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Abstract

Microscale investigation of porous medium systems contributes to our understanding of macro-
scopic systems at a fundamental level and can be used to formulate closed macroscale models.
We present an overview of methods designed to obtain accurate estimates of interfacial areas,
common curve lengths, and interfacial curvatures for porous medium data sets. We then de-
scribe how these methods can be applied to experimentally generated data and examine data
sets obtained using computed micro-tomography (CMT) as an example. Discussion of pertinent
issues is provided, including the nature of the raw data, sorts of experimental data that can be
collected to minimize errors, the impact of smoothing operations applied to the raw data, and
the resolution necessary to obtain reliable estimates of the variables of interest.

1. INTRODUCTION

Interfaces and common curves occur in multiphase porous medium systems. Understanding
their extent and behavior is important for developing a mature understanding and rigorous
models of these complex systems. Failure to properly account for the physics of interfaces
and common curves is a suspected cause of shortcomings observed in traditional multiphase
models [7]. Porous medium continuum-scale mathematical models that include these microscale
surfaces and curves provide a means to account for their physical impact at the macroscale
[6]. Methods that resolve microscale details, either experimentally or computationally, provide
opportunities to study various aspects of these models. Obtaining approximations of interfaces
and quantitative measures of their properties (e.g., extent measure, curvature) is desirable for
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the study of a variety of phenomena, including mass transfer processes [9], viscous coupling [10],
and hysteretic behavior of constitutive relationships linking capillary pressure, fluid saturations,
and interfacial areas [1, 8, 13].

Computed micro-tomography (CMT) is a non-invasive technique that can be used to obtain a
three-dimensional representation of experimental porous medium systems. CMT measures the
attenuation of a high flux of photons applied to a porous media system. The data collected
is can be used to reconstruct the system in the form of a highly resolved three-dimensional
spatial field of attenuation characteristics and thereby provide an image of the structure of the
medium and the distribution of the phases [15]. This approach has been applied to both air-
water and oil-water porous medium systems, effectively resolving features at the micron scale
[2]. The challenge, then, is to analyze the images to obtain quantitative measures of the features
revealed in the images.

The marching cubes (MC) algorithm is sometimes used to approximate interfaces in multiphase
porous medium systems. The MC algorithm was first developed to obtain surfaces of constant
density from three-dimensional medical data. However, it can be used to approximate the
location of any surface defined by D(x) = ν, where D(x) is a continuous, three-dimensional
function and ν is some constant [11]. Several authors have applied the MC approach to multi-
phase porous medium systems to obtain an approximate value of the amount of interfacial area
between wetting and non-wetting phases. In general, this area cannot be obtained using the
MC algorithm alone; and additional steps must be taken in order to estimate it. A common
approach is to use a version of the MC algorithm to compute approximations to the locations
of the interfaces bounding the solid, wetting, and non-wetting phases. Estimates of the desired
interfacial area can be computed from these approximations [3, 4]. However, this approach can-
not be used to compute other interfacial quantities, such as interfacial curvature, because the
component interfaces are not constructed. Furthermore, the results of Dalla et al. [4] suggest
that numerical estimates of interfacial areas obtained using this approach can have significant
errors.

McClure et al. [12] described a modified marching cubes (MMC) algorithm designed to con-
struct each of the component interfaces and the common curve present in two-fluid-phase porous
medium systems. From these objects, interfacial areas and common curve lengths can be com-
puted in a straightforward manner. The MMC approach has been shown to achieve accurate
estimates of interfacial areas and common curve lengths for systems constructed analytically,
and these approaches are directly applicable to results generated using the lattice-Boltzmann
method [12]. In the present work, we demonstrate how the MMC approach may be used to
obtain approximations of interfaces and common curves in experimental systems from data gen-
erated using CMT. The specific objectives of this work are: (1) to develop and assess procedures
needed to apply the MMC algorithm to CMT data; (2) to use these procedures to approximate
the interfaces and common curves in a multiphase porous medium system and to generate esti-
mates of the measure of the extent of these entities; and (3) to estimate the mean curvature of
an interface.
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2. METHODS

In a three-phase porous media system, three interfaces Ωwn, Ωws, Ωns and one common curve
Ωwns may exist. The objective of the MMC algorithm is to construct approximations of these
objects from values of two continuous functions, S(x) and F (x), each of which is known at the
node points of a regular grid. The interfaces in the system are obtained as isosurfaces from these
functions, with S(x) = νs corresponding to the solid surface, and F (x) = νwn corresponding
to the interface between wetting and non-wetting fluids. As in the MC algorithm, surface
approximations are formed by marching through the cubes formed by adjacent grid nodes and
constructing a list of triangles corresponding to the desired surface.

