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ABSTRACT

We study a turbulent helical dynamo in a periodic domain by solving the ideal magnetohydrody-
namic (MHD) equations with the FLASH code using the divergence-cleaning eight-wave method and
compare our results with with direct numerical simulations (DNS) using the PENcIL Cope. At low
resolution, FLASH reproduces the DNS results qualitatively by developing the large-scale magnetic
field expected from DNS, but at higher resolution, no large-scale magnetic field is obtained. In all
those cases in which a 1:11‘5_,0—*-,( ale magnetic field is generated, the ideal MHD equations yvield too little
power at small scales. As a consequence. the small-scale current helicity is too small compared with
the DNS. The resulting net current lullnh has then always the wrong sign, and it also does not. ap-
proach zero at late times, as expected from the DNS. Our results have implications for astrophysical
{hmmu *-:111]1[1:111{!11*-; of stellar :111{1 5.,:11:1(11( magne tism using 1{1( :11 MHD cml( 'S,
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1 INTRODUCTION

AV

MNano-si ped dust grains, like graphitic particles, palycyeli c ammatic
hydrocarboms (PAHS) ar even nano diamonds, are by number the

ABSTRACT

We investigate the clustering and dynamics of nano-sized particles (nano-dust) in high-
resolution { 1024%) simulations of compressible sothermal hydrody namic turbulence. It is
well-established that large grains will decouple from a turbulent gas fow, while small grains
will tend 1o trace the motion of the gas. We demonstrate that nano-sised grains may cluster
in a turbulent fow (fractal small-scale clustering), which increases the local grain density by
at least a factor of a few. In combination with the fact that nano-dust grains may be abundant
in general, and the increased interaction rate due to turbulent motions, aggregation involving
nano dust may have a rather high probability. Small-scale clustering will also affect extinction
properties. As an example we present an extinction model based on silicates, graphite and
metallic iron, assuming strong clustering of grain sizes in the nanometre range, could explain
the extreme and rapidly varyving ultraviolet extinction in the host of GRB 1405064,

Key words: 15M: dust, extinction - 15M: clouds — turbulence - hydrodynamics

fuid mechanics and statistical physics. For incompressible flows,
mimenous studies have shown that centrifuging of particles away
from vortex cores leads 0 accumulation of particles in comver-
o T S o G - . i e O S
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MHD module & forcing

We use  the MHD  eight-wave  module of
FLASH (Derigs et all [2016]). which is based on a
divergence-cleaning algorithm. The forcing function is
analogous to that used by |[Sur et alf (2014)). exeept that
here only one sign of helicity is used. In particular, we
used an artificial forcing term £ which is modeled as a

stochastic Ornstein-Uhlenbeck process (Eswaran & Popel

1988 [Benzi et al) 2008) with a user-specified lorcing
correlation time, which was taken to be one hall. In the
[ollowing, we consider two values [or the scale separation

ratio ke/ky: a smaller one with a combination of 76
wavevectors with wavenumbers between 2 and 3. and

a larger one with 156 wavevectors with wavenumbers
between 4 and 5. These cases are distinguished by their
average nominal forcing wavenumbers of 2.5 and 4.5,
respectively.
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ARTICLE INFO ABSTRACT
Article history: We describe a high-order numerical magnetohydrodynamics (MHD) solver built upon a
Received 21 January 2016 novel non-linear entropy stable numercal flux function that supports eight travelling

Received in revised form 11 April 2016
Accepted 24 April 2016
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wave solutions. By construction the solver conserves mass, momentum, and energy and
is entropy stable. The method is designed to treat the divergence-free constraint on the

magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The

Keywords: solver described herein is especially well-suited for flows involving strong discontinuities.
Magnetohyd rodynamics Furthermore, we present a new formulation to guarantee positivity of the pressure. We
FLASH present the underlying theory and implementation of the new solver into the multi-
Entropy stable physics, multi-scale adaptive mesh refinement (AMR) simulation code FLASH (http://flash.
Finite volume schemes uchicago.edu). The aceuracy, robustness and computational efficiency is demonstrated with
Pressure positivity a number of tests, including comparisons to available MHD implementations in FLASH,

£ 2016 Elsevier Inc. All rights reserved.
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Exponential growth + saturation
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Linear scale, late times
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B, and B, phase shifted

B = (cosk,z, sinki 2, 0).

Fic. 10— By and By at time 200 (in code units) for k¢ /k1 = 4.5.
Note that the fields now vary with z, and that the phases of Br

and B, are shifted by 90° relative to each other. Yellow (blue)
shades d(‘noto positive (negative) values.
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Controlled by magnetic helicity

the current helicity. The evolution of magnetic helicity
is then given by

d
—(A-B) = —2n(J - B}. (1)
it
where B = VWV x A is the magnetic field in terms ol the
magnetic vector potential A, and J = V x B is propor-
tional to the current density. As can be seen from Egua-
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Expected saturation behavior

Following | Brandenburg] (2001)), we fit the late-time evo-

lution of the magnetic energy to a curve of the form

kei’[
l

Evi—Ex ~ £k E_Eﬂkf“_t*‘“"}} for t+ > tant, [2]

where kT and t..,, are fit parameters that characterize

the effective forcing wavenumber and the effective satura-
tion time, respectively (see Appendix[Affor a derivation).

