
A correct formulation for the Orientation Dynamic
Movement Primitives for robot control in the

Cartesian space

Leonidas Koutras
Automation & Robotics Lab

Dept. of Electrical & Computer Engineering
Aristotle University of Thessaloniki, Greece

kleonidas@ece.auth.gr

Zoe Doulgeri
Automation & Robotics Lab

Dept. of Electrical & Computer Engineering
Aristotle University of Thessaloniki, Greece

doulgeri@eng.auth.gr

Abstract: Dynamic movement primitives (DMP) are an efficient way for learning
and reproducing complex robot behaviors. A singularity free DMP formulation
for orientation in the Cartesian space is proposed by Ude et al. [1] and has been
largely adopted by the research community. In this work, we demonstrate the
undesired oscillatory behavior that may arise when controlling the robot’s orien-
tation with this formulation, producing a motion pattern highly deviant from the
desired and highlight its source. A correct formulation is then proposed that alle-
viates such problems while guaranteeing generation of orientation parameters that
lie in SO(3). We further show that all aspects and advantages of DMP including
ease of learning, temporal and spatial scaling and the ability to include coupling
terms are maintained in the proposed formulation. Simulations and experiments
with robot control in SO(3) are performed to demonstrate the performance of the
proposed formulation and compare it with the previously adopted one.

Keywords: Dynamic Movement Primitives, Control in Orientation Trajectories

1 Introduction

Inspired by biological systems, complex, goal directed kinematic behaviors are in recent years mod-
eled by dynamical systems which are then utilized via on-line integration as motion generators for
robot control. A popular form of dynamical system is the DMP which was introduced and later
revisited by Ijspeert et al. [2], [3]. Their basic form is composed of a linear second order part
which ensures convergence to a specified attractor point and a nonlinear forcing term which allows
modeling of more complex movements. The latter usually consists of a linear combination of basis
functions (most commonly Gaussians) with parameters (weights) that can be learned without af-
fecting the system’s convergence. DMP have a number of useful properties including robustness to
perturbations; they allow spatial and temporal scaling via a non-explicit time representation and can
be manipulated to adapt to different situations via coupling terms during the execution of the move-
ment [4], [5]. When used in Cartesian space the issue of orientation representation arises since it is
known that unlike the position there is no minimal representation of orientation that is singularity
free. Minimal representations introduce artificial discontinuities that should be avoided. Orienta-
tions are defined in the SO(3) group which is a three dimensional manifold that can be represented
by rotation matrices and quaternions. In the field of robotics, quaternions are generally preferred
over rotation matrices, as they require less parameters and have been used in many applications [6],
[7], [8]. An approach for imitation learning in Riemannian manifolds can be found in Zeestraten
et al. [9].

The generalization of the DMP framework to orientation trajectories with quaternion representations
has been introduced by Pastor et al. [10] and expanded by Ude et al. [1]. The approach in [10] usually
leads to slow convergence as pointed out in [1]. In contrast, faster convergence characterizes the
formulation proposed in [1]. Since its publication, this formulation has been the dominant approach
for orientation DMP robot learning and control.

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.



In this work we show that when controlling the robot’s orientation with this dominant formulation
undesired oscillatory behaviors may arise. As we show in Section 2 the orientation DMP, unlike the
positional formulation, does not yield a linear tracking system. Then in Section 3 we propose a cor-
rect formulation which alleviates this problem. We evaluate our theoretical results with simulations
and experiments in Sections 4 and 5 respectively and draw conclusions in Section 6.

2 DMP Preliminaries and Motivation

A DMP for a single degree of freedom point to point movement y is defined by the following second
order dynamical system:

τ ż = αz(βz(g − y)− z) + (g − y0)f(x)
τ ẏ = z

(1)

where y, ẏ represent position and velocity, y0 and g are the initial and goal position, αz, βz are the
positive gains of the linear part of the system, x is the phase variable introduced to avoid explicit
time dependency, z is the scaled velocity, τ > 0 is a temporal scaling term and (g−y0)f(x) is a non-
linear forcing term which allows the modeling of complex motion patterns. By setting αz = 4βz
the linear part of (1) becomes critically damped and the state y, z converges monotonically to the
unique equilibrium goal y = g, z = 0. The function f(x) is defined as follows:

f(x) =

∑
i wiΨi(x)∑
i Ψi(x)

x (2)

where Ψi(x), i = 1, ..., N are Gaussian kernel functions:

Ψi(x) = exp[−hi(x− ci)2] (3)
with ci being the centers of the Gaussians distributed along the phase of the motion and hi their
inverse widths. System (1) is known as the transformation system. The phase variable’s x evolution
is governed by the canonical system:

τ ẋ = −αxx (4)
with αx a positive gain and x0 = 1 the initial value of x. Notice that x converges exponentially to 0.

