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ABSTRACT

 This study provides the basic steps needed to use a Shan-Chen (S-C) type two-component
Lattice Boltzman model for simulating wetting � nonwetting displacement experiments and
pressure saturation curves. The experimental data consist of CMT observations several Sotrol-
water displacements  inside a glass bead system with a resolution of 17 microns.  An analysis
of dimensionless quantities shows that capillary forces dominate over viscous, gravitational
and inertial forces. The study also provides a procedure for simultaneously determining the
surface tension and the contact angle.  Subsequent simulations in observed porous media with
a total  of  2e7 voxels  show that  pressure-saturation equilibria  are  reached in  1e5 to  >4e5
iterations. Preliminary results show that saturation profiles are non-uniform, with much drier
conditions near the non-wetting boundary and wetter conditions near the wetting boundary.
Both effects are probably related to limitations in percolation and, possibly, spatial correlation
of fluid interfaces.  

1. INTRODUCTION

Recent advances in observational and computational techniques have facilitated the study
of  fluid  dynamics  and  interfacial  geometry  in  porous  media.  Within  some  experimental
limitations, computed tomography X-ray (CMT) and magnetic resonance imaging (MRI) are
now able to accurately map the 3D structure of porous geometries. Computational advances
largely  concern  Lattice  Boltzmann  (LB)  method  that  has  been  shown  to  be  useful  in
simulating microscale flow and interfacial phenomena in porous media.  

The goal of this presentation is to provide insight into what is needed to make a link
between 3D experimental observations of interfacial  geometry and LB simulations.   The
analyses  are  partly  performed  on  idealized  systems  and  finally  applied  to  large  scale
simulations of the real physical systems.  
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2. METHODS

2.1 Lattice Boltzmann model summary. 
The basis of our LB model is the two component model proposed  by Shan-Chen [1993,

1994] and modified by Martys and Chen [1996]. For reasons of brevity this model will not be
discussed in detail, only the fluid-fluid (cohesion) and fluid-solid (adhesion) interactions will
be given here.  Fluid cohesion, causing surface tension, and fluid adhesion, which defines the
wettability and contact angle, are implemented in the Shan-Chen model by modifying the
microscale momenta of the fluids, leading to an alteration in the velocity distributions at the
scale of LB nodes. Fluid cohesion forces are defined by  

F c ,�=�n�� x��
i

19

Gc ,� ,� ' , in� ' � x�e i �e i (1)

where  n(x) is the number density at location  x  (x,y,z),  and  e is the D3Q19 coordinate
system that indicates the relative position of nearest and next-nearest neighbors; i indicates an

individual LB link. The variables α and α' denote the two different fluid components. Fluid

miscibility is set by the parameter interaction strength parameter Gc,αα ',i that is equal to 2Gc for
nearest neighbor links, but Gc for more distant next nearest neighbor links [Martys and Chen,
1996]. The value of Gc should be positive and identical for both fluid components. Increasing
Gc beyond a critical  value will  lead to progressively purer  component mixtures.  At some
point, however, numerical instabilities are encountered because of negative number densities.

Pressure is determined by both fluids and their interaction. The following expression
holds for a mixture of ideal gases in the limit of very weak interactions [Shan and Doolen,
1996]

P=
1

3
[n� �x ��n� ' � x�]�12G cn�n� ' (2)

capillary pressure, Pc, is defined as the pressure difference of the non-wetting and the wetting
phases.

Adhesive forces  between a  solid  phase and a  fluid component  are  determined by the
presence of solids in neighbouring nodes that surround a fluid node. 

F a ,�=�n �x��
i

19

Ga ,� s �x�e i�e i (3)

here  s(x+ei) is 1 for a solid and 0 for a pore.  Ga controls the interaction strength and
wetting  properties  of  the  fluids.  To  simulate  systems  of  variable  wettability,  a  positive
interaction strength would be used for non-wetting fluid and a negative for wetting fluid. By
changing the interaction strength, different contact angles between a fluid-fluid and fluid-solid
interface can be obtained. 

2.2 Experimental system. 
Here we very briefly summarize how the experimental data was obtained and describe the

physical properties of the system. Detailed descriptions of the experiments and methods can
be found in Wildenschild et al. [2002] and Culligan et al. [2004, 2005].

