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ABSTRACT 

The Method of Characteristics (MOC) in the context of finite element method was applied 
to the complete 2-D shallow water equations for 2-D overland flow. For two-dimensional 
overland flow, finite element or finite volume methods are more flexible in dealing with 
complex boundary. Recently, finite volume methods have been very popular in numerical 
solution of the shallow water equations. Some have pointed out that finite volume methods 
for 2-D flow are fundamentally one-dimensional (normal to the cell interface). The results 
may rely on the grid orientation.  The search for genuinely multidimensional numerical 
schemes for 2-D flow is an active topic.  We consider the Method of Characteristics (MOC) in 
the context of finite element method as a good alternative. Many researchers have pointed out 
the advantage of MOC in solving 2-D shallow water equations that are of the hyperbolic type 
that has wave-like solutions and at same time, considered MOC for 2-D overland flow being 
non-tractable on complex topography. The intrinsic difficulty in implementing MOC for 2-D 
overland flow is that there are infinite numbers of wave characteristics in the 2-D context, 
although only three independent wave directions are needed for a well-posed solution to the 
characteristic equations. We have implemented a numerical scheme that attempts to 
diagonalize the characteristic equations based on pressure and velocity gradient relationship. 
This new scheme was evaluated by comparison with other choice of wave characteristic 
directions in the literature.  Example problems of mixed sub-critical flow/super-critical flow 
in a channel with approximate analytical solution was used to verify the numerical algorithm. 
Then experiments of overland flow on a cascade of three planes (Iwagaki 1955) were solved 
by the new method. The circular dam break problem was solved with different selections of 
wave characteristic directions and the performance of each selection was evaluated based on 
accuracy and numerical stability. Finally, 2-D overland flow over complex topography in a 
wetland setting with very mild slope was solved by the new numerical method to demonstrate 
its applicability. 
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1. INTRODUCTION 

The simplified form of the two-dimensional shallow water equations, e.g., the diffusion 
wave or kinematic wave approximation, has been frequently used in modeling the two-
dimensional shallow overland flow originating from rainfall-runoff process, irrigation and 
flows in flood plains and wetlands. On the other hand, the full two-dimensional shallow water 
equations have been extensively studied for fast transient flow processes (dam break type 
flood propagation and hydraulic jumps) or deep surface water flows in estuary and ocean. 

Chow and Ben-Zvi (1973) reported the first two-dimensional hydrodynamic model for 
overland flow using the Lax-Wendroff scheme. Since then, many numerical schemes based 
on finite difference or finite volume methods have been studied (Zhang and Cundy, 1989; 
Fielder and Ramirez, 2000; Zhao et al., 1994; among others) and Katopodes and Strelkoff 
(1978; 1979) developed a numerical scheme based on the method of characteristics in the 
framework of finite difference method for two-dimensional dam break simulations.   

In the finite element framework, it is well known that Galerkin finite element methods 
perform very poorly for advection-dominant shallow water flows.  The streamline upwind 
finite element methods (SUPG) apply selective dissipation to dampen numerical oscillation.  
Lately, the discontinuous Galerkin finite element method has also been applied for trans-
critical shallow water flows (Schwanenberg and Harms, 2004). 

All above-mentioned methods are Eulerian methods with some stabilization schemes. 
Since the shallow water equations are PDEs of hyperbolic type, characteristics-based or 
Eulerian-Largragian methods are more appropriate. The characteristic Galerkin method 
(Zienkiewicz et al., 1999) was developed for the scalar advection equation but is not directly 
applicable to the shallow water equations. Since more than one characteristic speeds are 
involved, the characteristic-based split (CBS) scheme was proposed to resolve this difficulty.  
Paillere et al. (1998), Brufau and Garcia-Navarro (2003) and Garcia-Navarro et al. (1999) 
studied genuinely multidimensional upwinding schemes for the 2D shallow water equations 
based on a residual distribution scheme with wave models.   

