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ABSTRACT

We study a turbulent helical dynamo in a periodic domain by solving the ideal magnetohydrody-
namic (MHD) equations with the FLASH code using the divergence-cleaning eight-wave method and
compare our results with with direct numerical simulations (DNS) using the PENCIL CODE. At low
resolution, FLASH reproduces the DNS results qualitatively by developing the large-scale magnetic
field expected from DNS, but at higher resolution, no large-scale magnetic field is obtained. In all
those cases in which a large-scale magnetic field is generated, the ideal MHD equations yield too little
power at small scales. As a consequence, the small-scale current helicity is too small compared with
the DNS. The resulting net current helicity has then always the wrong sign, and it also does not ap-
proach zero at late times, as expected from the DNS. Our results have implications for astrophysical
dynamo simulations of stellar and galactic magnetism using ideal MHD codes.

Subject headings:

1. INTRODUCTION

Astrophysical dynamos operate at large magnetic
Reynolds numbers. This means that at large and mod-
erately large scales, magnetic diffusion is negligible com-
pared with the nonlinear terms. However, some level of
magnetic diffusion and viscosity is still needed in numer-
ical simulations to keep the code stable and to dissipate
kinetic and magnetic energies into thermal energy. In
numerical codes that solve the ideal magnetohydrody-
namic (MHD) equations, this is accomplished by purely
numerical means.

In spite of the comparatively small values of the mag-
netic diffusivity, the process of magnetic diffusion is an
essential part of any dynamo, because the magnetic
field evolution would otherwise be reversible. This is
illustrated by what is called the stretch-twist—fold dy-
namo (Vainshtei ichl[1972;|Childress & Gilbert
[1995), where a little bit of diffusion is needed to “glue”
the constructively folded structures together and prevent
this flux rope arrangement from undoing itself. The
need for having magnetic diffusion in a dynamo was
also shown analytically in [Moffatt & Proctor (1985). In
fact, an ideal magnetic field evolution with strictly van-
ishing magnetic diffusivity can always be described in
terms of the advection of two Euler potentials, but no
dynamo solutions have ever been found by this method
(Brandenburg [2010). In view of these complications, is
it then still possible to solve the dynamo problem with
an ideal MHD code? And even if it is possible, will the
solution be wrong and if so, in what way?

There is a related question about the use of ideal MHD
in solving the dynamo problem. Magnetic helicity is
known to play an important role in certain types of dy-
namos, namely those that amplify a large-scale magnetic
field via the « effect. Such dynamos are driven by ki-
netic helicity. This can produce a helical magnetic field,

dynamo — hydrodynamics — MHD — turbulence — Sun: corona, dynamo

but since the magnetic helicity is conserved by the ideal
MHD equations, this happens in such a way that there
is magnetic helicity of opposite signs at different length
scales (Seehafer ; ). The question is therefore,
whether ideal MHD codes can describe this evolution of
magnetic helicity correctly.

Magnetic helicity conservation is an alien concept in
numerical schemes designed to solve the ideal MHD equa-
tions. Such codes are primarily concerned with the con-
servation of mass, momentum, energy, and magnetic flux.
Magnetic helicity, the volume integral of the magnetic
field dotted into its inverse curl, i.e., the magnetic vector
potential, is not normally considered. At large magnetic
Reynolds numbers or at high conductivity, magnetic he-
licity changes only through fluxes QB@rggr_&_Elgldlll%Al)
Those can occur under inhomogeneous conditions or in
the presence of suitable boundary conditions.

Most code benchmarks are concerned with one- and
two-dimensional test problems. In those cases, the mag-
netic helicity vanishes from the outset. We therefore
need to resort to more complex three-dimensional prob-
lems to see the effects of magnetic helicity and its dis-
sipation properties. A suitable benchmark that satis-
fies the aforementioned constraints is the homogeneous
helical dynamo problem in a periodic domain. It pro-
duces large-scale magnetic fields through the « effect, but
the resulting magnetic helicity at large scales must have
the opposite sign to that of the kinetic helicity. How-
ever, when the magnetic field at the wavenumber of the
energy-carrying eddies, k¢, reaches equipartition and sat-
urates, the energy of the large-scale magnetic field is still
weak compared to the field at k¢. The only way the large-
scale magnetic field can grow further is by dissipating
magnetic helicity. This should allow us to infer the rate
of magnetic helicity dissipation. The amplitude of the
large-scale magnetic field is also controlled by the evolu-
tion and destruction of magnetic helicity. This allows us
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to infer the effective scale dependence of the numerical
diffusion operator.

When magnetic helicity dissipation is accomplished by
Spitzer resistivity, the dissipation rate is proportional to
the current helicity. The evolution of magnetic helicity
is then given by

d
“H{A-B) = -20(J - B), 1)

where B = V x A is the magnetic field in terms of the
magnetic vector potential A, and J = V x B is propor-
tional to the current density. As can be seen from Equa-
tion (), the current helicity (J - B) must vanish once
a steady state is reached (Brandenburg [2001). Again,
this steady state is accompanied by a balance of large-
scale and small-scale contributions of opposite signs. Un-
der isotropic conditions, the current helicity at a certain
wavenumber k is equal to the spectral magnetic helicity
times k2, because the former contains two more deriva-
tives than the latter. However, if magnetic helicity dis-
sipation is accomplished through other numerical pro-
cesses, for example through hyperdiffusion, which has a
steeper dependence on the wavenumber, then this can af-
fect the magnetic helicity balance and therefore the final
saturation value. This was demonstrated numerically by
Brandenburg & Sarson (2002). Thus, a helically-driven
dynamo may be an excellent system to study the proper-
ties of magnetic helicity dissipation, especially when this
is accomplished only through numerical processes.

