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Abstract

We present a mixed adaptive variational multiscale method for solving elliptic second
order problems. This work is an extension of the adaptive variational multiscale method
(AVMS), introduced by Larson and Målqvist [9, 10, 11], to a mixed formulation. The
method is based on a particular splitting into coarse and fine scales together with a sys-
tematic technique for approximation of the fine scale part based on solution of decoupled
localized subgrid problems. We present the mixed AVMS method and derive a posteriori
error estimates for both linear functionals and the energy norm. Based on the estimates we
propose an adaptive algorithm for automatic tuning of critical discretization parameters.

1. INTRODUCTION

We consider the Poisson equation on mixed form with positive diffusion coefficient
a ∈ L∞(Ω): 




1
a
σ −∇u = 0 in Ω,
−∇ · σ = f in Ω,

n · σ = 0 on Γ.
(1.1)

We assume the integral over the polygonal domain Ω of the right hand side to be zero,∫
Ω

f dx = 0, in order to get a well posed problem with a solution u ∈ H1(Ω)/R and
σ ∈ V = {v ∈ H(div; Ω) : n · v = 0 on Γ}, see [1] for definitions of these spaces. The
boundary of Ω is denoted Γ. Our main focus is to develop a method for solving this
problem in the case when a has fine scale features that can not be resolved by a single
mesh.

The variational multiscale method was introduced in 1995 by Hughes [7, 8]. Here the
spaces are divided into a coarse and a fine part and then analytical methods are used to
approximate the effect of the fine scales on the coarse scale. See also the work by Arbogast
[2] for mixed formulations.

In [9, 10, 11] we develop a new multiscale method for the standard formulation of
Poisson’s equation with diffusion coefficient a. We also derive a posteriori error estimates
both in the energy norm and for linear functionals and based on these estimates we
propose and implement adaptive algorithms.

In this paper we present the mixed adaptive variational method. We also derive a
posteriori error estimates for both linear functionals and the energy norm of the error
and based on the estimate we formulate an adaptive algorithm that automatically tunes
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the parameters in the method according to the error estimate. This is a very important
feature of the method.

The remainder of the paper is organized as follows: in Section 2 we present the method
and discuss implementation issues; in Section 3 we derive a posteriori error estimates and
in Section 4 we present an adaptive algorithm.

2. THE MIXED VARIATIONAL MULTISCALE METHOD

We start by deriving the variational formulation of equation (1.1) by multiplying the
first equation with a test function v ∈ V = {v ∈ H(div; Ω) : n · v = 0 on Γ}, integrate
over the domain Ω, and integrate by parts. We also multiply the second equation by a
test function w ∈ W = L2(Ω)/R and integrate over Ω. The weak form reads: find σ ∈ V
and u ∈ W such that, {

( 1
a
σ,v) + (u,∇ · v) = 0,
−(∇ · σ, w) = (f, w),

(2.1)

for all v ∈ V and w ∈ W , where (v, w) = (v, w)Ω =
∫
Ω

v w dx. Since we focus on problems
that features fine scale behavior it is natural to assume that we will not be able to get
enough accuracy by just solving the problem on a single mesh using a single processor.
With this in mind we split the spaces V = V c ⊕ V f and W = Wc ⊕Wf into a discrete
coarse part, V c and Wc, that we can resolve using a standard finite element method on a
single mesh and a fine part, V f and Wf , that needs to be taken care of in a non-standard
way.

By this argument we end up with the variational multiscale formulation, see [7] for an
overview, of equation (1.1): find σc ∈ V c, σf ∈ V f , uc ∈ Wc, and uf ∈ Wf such that,

{
( 1

a
(σc + σf ), vc + vf ) + (uc + uf ,∇ · (vc + vf )) = 0,

−(∇ · (σc + σf ), wc + wf ) = (f, wc + wf ),
(2.2)

for all vc ∈ V c, vf ∈ V f , wc ∈ Wc, and wf ∈ Wf .

2.1. Splitting into Coarse and Fine Scales. There are many possible ways of splitting
the spaces V and W into coarse and fine parts. In this paper we will use the lowest order
Raviart-Thomas elements on rectangles together with piecewise constants for the coarse
spaces. For the fine scale we use the natural hierarchical basis.