In the MMC algorithm, three possibilities exist for each grid cube in a three-phase system:
(1) only one phase is present in the cube, (2) two phases are present in the cube, or (3) all
three phases are present in the cube. For Case 1, no interfaces or common curves exist in the
cube. For Case 2 one interface is present, but no common curve. For Case 3, three interfaces
and a common curve exist. For a Case 2 cube, the steps used in the standard MC algorithm
are applied to obtain the interface. For a Case 3 cube, the MC algorithm is used first to
construct the solid surface; then interpolation is applied to approximate F (x) on the solid
surface. Linear interpolation along triangle legs may next be used to determine the location of
points on the common curve Ω̌wns, where the hat has been used to denote that this object is
an approximation. Subdivision of the solid surface at the common curve is used to obtain the
interface approximations Ω̌ws and Ω̌ns. Points on the wn interface are then determined along
cube edges, excluding any points for which S(x) < νs. These points are combined with the
common curve points to obtain the triangle vertices for the approximation Ω̌wn. Further details
of the MMC algorithm may be found in McClure et al. [12].

To apply the MMC approach, we must first obtain suitable functions F (x) and S(x), along with
isovalues νs and νwn. The general procedure that we use to obtain this information from CMT
data is shown in Fig. 1. Unprocessed CMT data consists of initial and final energy intensities for
a large number of photon beams that are passed through a sample at different angles. Inversion
of this data yields a three-dimensional representation of the photon attenuation in each voxel
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Figure 1. Formatting procedure used to obtain input data for the MMC ap-
proach from data obtained using x-ray tomography.
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Figure 2. Histograms showing the range of mesh values occupied by: (a) two-
phase and (b) three-phase data. Isovalues νs and νwn determine the range of
values corresponding to each phase.

in the system. This information is passed to the formatting procedure outlined above in the
form of a dry two-phase image obtained prior to the injection of any fluid into the system, and
serves as the source of information for the function S(x). Subsequently, three phase systems
are analyzed and the photon attenuation distribution is used to compute F (x).

Similarly to the MC algorithm, the MMC algorithm is designed to work most effectively when
F (x) and S(x) are smooth functions. Typically, the initial images obtained using CMT are
not sufficiently smooth to apply either of these approaches directly without significant error.
Because of this, smoothing operations are applied to the data to reduce variations that occur due
to experimental effects and noise in the reconstruction step. The most widely used smoothing
operators are the mean filter, the median filter, and the Gaussian filter. The mean and Gaussian
filters are discrete convolution operators, while the median filter selects the median value from a
fixed number of neighboring values. In our approach, we apply a 3× 3× 3 mean filter operation
twice to obtain S(x) and F (x). More information about smoothing operators can be found in
Davies [5]. For the systems under consideration here, this filtering provided sufficiently smooth
fields, while still preserving sharp interfaces of interest.

Determination of the isovalues νs and νwn was accomplished using histograms as shown in
Fig. 2. First, νs was assigned the value occurring the minimum number of times within the
region separating the two peaks corresponding to the solid and void-space values. This selection
minimizes the likelihood that regions within the pore-space would be misclassified as being
inside the solid, or vice versa. For the fluid interface isovalue, νwn, three-phase data was used.
For this data, three distinct peaks were observed corresponding to the values for each phase.
Using information from the two-phase data, we cropped out the solid phase values to yield a
histogram showing only air and water values, as shown in Fig. 2 (b). This isovalue νwn was
chosen to be the maximum value of the solid phase, which was also near the value occurring
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the minimum number of times in the region separating the two peaks in the cropped air-water
histogram. This choice is logical because it minimizes the possibility that regions of wn interface
will be mistakenly found near the solid.