The CMT experiments used to characterize the system of interest were conducted at the
GeoSoilEnviro Consortium for  Advanced Radiation sources  (GSECARS) bending magnet
beamline,  Advanced  Photon  Source,  Argonne  National  Laboratory.  The  resulting
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experimental  data  consists  of  three-dimensional  pore-scale  images  of  oil  and  water
displacement in a glass bead porous medium. The diameter of the soda lime glass beads range
between 0.6-1.4 mm. Water was used as wetting phase and Soltrol 220 (a light non-aqueous
phase  liquid,  LNAPL)  as  non-wetting  phase.  The  top  and  bottom  of  the  sample  were
connected to oil and water reservoirs, respectively. A vertical section of 6 mm of the sample
was imaged with a resolution of 17 microns per voxel. After image analysis various properties
of the system such as fluid saturations and fluid-fluid interfacial areas were quantified from
the image data.

The properties of the experimental system are given in Table 2. The properties of Soltrol
220 have been reported differently in the literature and often it is unclear which temperature
the  measurements were made at. The Soltrol properties in Table 2 are from Kechavarzi et al.
[2000],  valid  for  a  temperature  of  23  oC,  which  corresponds  well  with  the  ambient
temperature at the experimental site.

The wetting properties for the oil and water used in the experiment have been examined
by measuring the contact angle. Due to some problems with the measurement it was difficult
to precisely determine the contact angle, yet based on results an estimate of a zero degree
contact angle was considered plausible. This means that the water almost perfectly wets the
glass beads and therefore oil is considered the non-wetting phase. 

TABLE 1. Properties of the experimental system.

Property Value Units

Porosity, Φ 0.34

Resolution (voxel size) 1.7⋅10-5 m

Sample height (imaged section) 6.1⋅10-3    (360) m    (voxels)

Sample diameter 6.9⋅10-3    (405) m    (voxels)

Glass bead density, ρbead 2.5⋅103 kg/m3

Surface Area 3.33⋅103 m/m2

Characteristic pore radius, R 2.07⋅10-4 m

Water density, ρw 1⋅103 kg/m3

Soltrol density, ρo 0.79⋅103 kg/m3

Water dynamic viscosity, µw 1.00⋅10-3 Pa s

Soltrol dynamic viscosity, µo 4.82⋅10-3 Pa s

Soltrol-water interfacial tension, σo-w   0.042 N/m

Soltrol-water-glass contact angle, θ 0 degrees

Flow rate (Darcy velocity) range, vw 3.6⋅10-6  to 2.2⋅10-5 m/s

Gravitational acceleration, g 9.8 m/s2

Capillary pressure range, pc 0 to 1100 Pa

Water saturation range, Sw 0.1 to 0.9 -

2.3 System simplification. 
A common way to evaluate the  forces controlling the experimental  flow system is  to

determine the Bond number (Bo, the ratio of gravitational and interfacial forces), the capillary
number (Ca, the ratio of viscous and capillary forces), and the Reynolds number (Re, the ratio
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of inertial  and viscous forces).  Ranges of these numbers for  our experimental  system are
given in Table 2. Based on the magnitude of the Bond number we can conclude that capillary
forces acting on the fluids are much larger than the gravitational forces (e.g buoyancy). In
addition,  the  height  of  the  imaged  section  of  sample  is  only  6  mm,  thus  making  the
gravitational  potential  difference between top and bottom much smaller  than the pressure
range over  which the experiment  was conducted.  We can therefore make the simplifying
assumption that gravitational forces can be neglected in the LB simulations. Similarly, the
Capillary number shows that viscous forces are negligible compared to capillary forces while
the Reynolds number shows that inertial forces are much smaller than viscous forces. These
dimensionless quantities confirm that capillary forces dominate the system as also found by
Culligan et al. [2005]. The above analysis allows for a substantial system simplification for
subsequent  LB  modeling  as  viscous,  gravitational,  and  inertial  forces  can  be  omitted.
However, we must still define density, interfacial tension, contact angle and the space scaling.

TABLE 2. Dimensionless numbers governing the oil-water experiments with the subscript x

referring to oil or water.