In the Cartesian space we represent each coordinate’s position trajectory with a transformation sys-
tem of the form (1) but with a common canonical system to synchronize them.

Given a demonstrated trajectory yd, ẏd, ÿd from initial position y0,d, to final position gd the forc-
ing term (2) is trained using Locally Weighted Regression (LWR) in order to generate the desired
motion:

f(x) =
1

gd − y0,d
(τ2ÿd − αz(βz(gd − yd)− τ ẏd)) (5)

Parameter τ is usually set to the time duration of the demonstrated motion τ = Td or to the normal-
ized value τ = 1.

Assuming a training error ε, f(x) in (1) can be substituted by the sum of the right hand side of (5)
plus ε to yield the following system:

τ2(ÿ − sg ÿd) + ταz(ẏ − sg ẏd) + αzβz(y − sgyd) = αzβz(g − sgg0,d) + (g − y0)ε (6)

where sg = g−y0
gd−y0,d is a spatial scaling parameter to accommodate new goals. By further substitut-

ing g in (6) from g = sg(gd−y0,d)+y0 yields the tracking error y−sgyd dynamics, which is linear,
stable and convergent with a rate dictated by the choice of the DMP parameters αz, βz and τ :
τ2(ÿ − sg ÿd) + ταz(ẏ − sg ẏd) + αzβz(y − sgyd) = αzβz(y0 − sgy0,d) + sg(gd − y0,d)ε (7)

Notice that the first term in the right hand side of (7) is a bias that transfers the scaled trajectory to
the actual initial position while the second term dictates the steady state value of the tracking error
owing to the training error; the smaller is the training error the more accurate is the following of the
reference trajectory.

Let us now turn our attention to the dominant formulation for orientation DMP suggested in [1]. In
this formulation, the following quaternion based transformation system is suggested:

τ η̇ = αz(βz2 log(Qg ∗Q)− η) + diag(2 log(Qg ∗Q0))F (x)

τQ̇ = 1
2

[
0
η

]
∗Q (8)

2



where Q represents the orientation as a unit quaternion, Q0, Qg are the initial and goal orientations,
η = τω ∈ R3 represents the scaled angular velocity, ′∗′ denotes the quaternion product, Q denotes
the quaternion conjugate which is equal to the inverse quaternion for unit quaternions and 2 log(Q2∗
Q1) ∈ R3 expresses the rotation ofQ1 around a fixed axis to reachQ2. The forcing term F (x) ∈ R3

in (8) is defined as in (2) for each orientation coordinate and is trained by utilizing (4) and (8) to
encode the desired orientation trajectory provided by the demonstrated data Qd, ωd, ω̇d with Q0,d

and Qg,d the initial and goal orientations. This formulation is utilizing the exponential map for
integrating (8) which is a distance preserving map between the tangent space and the manifold and
its inverse called the logarithmic map. They both stem from the Lie Algebra of SO(3). A brief
introduction to the basics of Lie group theory and its connections with rigid body kinematics can be
found in Murray et al. [11]. Basic quaternion definitions and operations used in this work are given
in Appendix A.

We denote by eQ the quaternion error between the current and goal orientation values which is given
by:

eQ = 2 log(Qg ∗Q) (9)
This error can be written as a rotation around a fixed axis n by an angle 2(θg − θ) (see Appendix
A). Then:

2 log(Qg ∗Q) = 2n(θg − θ) (10)
By ignoring the forcing term, we can then write the first equation of (8) using (10) and substituting
η = τω = τ θ̇n as follows:

τ2
d(θ̇n)

dt
= αz(βzn(θg − θ)− τ θ̇n) (11)

As claimed in [1], system (11) is linear but this is only true if the rotation axis is fixed which is
not generally true since then ṅ 6= 0. For a demonstrated orientation trajectory, axis n is not fixed
and hence the addition of the forcing term affects the linearity of the first part of the transformation
system. We can demonstrate this claim by trying to derive the tracking error dynamics following a
similar procedure with the one utilized for the position transformation system.