2. GOVERNING EQUATIONS 

The governing equations for two-dimensional overland flow are the shallow water 
equations based on the conservation law of mass and momentum. Comparing to the 
conservative form, the primitive form is more revealing for the intrinsic physical property of 
the shallow water equations and amendable to advective schemes.  The governing equations 
written in the primitive form: 
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where h is water depth; u is the velocity component in the x-direction; v is the velocity 
component in the y-velocity, respectively. R is the source/Sink term as a result of rainfall, 
evapotranspiration and infiltration, etc. Without losing generality, the eddy turbulent term, 
momentum exchange flux, surface shear stress (wind effect), etc. have been omitted.  

The bed slopes and frictional slopes are given as : 
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where g is gravitational acceleration, Z0 is the bed elevation above a datum, n is the 
Manning’s roughness coefficient. 

Equations (1) through (3) can be written in matrix form as 
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For an arbitrary wave propagation direction k  =(kx, ky) =(cos θ, sin θ); θ is the angle of 

the wave direction from x-direction, let the matrix B be the linear combination of the matrices 
Ax and Ay as follows 
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The three eigenvalues of matrix B are 
 

1 cos sinu vλ θ θ= + ,  2 cos sin ,u v cλ θ θ= + + , and  3 cos sinu v cλ θ θ= + −  (7) 
 

The wave celerity is defined ghc = .   The primitive form can be recast in the characteristic 

form by using the eigenvectors associated with matrix B 
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The characteristic variable vector W is defined as 
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where W1 is a characteristic variable associated with a shear wave, which has no equivalent in 
one-dimensional flow (θ=0). W2 and W3 are characteristic variables associated with the 
positive and negative gravity waves, respectively. 

 This is the characteristic form of two-dimensional shallow water equations with an 
arbitrary wave direction K=(cosθ, sinθ). The left hand side terms represent water wave 
propagation in the characteristic wave directions and can be written with the total derivative 
along the characteristics:  
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The coupling terms (S1, S2, S3) cannot be simultaneously eliminated and as in the case of the 
Euler equations (Hirsh et al., 1987), this results in the non-unique selection of upwind 
directions for two-dimensional flows. It is noteworthy that the above characteristic equations 
in Lagrangian form (10) are identical to both the original conservative and primitive forms of 
the shallow water equations. No numerical approximations have been introduced.    

 The governing equations must be supplemented with initial condition and appropriate 
boundary conditions for a well-posed two-dimensional overland flow problem. Wave 
characteristic directions at the boundary determine the required boundary conditions.      

3. NUMERICAL METHODS   

Equation (11) is the basis of the characteristics-based finite element scheme. At the 
interior nodes, backward tracking along the three characteristics is performed by a sub-
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element tracking scheme (Cheng et al., 1997). The solution values at the foot of the 
characteristic curve are interpolated by linear finite elements. At the boundary nodes, 
characteristic directions and flow directions are used to determine the needed boundary 
conditions. Details on implementation can be found in (Yeh et al., 2006) and only the choice 
of characteristic wave directions will be discussed.    

3.1 Characteristic wave directions 
 

After the selection of two specific characteristic directions with the propagation angles, θ1 
and θ2, the new characteristic equations are defined as: 
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where ω = cosθ1 cosθ2 + sin θ1 sin θ2. Since ω should not be zero, the two wave directions 
cannot be orthogonal. 

Choosing the two wave characteristic directions (θ1 and θ2) is the most critical part of the 
characteristics-based finite element method. It can be seen that the first characteristic speed 
(u, v) is along the streamlines and only the two characteristic directions associated with the 
gravity waves need to be chosen.   

