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Abstract

We are introducing a novel technology applicable to the robust interpretation of the
spatial distribution of permeability in heterogenous formations. The evidence theory
approach is based on a combination of geophysical data together with expert opinion,
and has its core strengths in 1) enabling the simultaneous use of probabilistic uncertainty
and other (non-additive) representations of uncertainty (e.g., fuzzy or possibilistic), 2)
integrating expert opinion with objective information, and 3) enabling a complementary
(rather than sequential) use of geophysical data during the characterization process. A
site application demonstrates the approach.

1. INTRODUCTION

Subsurface environmental, engineering, and agricultural investigations often require
characterization of uncertain hydraulic parameters. Conventional sampling or borehole
techniques for measuring these parameters are costly, time consuming, and invasive. Geo-
physical data can complement direct characterization by providing multi-dimensional and
high resolution subsurface measurements in a minimally invasive manner.
Several techniques have been developed using joint geophysical-hydrological data to

characterize the subsurface (e.g., Rubin et al. 1992, Copty et al. 1993). Hyndman et al.
(1994) developed an inversion algorithm that uses both seismic cross-well travel times
and solute tracer concentrations to estimate inter-well geology and hydraulic parame-
ters. Copty and Rubin (1995) developed a stochastic approach that combined surface
seismic data and well data to estimate the spatial arrangement of lithofacies and their
mean hydrogeological parameters. The use of joint geophysical-hydrogeological data for
parameter estimation in the unsaturated zone has been a focus in several studies (e.g.,
Mazac et al. 1988, Sheets and Hendricks 1995). Hubbard et al. (1997) investigated the
joint use of ground penetrating radar (GPR) and borehole data for the estimation of
vadose zone hydraulic parameters in bimodal systems. Some studies focused on extract-
ing spatial correlation information from geophysical data, including Knight et al. (1996,
1997), Rea and Knight (1998) and Hubbard et al. (1999). Besides imaging subsurface
structures, geophysical methods have also been used to monitor subsurface flow and trans-
port processes. Time-lapse imaging has illustrated the potential for elucidating dynamic
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subsurface processes. A number of studies have illustrated the potential of electrical re-
sistivity tomography (ERT) for monitoring tracer experiments in soils (e.g., Binley et al.
1996, 2002). The spatiotemporal information that is obtained using ERT can be used to
calibrate flow and transport models (Binley et al., 2002).
Two important observations based on these studies are as follows: 1) No universal meth-

ods are available for converting geophysical attributes to hydrogeological ones. One of
the most challenging problems is the issue of inconsistency in the methods of geophysical
data acquisition and interpretation. Ezzedine et al. (1999) report on a related problem
demonstrated by the fact that resistivity at a field site was measured along boreholes
using several different tools, each characterized by a different support volume, sometimes
leading to dramatically different results. The inherent nonlinear nature of the inversion
problem associated with the GPR as well as ERT has been reported (Copty and Rubin et
al., 1993; Vanderborght, 2005). 2) The complementary nature of the geophysical methods
are not exploited. Indeed, there is no single geophysical method effective in most envi-
ronmental and subsurface conditions, and all are strongly scenario-dependent. Thus it
becomes essential to characterize the information that each individual geophysical method
provides in combination. In other words, modeling the influence of various environmental
conditions on these geophysical methods and on the information they provide in combi-
nation, in our opinion, is a very promising approach to improving our ability to determine
subsurface parameters, especially permeability, which seems to have received very little
attention.
Our goal in this paper is to develop a methodology that addresses both of the above

mentioned issues. The strength of the approach is in explicitly quantifying and integrat-
ing into the characterization process the insight of a geophysicist on 1) the individual
capabilities that these methods have and 2) what the meaning of the data is that they
produce when interpreted collectively. The resulting model is based upon the mathe-
matics of evidence or belief theory. In Section 2, we outline the essential mathematical
background of the approach. In Section 3, we demonstrate an application followed by our
concluding remarks in Section 4.

2. METHODOLOGY

We first introduce some definitions pertinent to the discussion in this section. We use
capital letters to represent sets. We use lower case letters to denote elements in a set.
For example, set X can represent an interval of permeability values and x ∈ X denotes
a particular permeability value in this set. We call set A a subset of X if it can contain
only a portion of X and denote set inclusion by A ⊆ X. For example, if X represents an
interval of log permeabilities [−12,−8], then A = [−10,−9] is a subset of K. Note that
an element of a set is also considered a subset. The intersection of two sets is the set that
they have in common. For example, the intersection of B = [−11,−8] and C = [−12,−10]
is D = [−11,−10] and it is denoted by D = B ∩ C.
The central element of our framework is the basic probability mass assignment that we