Given the demonstrated data, the forcing term is trained as before using LWR in order to generate
the desired motion:

F (x) =
(
diag(2 log(Qg,d ∗Q0,d))

)−1 (
τ2ω̇d − αz(βz(2 log(Qg,d ∗Qd)− τωd))

)
(12)

In order to derive the tracking error dynamics as before we first assume a training error εo so that
F (x) in (8) can be substituted by the sum of the right hand side of (12) plus εo to yield the following
system:

τ2(ω̇ − Sgω̇d) + ταz(ω − Sgωd) + αzβz
(
2 log(Qg,d ∗Qd)− Sg2 log(Qg ∗Q)

)
=

Sg diag
(
2 log(Qg,d ∗Q0,d)

)
εo

(13)

with Sg = diag(2 log(Qg ∗ Q0))
(
diag(2 log(Qg,d ∗Q0,d))

)−1
being a spatial scaling diagonal

matrix term providing generalizations to new orientation goals. Notice that (13) is not a linear
system of the tracking error. In fact, by setting for the sake of simplicity Qg,d = Qg = [1 0 0 0]T

and Sg = I3 which holds when Q0,d = Q0, the third term of the left hand side of (13) becomes
2(logQd − logQ) = 2(logQ− logQd) which is not a typical quaternion tracking error consistent
with the rest of the formulation. It is indeed easy to establish that taking this term’s time derivative
does not yield ω − ωd. Owing to this problem, this formulation may have serious consequences
when used in robot control because it can generate undesired oscillatory behaviors highly deviant
from the demonstrated trajectory as we clearly show in the rest of this paper by simulations and
experiments.

To demonstrate the problems of the dominant DMP orientation formulation, we conducted two
simulations of the system (4), (8). An orientation trajectory was recorded by physically guiding
a KUKA robot and used to train an orientation DMP. The parameters used in the first simulation
(case 1) were αz = 60, βz = 15, τ = 1, N = 60, αx = 4.6052, where N is the number of
Gaussian kernels and αx value ensures that x reaches 0.01 at the end of motion. The demonstrated
trajectory was between initial orientation Q0 = [−0.0092 − 0.7126 0.7015 0.0090]T and goal
orientation Qg = [0.8104 0.3364 0.2141 0.4293]T . For the above initial and goal orientations

3



0 2 4 6 8 10 12

0

1

2

3

0 2 4 6 8 10 12

-2

-1

0

1

0 2 4 6 8 10 12

-2

-1

0

1

Figure 1: Case 1 Simulation Results: Evolution
of quaternion error. The demonstration error
trajectory is also depicted.

0 2 4 6 8 10 12

0

1

2

3

0 2 4 6 8 10 12

-2

-1

0

1

0 2 4 6 8 10 12

-2

-1

0

1

Figure 2: Case 2 Simulation Results: Evolution
of quaternion error towards the original and new
goal. The demonstration error trajectory is also
depicted.

the initial orientation distance is expressed by the error eQ,0 = [2.9199 − 0.8740 − 1.3364]T .
In Figure 1, the evolution of the quaternion error is shown. It is evident that the non-linearities
induce undesired oscillations, producing a motion pattern highly deviant from the desired. Those
oscillations vary in frequency and amplitude according to the DMP parameter values. For larger
values of αz

τ ,
βz
τ they become more intense and for lower they diminish. However, one does not

know a priori the appropriate parameter values for the successful reproduction of every orientation
pattern.

Even in the case of a set of parameters that lead to successful, oscillation-free execution, there is no
assurance that those parameters will be able to maintain those performance characteristics towards
a new goal. In the second simulation (case 2), the DMP is trained with the same trajectory but
using parameters αz = 15, βz = 3.75 and keeping the same values for τ,N, αx. The trajectory
is successfully executed but when we set a new goal at Q′g = [0.7442 0.5414 − 0.0343 0.3897]T

the execution of (8) leads again to oscillations. In this case the same initial orientation is used
corresponding to a scaled error e′Q,0 = [3.5039 − 1.0488 − 1.6036]T = 1.2eQ,0. Figure 2 shows
this oscillatory behavior towards the new goal.