 The first approach is the wave directions based on maximum diagonalization.  The 
first choice is based on the minimization of the coupling term (Equation (12).  This follows 
the diagonalization approach for the Euler equations suggested by Hirsh et al. (1987). By 
setting the coupling terms to zero, we have the following relationships.  
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From the above algebraic equations, we observe that the first characteristic direction is 
related to the shear wave, and the two gravity waves share the same second characteristic 
direction.  
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 The first characteristic direction is determined by: 
xh

yh

∂∂
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tan 1θ  that is in the pressure 

gradient direction. The second characteristic direction, if exists, is based on the solution of the 
following equation: 
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It can have two, one or zero solutions. If no solutions can be found, the following 
particular characteristic direction as suggested in Roe (1986) for the treatment of the Euler 

equations will be used: 
yvxu
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It is noteworthy that by choosing wave decomposition following the flow gradients (depth 
and velocity), it may be possible to minimize the coupling terms and obtain diagonalization of 
the shallow water equations. However, numerical experiments show that this approach often 
suffer from convergence problem (e.g., Paillere et al., 1998). The characteristic directions are 
dependent on the numerical solution and sensitive to the accurate evaluation of the gradients 
of water depth and velocity components. Numerical stability and convergence are the major 
concern. 

The second approach is the characteristic decomposition proposed by (Paillere et al., 
1998).   When the flow is supercritical, the angle θ2 is taken to be along the Froude line. The 
Froude number is defined as (Fr2 = (u2+v2)/c2) and the Froude angle is (sin θ2= 1/Fr).  If the 

flow is sub-critical, the propagation angle is taken as 
22

1

1
tan

Fr−
=θ . 

The first characteristic direction θ1 is chosen to be equal to the angle θ2 in order to 
maximize the determinant of the transformation (ω = 1.0). The coupling terms will not be zero 
with this selection of characteristic directions. On the other hand, numerical experiments 
shows that this approach is more stable.   

Another approach is the ad-hoc wave directions based on some geometric 
parameters. For example, the characteristic directions can be specified to be along the x-
direction or y-direction or along the steepest elevation gradients.  This approach is less 
accurate and grid orientation of the numerical solutions may occur.  

4. NUMERICAL EXAMPLES        

   The performance of the new numerical scheme was verified and tested with several 
typical overland flow examples. Only the circular dam break problem will be presented due to 
the page limit.  

Two-dimensional Circular dam break problem is an academic test problem. A circular 
dam with a radius of 11 m is located in the center of a 50 m x 50 m computational domain. 
The bed is horizontal and frictionless. The initial water depth in the dam is 10 m and 1 m 
outside the dam (Figure 1). The dam is instantaneously removed at time = 0.      

It has been widely used in hydraulics literature to test performance of different numerical 
methods (e.g., Schwanenberg and Harms, 2004; Tseng and Chu, 2000 and Alcrudo and 
Garcia-Navarro, 1993, among others). The dominant wave propagation direction is known a 
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priori.  It is along the radial directions. So it is a good example to test impact of chosen wave 
directions on numerical solutions.    

 

FIGURE 1. Water Depth of Circular Dam-break Problem (t=0 and 0.69 s)  

As pointed out by Schwanenberg and Harms (2004), the solution between the shock wave 
and the rarefaction wave is not flat as in the corresponding one-dimensional dam break. This 
difference arises from the two-dimensional nature of the flow and is a good test for the 
correctness of a numerical solution. As shown in Figure 1, the solution solved by the 
characteristics based finite element method was able to capture this aspect of the solution 
quite well. The radial symmetry of water depth is also preserved well considering the use of 
triangular elements and a perfect symmetry could not be set at the beginning of the 
simulation. 

 The grid orientation effect of selected arbitrary wave directions was demonstrated in a 
solution that used the x-direction as the second characteristic direction. As can be seen in 
Figure 2, a pre-specified characteristic direction cannot capture the two-dimensional nature as 
well as by a dynamically computed wave direction (the second approach).  

   

 

FIGURE 2. Impact of Selected Characteristic Direction on Computed Water Depth 

5. CONCLUSION 

We have demonstrated that it is feasible to apply the method of characteristics in the 
framework of finite element method for the shallow water equations for two-dimensional 
overland flow. The advantages in such a numerical scheme include the straightforward and 
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physics-based treatment of boundary conditions; the source terms are easily handled and 
numerical instabilities and oscillation in Galerkin or simple upwind finite element methods 
are avoided.  The judicious choice of wave characteristic directions is the critical aspect.  
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