We note that some products present in equations (2.2) will actually vanish using this
split,

(wc,∇ · vf ) =
∑
K∈K

(wc,∇ · vf )K =
∑
K∈K

wK
c

∫

∂K

n · vf dx = 0, (2.3)

where wK
c is the constant value wc has at coarse element K and K = ∪K is the set of

coarse elements on Ω. We also have,

(wf ,∇ · vc) =
∑
K

(wf ,∇ · vc)K =
∑
K

∇ · vK
c

∫

K

wf dx = 0, (2.4)

where ∇ · vK
c is the constant vector ∇ · vc at coarse element K. Equation (2.3) and (2.4)

holds for all vc ∈ V c, vf ∈ V f , wc ∈ Wc, and wf ∈ Wf .
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2.2. The fine scale equations. If we in particular study the set of equations with fine
scale test functions in equation (2.2) i.e. letting vc = 0 and wc = 0 and use the identities
in equation (2.3) and (2.4) we get the following system: find σf ∈ V f and uf ∈ Wf such
that, {

( 1
a
σf ,vf ) + (uf ,∇ · vf ) = −( 1

a
σc,vf ),

−(∇ · σf , wf ) = (f, wf ),
(2.5)

for all vf ∈ V f and wf ∈ Wf . We will have to somehow split (2.5) in to independent
localized problems that can be solved in parallel.

We let φi be the lowest order Raviart-Thomas basis functions on the coarse mesh. This
means that we can write σc =

∑
i∈N σi

cφi, where σi
c ∈ R and N is the set of coarse edges.

Further we let ψi = Isuppφi
/2d, where I is the indicator function and d is he dimension

of Ω. We note that ψ is piecewise constant on the coarse mesh and that
∑

i∈N ψi = 1
since we use rectangular meshes. These sets of functions will help us localize the fine scale
equations.

In order to do this we need to introduce two help problems. The first one reads: find
ξi ∈ V f and ζi ∈ Wf such that

{
( 1

a
ξi,vf ) + (ζi,∇ · vf ) = −( 1

a
φi,vf ),

−(∇ · ξi, wf ) = 0,
(2.6)

for all vf ∈ V f , and wf ∈ Wf and i ∈ N . Here f is replaced by 0 and σc is replaced by
φi compared to equation (2.5). We are going to introduce T as the solution operator to
equation (2.6),

ξi = Tφi. (2.7)

The second problem reads: find βi ∈ V f and ρi ∈ Wf such that
{

( 1
a
βi,vf ) + (ρi,∇ · vf ) = 0,
−(∇ · βi, wf ) = (fψi, wf ),

(2.8)

for all vf ∈ V f , and wf ∈ Wf and i ∈ N . Here instead σc is replaced by 0 and f by fψi.
We introduce the following notations,

σf,i = σi
cξi + βi, (2.9)

and,
uf,i = σi

cζi + ρi, (2.10)

and state the localized fine scale equations: find σf,i ∈ V f and uf,i ∈ Wf such that,
{

( 1
a
σf,i, vf ) + (uf,i,∇ · vf ) = −( 1

a
σi

cφi, vf ),
−(∇ · σf,i, wf ) = (fψi, wf ),

(2.11)

for all vf ∈ V f , wf ∈ Wf , and i ∈ N . We let β =
∑

i βi, ρ =
∑

i ρi. Since all equations
are linear we have,

σf =
∑
i∈N

σf,i =
∑
i∈N

σi
cξi + β, (2.12)

and for the scalar variable,

uf =
∑
i∈N

uf,i =
∑
i∈N

σi
cζi + ρ. (2.13)
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2.3. Approximation by solving local Neumann problems on patches. At this
point we have been able to split the fine scale equations into lots of subproblems, equation
(2.11), and in order to solve these we need to compute solutions to equations (2.6) and
(2.8). Each of these still needs to be solved in an infinite dimensional space. In this
section we discuss how to compute approximate solutions to these equations.

We let V c = V H be the lowest order Raviart-Thomas finite element space and Wc =
WH be the space of piecewise constants on a rectangular mesh ∪K = K with mesh
function H defined as a piecewise constant function equal to the diameter of the current
element. Since V f and Wf are infinite dimensional they also need to be discretized. We
introduce a new mesh function h < H individually for the decoupled problems by refining
the coarse mesh once or several times.

Our aim is to find optimal coarse scale approximations Σc ∈ V H and Uc ∈ WH in the
spaces V H and WH which are discrete. For the approximation of the fine scale solutions
Σf,i and Uf,i we introduce corresponding solution spaces, V h(ωi) and Wh(ωi) where {ωi}
are domains (patches) such that,

supp(φi) = supp(ψi) ⊂ ωi ⊂ Ω. (2.14)

The fine scale spaces V h(ωi) and Wh(ωi) are constructed on the patch ωi as a hier-
archical extension of the spaces V H and WH restricted to the patch, with homogenous
Neumann conditions n · vf = 0 on the boundary of the patch, ∂ωi, for all vf ∈ V h(ωi).

We will frequently refer to layers in the rest of this paper. Layers are a measure of
how large the patches are. One layer will be the two coarse element on which the coarse
Raviart-Thomas base function has its support, two layers are these two coarse element
together with all coarse element that neighbors the first two and so on.