3 A correct DMP orientation formulation based on Quaternion Error

3.1 Proposed DMP formulation

To alleviate the problems identified in the previous Section with the currently adopted DMP orien-
tation formulation, we propose the following formulation based on the quaternion error:

τ ż = −αz(βzeQ + z) + diag(2 log(Qg ∗Q0))F (x)
τ ėQ = z

(14)

where αz, βz are positive gains, eQ, is the quaternion error given by (9), z is the scaled quaternion
error velocity and F (x) is trained as in (2) for each orientation coordinate. Notice that equation
(14) has the typical form of a linear part and a non-linear forcing term and unlike (8) it follows the
typical structure of the position DMP in the Cartesian space. The latter is easy to establish by setting
y = eQ, g = 03×1, g − y0 = 2 log(Qg ∗ Q0). The proposed DMP is using the canonical system
defined in (4).

For robot control we need to feed the robot with a reference quaternion and angular velocity. Notice
that by integrating (14) we get the orientation error and its derivative from which we need to extract
the quaternion and the angular velocity. To obtain the orientation, we solve (9) for Q:

Q = exp

(
1

2
eQ

)
∗Qg (15)

4



The angular velocity can be provided by:

ω = 2 vec(Q̇ ∗Q) (16)

where vec represents the vector part of the quaternion and Q̇ can be evaluated by relating the deriva-
tive of the quaternion error with the derivative of the quaternion. Thus we firstly compute equations
that connect the derivative of the quaternion logarithm with the derivative of the quaternion:

Q̇ = JlogQ(Q)
d log(Q)

dt
(17)

d log(Q)

dt
= JQ(Q)Q̇ (18)

with JlogQ(Q), JQ(Q), being 4 × 3 and 3 × 4 Jacobians, whose elements depend on the current
quaternion. Their derivation is detailed in Appendix B. They are given by :

JlogQ(Q) =



[
− sin θnT

sin θ
θ (I − nnT ) + cos θnnT

]
, θ 6= 0

[
01×3
I

]
, θ = 0

(19)

JQ(Q) =


[− sin θ+θ cos θ

sin2 θ
n θ

sin θ I
]
, θ 6= 0[

03×1 I
]
, θ = 0

(20)

where n, θ are defined as in Appendix A for a unit quaternion Q.

Differentiating (9) utilizing (17) and (18) yields the following relations:

Q̇ = −1

2
Q ∗Qg ∗ JlogQ(Qg ∗Q)ėQ ∗Q (21)

ėQ = −2JQ(Qg ∗Q)(Qg ∗Q ∗ Q̇ ∗Q) (22)
During execution the quaternion derivative is computed from (21). We use (22) to get ėQ for the
DMP training.

It is easy to show that the proposed formulation alleviates the problems identified in the dominant
formulation by deriving the tracking dynamics. In fact, given a demonstrated trajectory Qd, ωd, ω̇d
with initial and final position Q0,d and Qg,d respectively, we calculate eQ,d, ėQ,d, ëQ,d to train the
forcing term:

F (x) = diag
(
2 log(Qg,d ∗Q0,d)

) (
τ2ëQ,d − αz(βzeQ,d − τ ėQ,d)

)
(23)

Assuming a training error εo, F (x) in (14) can be substituted by the sum of the right hand side of
(23) plus εo to yield the following system:

τ2(ëQ − Sg ëQ,d) + ταz(ėQ − Sg ėQ,d) + αzβz(eQ − SgeQ,d) = diag
(
2 log(Qg ∗Q)

)
εo. (24)

Equation (24) is a linear dynamical system of the tracking error eQ − SgeQ,d which converges to
a steady state value dependent on the training error and in a critically damped way given the right
choice of the DMP parameters. Consequently, when controlling the robot the generated orientation
trajectory will follow the encoded pattern without exhibiting any undesired oscillations.