Dimensionless characteristics Min Max

Bond number,       Bo=g ��w��o�R
2
/�o�w      2.09⋅10-3

Capillary number, Ca=	x
x /�� o�w 2.52⋅10-7 7.43⋅10-6

Reynolds number, Re=�x	x R/��
x � 3.58⋅10-4  1.34⋅10-2

2.4 Space and pressure scaling
When relating physical space with the lattice space it is convenient to define Laplace�s

law in a reduced physical scale by dividing the physical capillary pressure with the physical
surface tension. There is still space dimension, which can be removed by defining the space

scale of the physical radius Rp as hp⋅RL,  where Rp and hp are in physical units [m] and RL is in

lattice units (in our case  h=17⋅10-6 [m], Table 1). The same approach can be used for the

lattice scale.  By equating the lattice terms to the physical terms we can define an equation
that provides the physical capillary pressure 

Pc , p=
� p Pc , L
h p� L

[Pa] (4)

In order to calculate the physical capillary pressure we need to know the resolution (hp),
the lattice capillary pressure, Pc,L, and the surface tension of the lattice and physical systems,

σL and σp, respectively. All these values are known from the experiments or from numerical

experiments in the next section. 

2.5 Numerical Calibration
To  set  lattice  interfacial  tension  and  contact  angle  the  fluid-fluid  and  fluid-solid

parameters  Gc  and Ga must be derived empirically in numerical experiments.  From eqns. 1
and 3 it is clear that both parameters effectively appear as a product with the number density,
n(x). Without going into detail here we set Gc  at 0.025 and the sum of the number densities of

both components, or  total density  ρi, at 2.0. Equivalent results are obtained for reasonable
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combinations of  Gc and  ρi as long as  Gc ρi=0.05.  This particular value was chosen because

larger values sometimes produced numerical instabilities, whereas smaller values resulted in
insufficient separation of the wetting and non-wetting components. 

Lattice surface tension and contact angle for 2D and 3D systems were obtained by
enclosing equal masses of  wetting fluid (blue) and a non-wetting fluid (red) in a closed
capillary consisting of parallel walls in 2D and a square duct in 3D. The red fluid was placed
in the middle of the capillary (cf. Figure 1) with blue  on top and bottom. The parameter Gc

was set at 0.025 while Ga was varied between 0 and  0.02. The simulations were carried out
for different tube radii (3,4,5,9,14,19,29, and 39 in 2D and 3,4,5,9, 14 and 19 for 3D systems);
the tube length was 160 pixels (320 for the simulations with 39-pixel radii). The simulations
were run for 100,000 iterations.

The top row in Figure 1 shows that the contact angle changed from 90 degrees at Ga=0
(both fluids are neither wetting nor non-wetting) to zero at Ga  ~0.012. At larger values of Ga

the red non-wetting fluid detaches from the wall and an increasingly thicker film is formed.
The  lower  row  in  Figure  1  shows  the  results  at  Ga=0.012  for  all  radii  for  which  2D
simulations were carried out.  

Figure 2a and 2B show the dependence of the contact  angle and surface tension as a
function of Ga and all radii for the 2D and 3D systems, respectively.  The surface tension was
determined from the curvature of the interfaces, the pressures difference between the red and
blue  fluids  and  Laplace's  law.  The  contact  angle  was  found  by  calculating  the  angle  of
intersection of the fluid interface and the wall.  There appears to be a slight dependence of the
contact angle on the tube radius. The surface tension is constant for larger tube radii. We note
that curvature cannot be determined exactly for small radii because of a limited number of
pixels in the interface. In addition, wall effects may play a relatively more important role for

. 5

FIGURE 1. Tube simulations with enclosed wetting and non-wetting fluids. Top row
show the formation of more intense curvature for a non-wetting bubble in a 2-D tube with
a radius of 19 pixels for Gc=0.025 and Ga between 0 and 0.02.   Bottom row shows results
for Ga=0.012  for tubes with radii between 6 and 39 pixels (in the latter case only half the

image is shown).
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small radii as the effect of the fluid-fluid interaction causes a higher density of wetting fluid
and a lower density of non-wetting fluid near the wall. A zero contact angle was found at
Ga=0.0116 and 0.0120 for 2D and 3D systems, respectively. Corresponding lattice surface
tensions were 0.165 and 0.168, respectively. 

Results  of  the  tube simulations  yielded lattice  capillary pressures  as  high as  0.11.
These values allow us to conduct numerically stable LB simulations for capillary pressures
between 0 and 1600 Pa (oil-water) and 0 and 2800 (air-water) for the system outlined in Table
1, well in range of the experimental conditions. 

FIGURE 2. Surface tension and contact angle for 2D (left) and 3D systems (right) versus the
value of the adhesion parameter, Ga, and several tube radii.