A. LATE SATURATION PHASE

To understand the origin of Equation (2), we use Equation (I), introduce mean fields, B. as suitably defined planar
averages, and define fluctuations correspondingly as b = B — B, and likewise for the magnetic vector potential
a = A — A and the magnetic current density j = J — J, respective IY Equation ([I) then becomes

(H(?f B) = -2n(J - B) - 2n(j - b), (A1)

where we have ignored the time derivative of {a - b}, because the small-scale magnetic field has saturated at ¢ = teay;

(Figure [I) is approximately constant during the late saturation phase, t > tg. Next, we approximate (A - B) =~
—2 — —=2 . . . .

~(B )/k1, (J - B) = —(B ki, and (j - b) = +(b*)k™. Finally, we approximate (b?)/87 ~ £, and obtain

d
(Q'rjkf + g) Ent = 2k ki1 Ex, (A2)

which can be integrated to yield Equation (Z).
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Fig. 12.— Direct numerical simulations with the PENcIL CoODE
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TABLE 1
PARAMETERS OF THE VARIOUS RUNS.

Res ) Urms "C?E tsat N _ & Tfiﬂ[:j, SH fr Tfﬂﬂ
32 25 028 38 170 0 50 360
48% 25 030 3.2 170 0 66 270
64% 25 030 — @ — 0 — —
64% 25 025 11.7 5 5 34 A70
323 4.5 028 R0 60 0 100 150
48% 45 020 —  — 0 — —
64% 4.5 030 9 — @ — 0 — —
64% 45 025 121 5 5 64 140
643 4.5 021 4.7 10 50 130 49

All quantities are in code units; _; and rf'_fg denote values in units of 1075,
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Fia. 4.— Magnetic energy spectra at times 200, 300, and 3500.
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Fic. 6.— Spectra for the higher resolution run with 642 mesh

points at time 3300, i.e., the end of the run,
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Energy & helicity spectra
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Fig. 9— Comparison of magnetic energy and helicity spectra
for the run with 32% mesh points and ki /k; = 2.5 at £ = 3500.
Positive (negative) values of Hyy are plotted as red (blue) symbols.
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Weird oscillation: never seen before
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Fia. 7.— Late saturation for resolutions 32%, 48%, 64° and
ke /k1 = 4.5. The upper abscissa gives time in microphysical diffu-
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18% mesh points.
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Current helicity not zero
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Fia. 8. — Ewolution of current helicity for runs with different

resolutions (327, 64%) and different scale separation (k¢/k1 = 2.5
and 4.5).
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Fig. 13.— Evolution of (J - B) for the run of Figure[TZ]

the current helicity. The evolution of magnetic helicity
is then given by
{.I' i 4 ¥ § 4
—(A- B} = -2y(.J - By, (1)
di
where B = ¥V x A is the magnetic field in terms of the
magnetic vector potential A, and J = ¥V x B is propor-
tional to the eurrent density. As can be seen from Equa-
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Magnetic helic

ity at early times
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Fui. 14. Evolution of the fractional mapnetic helicity for the
case with 32° mesh points, kg/ky = 2.5, and % = 5 % 1078

(black line), compared with the evolution in DNS with 32° mesh

points, ky/ky = 2.5, and p = 5 x 1072 {blue).
DNS with 64% mesh points (kg/k; = 45, 5 =5

and a solution with FLASH with explicit resistivity (&;/kq

n="5x 107", orange line).

Also shown are a

% 1077, red line),
= 4.5,
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H % 107% (blue), 5 % 107" (green), and 5 % 107" {orange), all at
a resolution of 64 mesh points. The upper abscissa gives time in
effective microphysical diffusion times based on the runs with the
largest saturation value.

With explicit
diffusivity

PARAMETERS OF RUNS WITH THE PENCIL CODE.

Res ky Pryg  tems -’frf'ﬂ‘ teat  3TH0 /M
323292 10 0.11  1.40 120 S1
323 26 10 0.11  1.76 110 81
323 4.5 10 0.11 320 70 78
64 4.5 10 0.12 386 90 82
643 4.5 20 0.10  4.15 105 70
64 4.5 40 0.08 4.20 150 55
cases, n°f = 5 =5 x 1077, and Repy = 30 /1.
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Conclusions

* Dynamo in FLASH qualitatively ok
— But not (at all) quantitatively

« Magnetic helicity violation even at early times
— So this was independent of Spitzer

 Resolution usually much higher,
— But then also more structure
— Which are then effectively still poorly resolved

24






Vallenar







21°24 Tue 2201 TL5%

Vallenar
( 2 Mty 2232 l l