3.2 DMP Properties of the proposed formulation

The proposed formulation preserves the original scaling properties and modulation abilities. In the
following we examine temporal and spatial scaling, phase stopping and couplings terms with the
proposed formulation.

By setting the temporal scaling parameter to a different value than the one in training, the trajectory
is scaled in time, at a ratio equal to sτ = τnew

τtrain
. Thus the resulted velocity and acceleration become

ėQ(t)
sτ

,
ëQ(t)
s2τ

expanding or contracting the orientation error trajectory and its phase in time.

5



To spatially scale the executed motion’s trajectory, consider a new goal Qg,new. This goal selection,
leads to the respective scaling of the trajectory at each dimension. The new trajectory becomes
SgeQ(t), Sg ėQ(t), Sg ëQ, with goal scaling matrix Sg defined as in Section 2. When the transition
to a new goal is performed during the execution, a smooth transition is the best option, using a first
order goal filtering system:

ωg = αg2 log(Qg,new ∗Qg) (25)
with αg is a positive gain term and Qg,0 = Qg,train. Equation (25) is integrated using the exponen-
tial map.

In the presence of an external perturbation during execution, the robot deviates from its reference
trajectory. The objective of phase stopping is to stop the evolution of the DMP, in order to resume
its execution when the disturbance disappears. This can be achieved by slowing down the evolution
of the phase variable x, modifying its dynamics as follows:

τ ẋ = − αx

1 + αpx‖2 log(Qrobot ∗QDMP )‖2
x (26)

with αpx a positive gain parameter and Qrobot the robot’s orientation. An improved phase stopping
method proposed for position DMPs (in the joint or Cartesian space) can be found in Karlsson et al.
[12], modifies the temporal scaling parameter thus slowing the evolution of both the phase and the
transformation system. For the proposed orientation DMP this can be accomplished by modifying
the time scaling with the following expression :

τ = τtrain
(
1 + αpτ‖2 log(Qrobot ∗QDMP )‖2

)
(27)

with αpτ being a positive gain. Notice that as the robot follows the DMP generated trajectory, the
temporal scaling term is equal to the one used in training. However, when the orientation error
becomes large, τ obtains large values, leading to a very slow evolution of the system.

In many DMP applications, the augmentation of the DMP framework with coupling terms is utilized.
Those modifications can be inserted to (14) as follows:

τ ż = −αz(βzeQ + z) + diag(2 log(Qg ∗Q0))f(x) + zC
τ ėQ = z + eQ,C

(28)

The terms zC and eQ,C can be chosen to encapsulate any modulation of the system. For example, a
popular spatial coupling term is to set zC = 03×1 and eQ,C = αpe2 log(Qrobot ∗QDMP ), with αpe
a positive gain term. This selection is usually used in conjunction with traditional phase stopping
(26) and forces the DMP to stay close to the robot’s trajectory in presence of perturbations.

4 Simulations

4.1 Evaluation of proposed DMP

To evaluate the proposed system’ s performance, we used the same setup and parameters with the
first simulation in Section 2. We trained the proposed DMP using (4), (14). Simulation results are
shown in Figures 3, 4 for the orientation error and the angular velocity respectively. For compar-
ison purposes they also include results with the dominant DMP orientation formulation presented
in Section 2. It is evident that the proposed method does not demonstrate the oscillatory behaviour
exhibited with the dominant. The initial velocity spike at Figure 4 is due to the acceleration discon-
tinuity, a known problem which can be remedied by any of the different methods proposed in the
literature e.g. by multiplying the linear part of the system with a suitable gating function.

4.2 Evaluation of proposed DMP properties

To demonstrate the preservation of the DMP properties, the training setup was the same as the previ-
ous simulations. However, during the execution alterations were made to test the system robustness.
The results are shown in Figures 5 - 8. Figure 5 presents results of the system simulation with
double time scaling i.e τ = 2. Results with τ = 1 are also included to demonstrate the temporal
scaling properties. In Figure 6, a new goal is set at Q′g = [0.3635 0.6599 − 0.5918 0.2867]T ,
which yields the following initial orientation error e′Q,0 = [5.2725 − 0.4505 − 0.5420]T . Notice

6



0 2 4 6 8 10 12

0

1

2

3

0 2 4 6 8 10 12

-2

-1

0

1

0 2 4 6 8 10 12

-2

-1

0

1

Figure 3: Evolution of quaternion error with
the dominant and the proposed method. The
demonstration error trajectory is also depicted.