3. FLUID DISPLACEMENT SIMULATIONS POROUS MEDIA

Here we present some initial results of four displacement simulations that were carried out
on porous systems described by Culligan et al. [2004, 2005]. The simulated media consist of
405x406x100 (x,y,z)  voxels  at  the  original  resolution  of  17e-6  m per  voxel.  Because  of
limitations in CPU time only 30% of the observed volume is studied here.  The medium was
filled with a wetting fluid with Ga=-0.012 and Gc=0.025. Pressure boundaries were added on
top and bottom consisting of eight layers of pure fluid. The bottom boundary was filled with
wetting  fluid  and  separated  from  the  porous  media  by  an  artificial  filter  consisting  of
alternating fluid and solid voxels (porosity=0.75).  The filter served to prevent breakthrough
of non-wetting fluid to the opposing boundary. The top boundary was  filled with non-wetting
fluid  with  Ga= 0.012 and  Gc=0.025.  The total  number of  nodes was approximately  2e7;
simulation time was in the order of one week for 1e5 iterations on a four-CPU AMD-64
cluster.

Three simulations consisted of simple pressure steps from lattice Pc=0 to 0.038 (for a total
of 1e5 iterations),  0.053 (2e5 iterations) and 0.068 (4e5 iterations).  The fourth simulation
consisted of five consecutive pressure steps every 1e5 iterations from Pc=0 to 0.008, 0.023,
0.038, 0.053, and 0.068 (this simulation was still ongoing at the time of writing). Figure 3
shows the  saturation  of  the  porous  medium versus  iterations  (time)  for  each  of  the  four
simulations. We note here that while equilibrium can be reached within 1e5 iterations for the
lower pressures (0.008, 0.023, 0.038), more than 2e5 or 4e5 iterations are needed for Pc=0.053
and 0.068, respectively. No equilibrium saturation was reached for these pressures. We also
note that a cluster reboot was needed during the Pc=0.038 step for the multi-step simulation
and that subsequent restart (arrow) of the simulation resulted in more drainage (i.e. lower
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saturation) than expected from the results for the single step simulation for Pc=0.038. A better
restart procedure was possible for the single step simulation at 2e5 iterations for Pc=0.068.

Figure  4  shows  vertical  saturation  profiles  for  the  Pc=0.038  and  0.068  single  step
simulations; the vertical porosity profile (blue) is also shown. Saturation contours are shown
in increments  of  2e4 iterations  with each 1e5 iterations  marked with  thick  red  lines.  An
interesting feature in these figures is that the saturation profiles are not uniform.  For the
Pc=0.038 simulation it is evident that the non-wetting fluid fails to percolate beyond a depth
of -90 pixels � even though this simulation attained equilibrium at the 1e5 iteration endpoint.
A surprisingly low saturation is reached near the top of the sample, which is caused by the
presence of wetting-non wetting interfaces at all pore entries on the top of the sample.  The
Pc=0.068 simulation is  still  not  in  equilibrium at  4e5 iterations -as  also suggested bu the
contours for 4.2e5 and 4.4e5 iterations. It appears that a more or less �uniform� saturation
profile exists between a depth of  -10 and -80 with the noteworthy result that there appears to
be little correlation with the porosity profile.  Like the Pc=0.038 simulation these results are
drier at the top and much wetter at the bottom.  An explanation for this behaviour is that there
may be regions in the porous medium that are still inaccessible to wetting or non-wetting
fluids because of pore neck/body, or percolation,  effects.  Another explanation may be that
the fluid-fluid interfaces take up space, and therefore should exhibit some spatial correlation
that, depending on the interfacial curvature, could extend beyond the spatial correlation of the
solid  phase.   We are  currently  working on methods  to  elucidate  these  effects  as  well  as
quantifying the effects of interfacial curvature and interfacial area.

FIGURE 3. Saturation versus time (iterations) for four simulations.  The
pressure profile for the multi-step simulation is also shown. Because of CPU
problems, two simulations were restarted at points indicated by the arrows.

4.   CONCLUSION

This study provided a basic approach for the calibration of a Shan-Chen type model for
simulations  of  wetting-non-wetting  displacements  in  porous  media.   The  model  was
subsequently  applied  to  observed  porous  geometries.   The  current  simulation  results  are
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preliminary, but it appears that saturation profiles are not uniform near the wetting or non-
wetting  boundaries.   This  makes  the  subsequent  analyses  of  the  simulation  results  more
difficult and may require even larger simulation domains before a representative elementary
volume for saturation, interfacial area and curvature is obtained.

FIGURE 4. Saturation profiles for the single step simulations for Pc=0.038
and 0.068 with contours every 2e4 iterations (red lines every 1e5 iteration)

the porosity profile is also shown.
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