The computable versions of equations (2.6) and (2.8) reads: find ξh
i ∈ V h(ωi) and

ζh
i ∈ Wh(ωi) such that

{
( 1

a
ξh

i , vf ) + (ζh
i ,∇ · vf ) = −( 1

a
φi,vf ),

−(∇ · ξh
i , wf ) = 0,

(2.15)

for all vf ∈ V h(ωi), and wf ∈ Wh(ωi) and i ∈ N and: find βh
i ∈ V h(ωi) and ρh

i ∈ Wh(ωi)
such that {

( 1
a
βh

i ,vf ) + (ρh
i ,∇ · vf ) = 0,

−(∇ · βh
i , wf ) = (fψi, wf ),

(2.16)

for all vf ∈ V h(ωi), and wf ∈ Wh(ωi) and i ∈ N .
If we write the method in terms of the approximate fine scale solutions Σf and Uf we

get: find Σf,i ∈ V h(ωi) and Uf,i ∈ Wh(ωi) such that
{

( 1
a
Σf,i,vf ) + (Uf,i,∇ · vf ) = −( 1

a
Σi

cφi, vf ),
−(∇ ·Σf,i, wf ) = (fψi, wf ),

(2.17)

for all vf ∈ V h(ωi), and wf ∈ Wh(ωi) and i ∈ N . The real numbers Σi
c builds up the

discrete coarse scale solution Σc =
∑

i∈N Σi
cφi. This gives us a discrete version of the fine

scale equations. The next step is to present the full numerical method of approximating
the coarse part of the solution Σc and Uc.

We use equation (2.2) as a starting point and replace the fine scale test functions vf by
Tvc, where T is given from equation (2.7). Together with equation (2.3), equation (2.4),
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the fact that (wf ,∇ · Tvc) = 0 for all wf ∈ Wh(ωi), and −(∇ · Σf , wf ) = (f, wf ) from
equation (2.17) we state the following approximate method: find Σc ∈ V H ,Σf,i ∈ V h(ωi),
Uc ∈ WH , and Uf,i ∈ Wh(ωi) such that





( 1
a
(Σc + Σf ),vc + Tvc) + (Uc,∇ · vc) = 0,

−(∇ ·Σc, wc) = (f, wc),
( 1

a
Σf,i,vf ) + (Uf,i,∇ · vf ) = −( 1

a
Σi

cφi,vf ),
−(∇ ·Σf,i, wf ) = (ψif, wf ),

(2.18)

for all vc ∈ V H , vf ∈ V h(ωi), wc ∈ WH , wf ∈ Wh(ωi), and i ∈ N .

3. A POSTERIORI ERROR ESTIMATE

3.1. Postprocessing of Uf,i. In this section we introduce functions U∗
f,i that are post

processed (improved) versions of Uf,i. We use the method described in [13] and [12].
To state the estimates we also need a technical definition to state the error representa-

tion formula. We let Fi be the coarse face on which |φi| = 1 i.e. Fi = {x : |φi| = 1}. We
next define the auxiliary function Uc,i.

Definition 3.1. For each fine element K ∈ K(ωi) we let UK
c be the constant interior

value of Uc on K and define Uc,i on ∂K as,
{

Uc,i = UK
c when x ∈ Fi,

Uc,i = 0 otherwise.
(3.1)

Thus Uc,i is defined on all faces of every fine scale element K. It takes the value zero on
all faces except Fi. On Fi it takes either value of the discontinuous function Uc depending
on which side of Fi element K is on.

3.2. Error Representation for Linear Functionals. We introduce the following dual
problem, {

1
a
χ−∇η = ω,
−∇ · χ = 0.

(3.2)

Using the dual problem we can derive an error representation formula for a linear func-
tional.

Proposition 3.1. For arbitrary U∗
f,i ∈

⊕
K∈K P1(K) it holds,

(σ −Σ,ω) =
∑
i∈N

(−1

a
(Σi

cφi + Σf,i) +∇U∗
f,i,χ) (3.3)

−
∑
i∈N

∑

K∈K(ωi)

(U∗
f,i + Uc,i,n · χ)∂K\∂ωi

−
∑
i∈N

(U∗
f,i,n · χ)∂ωi\Γ

−
∑
i∈N

(fψi +∇ · (Σi
cφi + Σf,i), η − πcη − πf,iη).
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The error representation formula (3.3) can be used to create an adaptive algorithm as
it stands. The dual problem needs to be solved numerically. The more effort we put into
the calculation of the solution to the dual problem the better control of the error we get.
We may also proceed on the calculation using estimates to get abound of the error.

3.3. Error estimates. In this paper we are primarily interested in deriving a posteriori
error estimates which are easy to implement and scale properly with the error so that
they can serve as a basis for adaptive algorithms. We are thus not interested in tracking
constants C independent of the mesh size.