0 2 4 6 8 10 12

0

0.5

1

0 2 4 6 8 10 12

-0.2

0

0.2

0.4

0.6

0 2 4 6 8 10 12

-0.4

-0.2

0

0.2

Figure 4: Evolution of angular velocity with
the dominant and the proposed method. The
demonstration angular velocity trajectory is also
depicted.

Figure 5: Evolution of quaternion error with
τ = τtrain = 1 and τ = 2. The demonstra-
tion error trajectory is also depicted.

0 2 4 6 8 10 12

0

2

4

0 2 4 6 8 10 12

-1

0

1

0 2 4 6 8 10 12

-1.5

-1

-0.5

0

Figure 6: Evolution of quaternion error with the
original and a new goal. The demonstration er-
ror trajectory is also depicted.

that e′Q,0 = diag([1.8 0.5 0.4]T )eQ,0. Results include the system evolution with the initial goal and
demonstrate that the trajectory was scaled as expected in each dimension. To demonstrate the phase
stopping results, the proposed DMP was simulated in conjunction with equation (27). To simulate
the physical system, the following first order dynamics was used:

D(ωrobot − ωDMP ) +K(2 log(Qrobot ∗QDMP )) = uDist (29)

with gains K = 50, D = 2
√

50 and Qrobot, ωrobot the simulated robot’s orientation and angular
velocity. The disturbance uDist was simulated by a trapezoidal function shown in Figure 7 which
was applied in each direction. Figure 8 shows the evolution of the quaternion error for both the
DMP and the simulated physical system. The τ evolution is included in the lower subplot of Figure
7. Results demonstrate the successful phase stopping in case of the disturbance. Notice the large
values (max 48.58) reached by τ during the disturbance, effectively stop the DMP evolution.

5 Experimental Results

For the experimental evaluation of the proposed method, a 7 degree of freedom KUKA LWR4+
robotic manipulator was used. Both formulations were implemented in C++ and executed on a
real-time Linux PC. For the communication with the robot the FRI library was used, accompa-
nied with the ROS framework, with control frequency at 1kHz. The desired orientation trajectory
was provided kinesthetically by the user. To facilitate the demonstration, high stiffness values in
the position coordinates were imposed to keep the wrist’s position fixed. During execution a zero

7



0 2 4 6 8 10 12 14

0

5

10

15

20

0 2 4 6 8 10 12 14

10

20

30

40

50

Figure 7: Upper subplot: Trapezoidal dis-
turbance. Lower subplot: Temporal Scaling
adaptation.

0 2 4 6 8 10 12 14

0

1

2

3

0 2 4 6 8 10 12 14

-1

0

1

0 2 4 6 8 10 12 14

-1.5

-1

-0.5

0

Figure 8: Evolution of quaternion error of DMP
and simulated robot orientation in presence of
disturbance. The demonstration error trajectory
is also depicted.

0 1 2 3 4 5 6 7 8

0

1

2

0 1 2 3 4 5 6 7 8

-0.4

-0.2

0

0.2

0.4

0 1 2 3 4 5 6 7 8

0

0.5

1

Figure 9: Experimental result: Evolution of
quaternion error with the dominant and the pro-
posed method. The demonstration error trajec-
tory is also depicted.

0 1 2 3 4 5 6 7 8

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8

-1

0

1

0 1 2 3 4 5 6 7 8

-1

0

1

Figure 10: Experimental result:Evolution of
angular velocity with the dominant and the
proposed method. The demonstration angular
velocity trajectory is also depicted.

desired linear velocity and the angular velocity generated by the DMP were mapped to the joint
space with the Jacobian pseudo inverse. A number of orientation trajectory experiments were con-
ducted to demonstrate the performance of the proposed approach as compared to the dominant.
The results of one trajectory experiment are shown in this Section while the rest are given in the
supplementary material, together with a related short video. The complete video can be found
in https://www.youtube.com/watch?v=AFWj58x8veQ. The trajectory shown here starts from
Q0 = [0.6659 0.5281 0.4669 − 0.2443]T to goal Qg = [0.146 0.5587 0.5857 0.5688]T yielding
eQ,0 = [1.682 − 0.2751 1.1065]T . Both formulations are trained with the parameters given in
Section 4. Results are presented in Figures 9 and 10 depicting the quaternion error and the angular
velocity with both formulations. It is evident that the proposed formulation accurately follows the
demonstrated trajectory as opposed to the dominant which exhibits oscillatory behaviour.