denote as m. For any subset A of X, m(A) is the part of the belief that supports A (e.g.,
the claim that the (unknown) soil type x0 is in the subset A of all soil types in X), and
that, due to lack of information, does not support any subset of A. In the following we
will refer to m(A) as the basic probability mass of A. The initial total belief is scaled to
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1, and thus m(A) ∈ [0, 1], with the sum of the beliefs m(A) of all subsets equal to 1. The
set X is the universal set and any subset of it with nonzero basic mass is a focal element
of the evidence. We will follow the approach of Smets and Kennes (1994) to belief theory
and do not require the empty set ∅ to have zero basic mass as is the case in the original
theory of evidence outlined by Shafer (1976).
Additional functions that are essential to the theory are the set function of belief and

plausibility. The degree of belief bel(A) is defined over all subsets A ⊆ X as

bel(A) =
X

B⊆A, B 6=∅
m(B) (1)

and it quantifies the total amount of “justified specific” support given to the claim that,
for example, the unknown soil type x0 is in the subset A of all soil types. The term
“justified” means that B supports A, thus B ⊆ A, and the term “specific” means that B
does not support Ac, the complement of A, thus B * Ac and B 6= ∅.
Similarly, the degree of plausibility pl(A) is defined as,

pl(A) =
X

B⊆X, B∩A6=∅
m(B) = bel(X)− bel(Ac) (2)

The plausibility of A in (2) quantifies the maximum amount of “potential specific” support
that could be given to the claim that the soil type x0 is in A. The term “potential” means
that B might come to support A without supporting Ac if a further piece of evidence is
taken into consideration, thus B ∩A 6= ∅.
The functions m, bel and pl are always in one to one correspondence. They all describe

the same information but seen from different points of view. In particular, bel(A) and
pl(A) can be viewed as the lower and upper bounds on a family of probability measures
such that bel(A) ≤ P (A) ≤ pl(A) where P (A) denotes the (unknown) probability that
the unknown soil type x0 is in A. Note that using the belief framework to represent the
uncertainty associated with measurements or estimates of soil types, or any other relevant
variable, gains us a significant practicality: we are able to convey both randomness (as a
probability value is assigned to each focal element) and imprecision (as a focal element
can be a collection of soil types or an interval of permeability values). In other words, we
are in the position of synthesizing in a single framework for both probabilistic and fuzzy
information where the latter essentially is shown to be a body of evidence with nested
focal elements (Klir and Wierman, 1999). We also note that the least committed belief
function (analogous to probability density with maximum entropy in probability theory)
defined on a universal set X is the vacuous belief function defined bym(A) = 1, if A = X,
and 0, otherwise. It represents total ignorance as to the true value of the unknown soil
type x0.We will revisit this notion in the next section.

3. APPLICATION

We obtained a typical finely-bedded sample block of Berea sandstone (32 cm x 14.8
cm x 5.8 cm) from the Amherst quarry, Ohio. Berea sandstone has long been regarded
as a laboratory standard in rock properties studies, owing to its uniformity and ‘typical’
physical properties. Although commonly described as ‘homogeneous’ throughout the lit-
erature, subtle heterogeneities due to mineral layering are visible from the sub-millimeter
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Figure 1. AutoScan data maps of Berea sandstone used in the study: (a)
resistivity. (b) acoustic velocity (shear wave).

scale to decimeter scale. Similar heterogeneities are visible in the field from the decimeter
scale to the meter scale.
The starting point in our methodology involves constructing detailed petrophysical

maps of the sample, as exemplified by the resistivity and acoustic velocity (shear wave)
data on a Berea slab shown in Figures 1 a and b, respectively. Each map consists of a
collection of individual point measurements (> 2000) made with an AutoScan probe, a
multi-probe physical properties scanner, developed by New England Research Inc. Au-
toScan allows millimeter-scale mapping of geophysical properties on a slabbed sample
or core of rock or soil. The properties that can be measured by AutoScan in addition
to resistivity and velocity include: gas permeability, complex electrical impedance (4
electrode, wide frequency coverage), and ultrasonic reflection (ultrasonic impedance and
permeability).
Once the resistivity and velocity maps have been generated, we can apply our method-

ology to estimate the permeability of this Berea slab. In order to use these data simul-
taneously such that they complement each other, the geophysicist identified the ratio of
resistivity to velocity, R/Vp, as a reasonable metric that he could relate to the permeability
of the Berea slab (see Figure 2a).
This was followed by the geophysicist providing us with statements that related ranges

of permeability values to R/Vp. A sample set of such statements that we will further
analyze to demonstrate the methodology are as follows:

1. If the ratio R/Vp is too low, then permeability is unknown.
2. If the ratio R/Vp is low, then permeability is very low or low.
3. If the ratio R/Vp is high, then permeability is medium or high
4. If the ratio R/Vp is very high, then permeability is very high.
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Figure 2. (a) Ratio of Resistivity and Velocity data (R/Vp). (b) Basic
mass assignments. At a given R/Vp, m [Bi] (R/Vp) represents the the basic
mass of focal Bi, which is a subset of possible conductivity ranges that the
geophysicist thinks R/Vp implies.

