
this modified baseline as “modBaseline”.

Finally, we compare our method to the best results presented
in [13] which are obtained by employing N-grams as a post-
processing to learn a language model. We report the results of this
method on the TUT Sound Events 2016 datasets, as these are the
only ones in the corresponding paper that are based on a publicly
available dataset. It must be noted that in [13] was proposed the
usage of y′t−1 as extra input features and the usage of CTC, but
the results were inferior to the N-grams approach. Specifically, the
per frame F1 score was 0.02 and 0.04 lower and ER was 0.02 and
0.15 higher with the usage of y′t−1 as an extra input feature and the
usage of CTC, respectively, compared to the N-grams approach.

4. RESULTS & DISCUSSION

In Table 1 are the obtained results for all the employed datasets. We
remark that using the proposed language model improves the per-
formance of SED in the real-life datasets. Specifically, for the TUT

Table 1: Mean and STD (Mean/STD) of F1 (higher is better) and
ER (lower is better). For the method [13] only the mean is avail-
able.

Baseline modBaseline [13] Proposed
TUT Sound Events 2016 dataset

F1 0.28/0.01 – 0.29 0.37/0.02
ER 0.86/0.02 – 0.94 0.79/0.01

TUT Sound Events 2017 dataset
F1 0.48/0.01 0.49/0.01 – 0.50/0.02
ER 0.72/0.01 0.70/0.01 – 0.70/0.01

TUT-SED Synthetic 2016 dataset
F1 0.58/0.01 0.62/0.01 – 0.54/0.01
ER 0.54/0.01 0.49/0.01 – 0.61/0.02

Sound Events 2016 dataset there is an improvement of 0.09 in the
F1 score and 0.07 for the ER. For the TUT Sound Events 2017,
there is a 0.02 improvement in F1 and 0.02 improvement in ER.
These results clearly show that the employment of language mod-
elling was beneficial for the SED method, when a real life datset was
used. This is expected, since in a real life scenario the sound events
exhibit temporal relationships. For example, “people speaking” and
“people walking” or “washing dishes” and “water tap running” are
likely to happen together or one after the other.

On the contrary, from Table 1 we observe that there is a
decrease in performance with our method on the synthetic data.
Specifically, there is a 0.04 (or 0.08 when compared to modBase-
line) decrease in F1 and 0.07 (or 0.12 when compared to modBase-
line) increase in ER. This clearly indicates that using a language
model has a negative impact when the synthetic dataset is used. The
sound events in the synthetic dataset do not exhibit any temporal re-
lationships and, thus, the language model cannot provide any benefit
to the SED method. We suggest that in such a scenario, the network
focuses on learning a language model that does not exist in the data
instead of solely trying to accurately predict the events on a frame-
wise basis: this explains the drop in performance compared to the
baseline method. Overall, this difference in performance between
the two types of datasets strongly suggests that our method learns a
language model over the activities of the sound events.

Finally, our system significantly outperforms the previous
method [13] on the TUT Sound Events 2016 dataset. This shows
that learning a language model is more powerful than crafting it as
a post-processing.

5. CONCLUSIONS

In this paper we presented a method for learning a language model
for SED. Our method focuses on systems that utilize an RNN before
the the last layer of the SED system, and consists of conditioning
the RNN at a time step t with the activities of sound events at the
time step t − 1. As activities for t − 1 we select the ground truth
early on the training process, and we gradually switch to the predic-
tion of the classifier as the training proceeds over time. We evaluate
our method with three different and publicly available datasets, two
from real life recordings and one synthetic dataset. The obtained re-
sults indicate that with our method, the utilized SED system learned
a language model over the activities of the sound events, which is
beneficial when used on real life datasets.

In future work, we will conduct a more in-depth analysis of the
learned language model and of the SED performance per class.
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