6 Conclusions

In this paper we show that the existing formulation for orientation DMP is possible to lead to os-
cillatory behaviours during execution due to its non-linear nature. We then propose a correct for-
mulation that is shown to remain linear while preserving DMP properties and modulation abilities.
We demonstrate by simulations and experiments that the proposed formulation is predictable with
respect to all DMP aspects.

8

https://www.youtube.com/watch?v=AFWj58x8veQ


Acknowledgments

The research leading to these results has received funding by the EU Horizon 2020 Research and
Innovation Programme under grant agreement No 820767, project CoLLaboratE.

References
[1] A. Ude, B. Nemec, T. Petrić, and J. Morimoto. Orientation in cartesian space dynamic move-

ment primitives. In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 2997–3004, May 2014. doi:10.1109/ICRA.2014.6907291.

[2] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynamical
systems in humanoid robots. In Proceedings 2002 IEEE International Conference on Robotics
and Automation (ICRA), volume 2, pages 1398–1403 vol.2, May 2002. doi:10.1109/ROBOT.
2002.1014739.

[3] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical movement
primitives: Learning attractor models for motor behaviors. Neural Computation (NC), 25(2):
328–373, Feb 2013. ISSN 0899-7667. doi:10.1162/NECO a 00393.

[4] H. Hoffmann, P. Pastor, D. Park, and S. Schaal. Biologically-inspired dynamical systems for
movement generation: Automatic real-time goal adaptation and obstacle avoidance. In 2009
IEEE International Conference on Robotics and Automation (ICRA), pages 2587–2592, May
2009. doi:10.1109/ROBOT.2009.5152423.

[5] A. Gams, B. Nemec, A. J. Ijspeert, and A. Ude. Coupling movement primitives: Interaction
with the environment and bimanual tasks. IEEE Transactions on Robotics (T-RO), 30(4):816–
830, Aug 2014. ISSN 1552-3098. doi:10.1109/TRO.2014.2304775.

[6] S. Chiaverini and B. Siciliano. The unit quaternion: A useful tool for inverse kinematics of
robot manipulators. Systems Analysis Modelling Simulation (Syst. Anal. Model. Simul.), 35
(1):45–60, Jan. 1999. ISSN 0232-9298. URL http://dl.acm.org/citation.cfm?id=
314861.314865.

[7] J. S. Yuan. Closed-loop manipulator control using quaternion feedback. IEEE Journal on
Robotics and Automation (IEEE J Robot Autom), 4(4):434–440, Aug 1988. doi:10.1109/56.
809.

[8] A. Tayebi. Unit quaternion-based output feedback for the attitude tracking problem. IEEE
Transactions on Automatic Control (IEEE T AUTOMAT CONTR), 53(6):1516–1520, July
2008. doi:10.1109/TAC.2008.927789.

[9] M. J. A. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, and D. G. Caldwell. An approach for
imitation learning on riemannian manifolds. IEEE Robotics and Automation Letters (RA-L), 2
(3):1240–1247, July 2017. doi:10.1109/LRA.2017.2657001.

[10] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal. Online movement adaptation based
on previous sensor experiences. In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 365–371, Sep. 2011. doi:10.1109/IROS.2011.6095059.

[11] R. M. Murray, S. S. Sastry, and L. Zexiang. A Mathematical Introduction to Robotic Ma-
nipulation. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1994. ISBN 0849379814.
doi:10.1201/9781315136370.

[12] M. Karlsson, A. Robertsson, and R. Johansson. Convergence of dynamical movement prim-
itives with temporal coupling. In 2018 European Control Conference (ECC), pages 32–39,
June 2018. doi:10.23919/ECC.2018.8550135.