After surface approximations were obtained using the MMC algorithm, these surfaces were used
to compute other interfacial quantities. One such quantity is the mean curvature of the interface
between wetting and non-wetting fluids, which is defined at the microscale as

Jwn = ∇ · nwn (1)

where nwn is the unit normal to the wn surface. However, F (x) = νwn at the interface so that
this equation may be rewritten as [14]

Jwn = ∇· ∇F

|∇F |
. (2)

Because the function F (x) is defined in all of space, the mean curvature may be computed
numerically at all grid points by evaluating eqn (2) using standard finite difference stencils to
approximate the derivatives. An interpolation scheme was then applied to obtain approximate
values of Jwn for all points on the approximate surface Ω̌wn. The average mean curvature, Jwn,
was computed by integrating Jwnover Ωwn

Jwn =

∫
Ωwn

Jwn dr∫
Ωwn

dr
. (3)

3. RESULTS AND DISCUSSION

(a) (b)

Figure 3. Slice of CMT data set showing (a) two- and (b) three-phase data
along with approximations to Ω̌wn, Ω̌ws, and Ω̌ns constructed using MMC.
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Figure 4. Relative error for interfacial areas computed from the MMC surfaces
Ω̌wn, Ω̌ws and Ω̌ns. The number of voxels per mean grain diameter (0.58 mm) is
plotted on the x-axis. The value of the interfacial area at the finest grid resolution
was assumed to be exact.

We analyzed CMT data for an air-water-solid system by applying the formatting procedure
shown in Fig. 1. The system was described by approximate values of the photon attenuation
coefficient on a 650 × 650 × 280 mesh with a constant grid spacing of 16.8 µm. The data
set analyzed corresponded to to saturation conditions near the end of secondary imbibition.
Consequently the capillary pressure for this system was close to zero. The air-water interfacial
tension was 0.0681 N/m.

Interfacial areas for each of the component surfaces were computed using the interfaces obtained
with the MMC algorithm. To assess the accuracy of the approach, we applied MMC to a sub-
domain of size 150×150×150, using a series of meshes obtained by sparsifying this subdomain.
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Figure 5. Curvature of the wn interface for a region of CMT data.

The interfacial area value obtained for the finest mesh was used to compute relative error for
the interfacial area estimates obtained using the coarser meshes. Plots of this relative error are
shown for each of the interfaces in Figs. 4 (a), (b), and (c). The grid spacing in this system
is normalized with respect to the mean grain diameter, which was determined to be 0.58 mm
using a sieve analysis.

The mean curvature of the wn-interface was evaluated using the computational approach out-
lined in the previous section. We found that the curvature varied significantly over the interface,
both throughout the system and on individual interfaces. This variation was expected because
of the existence of disconnected phases. The capillary pressure, which is the product of the
interfacial tension and the mean curvature, of individual isolated non-wetting phase features
was expected to vary as well. For individual interfaces, such as the one shown in Fig. 5, the
presence of films coating the solid phase may also influence the curvature. As a consequence, the
curvature of an individual interface, though expected to be constant based on Laplace’s equa-
tion, may, in fact, vary with position on the interface. To illustrate this effect, we computed
the distance to the solid surface for each location where a value of curvature was computed on
Ω̌wn. These values are plotted in Fig. 5. From this figure, it can be observed that variability
in the curvature is inversely related to the distance of a point on the interface from the closest
solid surface. This observation is consistent with the idea that the geometry of the solid sur-
face influences the curvature of the wn interface. We also found that the interfacial curvature
approaches a constant value at greater distances from the solid surface. However, due to the
presence of a disconnected phase, the relation between the macroscale capillary pressure and
the interfacial curvature is complex.

4. CONCLUSIONS

An MMC approach was used to approximate the interfaces and common curves in a three-phase
system visualized using CMT. Accurate estimates of interfacial areas were obtained. The mean



8 McClure, Adalsteinsson, Wildenschild, Gray and Miller

curvature for the air-water interface was also computed, and we observed significant variation
in this curvature both for the full system and for individual interfaces. Computation of the
distance to the solid surface for each point on the air-water interface showed that the variability
in curvature is greater for parts of the interface closer to the solid surface. Future research will
focus on developing a better understanding of the factors determining interfacial curvatures in
multiphase porous medium systems and the use of interfacial quantities to advance the state of
macroscale multiphase porous media models.
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