We present an error estimate in the energy norm,

‖σ −Σ‖a = (
1

a
σ −Σ, σ −Σ)1/2. (3.4)

Theorem 3.1. For arbitrary U∗
f,i ∈

⊕
K∈K P1(K) it holds,

‖σ −Σ‖a ≤
(∑

i∈N
C‖√a‖2

L∞(ωi)
‖∇U∗

f,i −
1

a
(Σi

cφi + Σf,i)‖2
ωi

)1/2

(3.5)

+


∑

i∈N
C‖√a‖2

L∞(ωi)

∑

K∈K(ωi)

h−1‖[U∗
f,i + Uc,i]‖2

∂K\∂ωi




1/2

+

(∑
i∈N

C‖√a‖2
L∞(ωi)

‖h−1/2U∗
f,i‖2

∂ωi\Γ

)1/2

+

(∑
i∈N

C‖√a‖2
L̃∞(ωi)

‖h

a
(fψi +∇ · (Σi

cφi + Σf,i))‖2
ωi

)1/2

,

where we use the notation,

‖√a‖L̃∞(ωi)
= max

K∈K(ωi)
‖a‖L∞(K)‖ 1√

a
‖L∞(K). (3.6)

4. The Adaptive Algorithm

We will base our adaptive strategy on the energy norm estimate presented in Theorem
3.1. The same ideas may be used in the duality based case. The parameters we will
tune to get an improved solution are the individual mesh size on each patch and the
individual size of each patch. We do not discuss how the coarse mesh is chosen. The idea
is that we have reached a point where we can not afford a richer coarse space and need
to consider parallel methods. The coarse mesh will in practise probably be constructed
using a standard adaptive algorithm for a single mesh, see [5, 3] for such methods.

We will use the error indicators from Theorem 3.1 to refine and extend the patches. The
refinements does not need to be uniform since we can calculate indicators for individual
fine element on the patch. However in this section we will present a simple algorithm that
uses different but uniform meshes on each patch.
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We have the following four error indicators if we ignore the constants,



‖√a‖2
L∞(ωi)

‖∇U∗
f,i − 1

a
(Σi

cφi + Σf,i)‖2
ωi

,

‖√a‖2
L∞(ωi)

∑
K∈K(ωi)

h−1‖[U∗
f,i + Uc,i]‖2

∂K\∂ωi
,

‖√a‖2
L∞(ωi)

‖h−1/2U∗
f,i‖2

∂ωi\Γ,

‖√a‖2
L̃∞(ωi)

‖h
a
(fψi +∇ · (Σi

cφi + Σf,i))‖2
ωi

.

(4.1)

We are mainly interested in creating an adaptive algorithm that automatically improves
the solution in an iterative fashion based on an error estimate that scales correctly in the
parameters of interest. The main goal is therefore not to calculate a good approximation
of the error. This means that we are more interested in how the four indicators compare to
each other than of their absolute value. But when we look at the four term we immediately
see that the fourth term has a different a dependent term in front of it. However this is
not a big issue since if the a coefficient is constant on the fine mesh, and we can assume
that it is close to constant since we have resolved the coefficient with the fine mesh, we
have the following identity,

‖√a‖2
L∞(ωi)

= max
K∈K(ωi)

‖a‖2
L∞(K)‖

1√
a
‖2

L∞(K) := ‖√a‖2
L̃∞(ωi)

. (4.2)

With this result in mind we are ready to present four indicators that will be used in the
adaptive algorithm,





Xi = ‖∇U∗
f,i − 1

a
(Σi

cφi + Σf,i)‖2
ωi

,
Yi =

∑
K∈K(ωi)

h−1‖[U∗
f,i + Uc,i]‖2

∂K\∂ωi
,

Zi = ‖h−1/2U∗
f,i‖2

∂ωi\Γ,

Wi = ‖h
a
(fψi +∇ · (Σi

cφi + Σf,i))‖2
ωi

.

(4.3)

We do not take the a dependent coefficient into account since it multiplies all expressions
with the same factor. The four error indicators in equation (4.3) are easy and cheep to
calculate.

Since we are not primarily interested in the absolute size of these estimators, just how
they compare to each other, we do not use a tolerance as a stopping criteria. Below we
will sketch a simple adaptive algorithm based on the four estimators in equation (4.3).

(1) Calculate the solution to equation (2.18) Σ using small patches with low resolution.
(2) Calculate the four error indicators on each patch, equation (4.3).
(3) For large values in Xi, Yi, and, Wi refine the mesh once for patch i.
(4) For large values in Zi increase the patch size by one layer for patch i.
(5) Stop if the solution is sufficiently good or go back to 1.
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Birkhäuser, 2003.

4. S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, Springer Verlag,
1994.



8 Mats G. Larson and Axel Målqvist
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