9

http://dx.doi.org/10.1109/ICRA.2014.6907291
http://dx.doi.org/10.1109/ROBOT.2002.1014739
http://dx.doi.org/10.1109/ROBOT.2002.1014739
http://dx.doi.org/10.1162/NECO_a_00393
http://dx.doi.org/10.1109/ROBOT.2009.5152423
http://dx.doi.org/10.1109/TRO.2014.2304775
http://dl.acm.org/citation.cfm?id=314861.314865
http://dl.acm.org/citation.cfm?id=314861.314865
http://dx.doi.org/10.1109/56.809
http://dx.doi.org/10.1109/56.809
http://dx.doi.org/10.1109/TAC.2008.927789
http://dx.doi.org/10.1109/LRA.2017.2657001
http://dx.doi.org/10.1109/IROS.2011.6095059
http://dx.doi.org/10.1201/9781315136370
http://dx.doi.org/10.23919/ECC.2018.8550135


Appendix A Basic Quaternion Operations

Quaternions are comprised of a real scalar part w ∈ R and a vector part v ∈ R3 and are usually
written as:

Q =
[
w vT

]T
(30)

Unit quaternions are widely used in robotics, to represent orientations in a compact, singularity free
way. A unit quaternion can also be expressed by utilizing an angle axis parameterization as follows:

Q =
[
cos θ sin θnT

]T
(31)

where n represents the rotation’s unit axis and θ the half of the rotation’s angle. To maintain the one
to one representation, θ is confined to the interval [0, π).

The product of two quaternions is defined as follows: Q1 ∗Q2 =

[
w1w2 − vT1 v2

w1v2 + w2v1 + v1 × v2

]
The inverse of a unit quaternion is equal to its conjugate: Q−1 = Q =

[
w −vT

]T
The logarithm of a unit quaternion is defined as:

log(Q) =

{
nθ θ 6= 0[
0 0 0

]T
θ = 0

(32)

For the integration of a set of quaternion differential equations, one uses:

Q(t+ ∆t) = exp

(
1

2
ω(t)∆t

)
∗Q(t) (33)

where the exponential mapping used above is defined by:

exp(v) =


[
cos(‖v‖) sin(‖v‖) v

T

‖v‖

]T
‖v‖ 6= 0[

1 0 0 0
]T ‖v‖ = 0

(34)

Appendix B Differentiation of Quaternion Logarithm

We will initially compute the derivatives of n, θ, for θ 6= 0. Notice that as n is a unit axis, then (32)
implies θ = ‖logQ‖. Its derivative yields θ̇ = (logQ)T

‖logQ‖
d log(Q)

dt = nT d log(Q)
dt .

The axis n can be written as n = logQ
θ = logQ

‖logQ‖ . Its derivative yields ṅ = 1
θ (I − nnT )d log(Q)

dt .

Then we differentiate equation (31) using the previous results to find:

Q̇ =

[
− sin θnT

sin θ
θ (I − nnT ) + cos θnnT

]
d logQ

dt

thus, obtaining matrix JlogQ(Q) of equation (19). The case of θ = 0 can be easily computed by
evaluating the limit with θ → 0.

To compute the inverse equation we use (31) and (30). Then θ = cos−1 w and n = 1
sin θv. Differ-

entiating yields θ̇ = − ẇ√
1−w2

= − ẇ
sin θ and ṅ = 1

sin θ v̇ + ẇ cos θ
sin2 θ

n. Then we differentiate equation
(32) for θ 6= 0 using the previous results to find:

d log(Q)

dt
= θ̇n+ θṅ =

[− sin θ+θ cos θ
sin2 θ

n θ
sin θ I

]
Q̇

thus obtaining matrix JQ(Q) of equation (20). For θ = 0 we also compute the limit as before.

Omitting the arguments for notation simplicity , it is easy to show that JQJlogQ = I3 . It is further
easy to show that JlogQJQ is a projection matrix since it is idempotent, and one can show that
JlogQJQQ̇ = Q̇. However this projection is not orthogonal since the matrix is not symmetric.

10


	Introduction
	DMP Preliminaries and Motivation
	A correct DMP orientation formulation based on Quaternion Error
	Proposed DMP formulation
	DMP Properties of the proposed formulation

	Simulations
	Evaluation of proposed DMP
	Evaluation of proposed DMP properties

	Experimental Results
	Conclusions