In these statements above, observe that the geophysicist uses X = { very low ; low ;
medium ; high ; very high }, a collection of pre-determined permeability ranges (associated
with soil types) as his set of universe. The estimation of a permeability range, which we
demonstrate here, is the starting point of our ongoing work which involves the conditioning
of a priori estimate of the permeability field as we will discuss later again.
The next step involved quantifying the meaning of these statements as shown in Figure

2b. Each of the curves m [Bi] is associated with a subset Bi of X and reflects the meaning
of the i’th statement above for given values of the ratio R/Vp. In the first statement,
for example, nothing is known about the permeability range, thus B1 = X (i.e., total
ignorance). In the second statement, the ratio is not informative enough to distinguish
between low and very low permeability ranges whereas the geophysicist can conclude that
it is not in the higher ranges, thus B2 = { very low ; low }. A similar argument applies
to B3 = { medium ; high } and finally, the last subset B2 = { very high } is a trivial one.
We note that at any given R/Vp, we have

nX
i

m [Bi] (R/Vp) = 1

thus, m [Bi] (R/Vp) is a basic probability mass assigned to focal Bi, and their collection
for i = 1, . . . , n forms a body of evidence suggesting what the permeability range ought
to be based on available geophysical data and the insight of the geophysicist.
It is worth mentioning that the numerical representation of basic probability mass

assignments assumes that we can assign numbers representing belief. The general shapes
and tendencies of the curves in Figure 2b are derived from the knowledge that we gather
from the geophysicist. There remain some additional choices, which might initially appear
as a drawback of the approach. However, it is not necessary to have precise estimates of
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these values inasmuch as Milisavljevic and Bloch (2003) also observed good robustness
experimentally. There are two reasons for this robustness: first, the representations are
used for rough information hence do not have to be precise themselves, and secondly,
several metrics (although we have in our application only one, namely, R/Vp) are combined
in the whole reasoning process, which decreases the influence of each individual value (of
individual information). What is important is that the ranking is preserved, as well as
the shape of these curves, and these are derived from the knowledge of the geophysicist.
The above outlined process applies to every pixel in Figure 2a resulting in pixel-based

bodies of evidence. At each pixel, the final step is in making a decision as to what
type of soil (i.e., permeability range) or object is driving the pattern in the data at a
given location. Several decision rules are suggested in the literature. Two well known
decision rules use the basic probability mass assignment function m to calculate the belief
bel(xi) and the plausibility pl(xi), respectively, for each element xi in X. The decision
is to pick the element with the maximum belief or plausibility. Another alternative by
Harmanec and Klir (1994) identifies the representative probability density as the one with
maximum Shannon Entropy among all the probability densities bounded by the belief and
plausibility functions of the available evidence. Here we consider the so called pignistic
transformation of Smets (1998) that constructs a probability density function on X that
satisfies certain rationality requirements. This transformation is given as:

P (xi) =
X

A:xi∈A⊆X

m(A)

|A| (1−m(A))
(3)

where P (xi) represents the probability of permeability range or soil type xi explaining
the pattern in the data, and |A| is the cardinality of subset A. The decision is to pick xi
with the maximum probability.
The result of the pignistic transformation at each pixel is shown in Figure 3b. We

observe a good agreement between the estimated permeability ranges and the true per-
meability values in Figure 3b.
As part of our ongoing work on the general methodology for permeability field char-

acterization, such permeability range or soil type estimates are being used to condition
a prior estimate of the permeability field in the belief theory framework where the prior
field estimate is based on site measurements and expert-based field information.

4. CONCLUSION

We have presented part of an ongoing work on a methodology to estimate a permeability
field. This methodology is based on the theory of belief and it facilitates the integration
of geophysical expert insight on the relation between permeability and a multiple set of
data with diverse geophysical properties. Statements of a geophysicist on this relationship
are translated into basic probability mass assignment functions which in turn facilitated
the prediction of permeability ranges. An application of the methodology to a Berea
sandstone slab demonstrated good agreements between the known permeability field and
the estimated permeability ranges.
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Figure 3. (a) True permeability field of the Berea sandstone slab obtained
using AutoScan. (b) Estimated permeability-range field obtained using the
proposed methodology based on belief theory.
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