It is useful to begin with models whose numerical res-
olution is relatively small. In fact, even a resolution of
just 323 mesh points is enough to find large-scale dynamo
action; see [Brandenburg (2001) for early models of that
type. His simulations showed that, at higher resolution,
and thus at larger magnetic Reynolds numbers, it takes
progressively longer to reach the final saturation state of
such a system with periodic boundary conditions.

In this paper, the first motivate and describe the details
of our model (Section 2), and then present the results
for the magnetic field evolutions at different numerical
resolutions and compare in some cases with results of
direct numerical simulations (DNS); see Section 3. We
present concluding remarks in Section 4.

2. THE MODEL
2.1. Periodic boundary conditions

We consider here the arguably simplest setup of a
large-scale turbulent dynamo. We drive turbulence
through helical isotropic random forcing, which leads to
an « effect. It is responsible for driving what in a sphere
would be called poloidal and toroidal fields, so the result-
ing system is called an a? dynamo. We adopt periodic
boundary conditions, as is commonly done in numerical
studies of hydrodynamic and MHD turbulence.

We should emphasize from the outset that it is this
assumption of periodicity that is primarily responsible
for causing features of this dynamo that would not occur
in astrophysical setups, namely the generation of a su-
perequipartition magnetic field and a resistively slow evo-
lution toward this final state (Brandenburg(2001)). In real
systems that are not periodic, magnetic helicity fluxes are
believed to be important in high magnetic Reynolds num-

ber turbulence (Blackman & Field 2000). Those fluxes

can prevent a resistively slow evolution while still allow-
ing the system to saturate at approximately the equipar-
tition field strength (Brandenburg[2018). Here, however,
we are interested in quantifying the extent to that non-
ideal effects play a role in an ideal MHD code, and so
periodic boundary conditions are appropriate.

2.2. Setup of the model

We adopt a cubic domain of side length L = 1, so the
smallest wavenumber in the domain is k1 = 27w. We solve
the compressible MHD equations with a forcing function
f on the right-hand side of the momentum equation.
This forcing function is random in space and time, but
has a characteristic wavenumber k¢ that we choose to be
larger than ky by a certain factor. The forcing function
has positive helicity, so (f-V x f)/ke(f?) is positive and
close to unity.

2.3. Code and choice of parameters

We use FLASH! (Fryxell et all2000), to solve the equa-
tions for an isothermal gas, choosing a ideal gas with a
~v = 1 equation of state. The sound speed is unity, so the
root-mean square (rms) value of the velocity w is auto-
matically equal to the Mach number. We force the flow
such that it remains subsonic on average with s =~ 0.3.

We use gaussian units, so the magnetic energy is given
by &m = (B?)/8m, where B is the magnetic field. The
density p is initially unity. Furthermore, because no mass
enters or leaves the domain, the mean density remains
always unity.

We use the MHD eight-wave module of
FLASH (Derigs et all [2016), which is based on a
divergence-cleaning algorithm. The forcing function is
analogous to that used by [Sur et all (2014), except that
here only one sign of helicity is used. In particular, we
used an artificial forcing term F' which is modeled as a
stochastic Ornstein-Uhlenbeck process (Eswaran & Popd
[1988; Benzi et all 2008) with a user-specified forcing
correlation time, which was taken to be one half. In the
following, we consider two values for the scale separation
ratio k¢/ki: a smaller one with a combination of 76
wavevectors with wavenumbers between 2 and 3, and
a larger one with 156 wavevectors with wavenumbers
between 4 and 5. These cases are distinguished by their
average nominal forcing wavenumbers of 2.5 and 4.5,
respectively.

3. RESULTS
3.1. Weak scale separation

In Figure [0, we plot the growth of £y, normalized by
the kinetic energy, £k = (pu?)/2, for different numer-
ical resolutions. Time is given both in code units and
in eddy turnover times, (urmsks)™!. Ignoring density
fluctuations, we define Uy, = (25K)1/ 2, evaluated dur-
ing the saturated phase of the dynamo. In all cases,
the initial exponential growth phase is the same and
the growth rate of the rms magnetic field (proportional

to 811/[/2) is A &~ 0.18 in code units, corresponding to
A/ Urmsks ~ 0.036 in units of the turnover rate. The mag-
netic energy saturates approximately at the equipartition
level with 51\/[ ~ 5}(

! http://flash.uchicago.edu/site/flashcode/
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Fic. 1.— Early evolution of the normalized magnetic energy for

resolutions 323, 483, 643 and k; = 2.5. The upper abscissa gives
time in eddy turnover times based on the run with 483,
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F1G. 2.— Saturation for resolutions 323, 483, 643 and k; =

2.5. The upper abscissa gives time in microphysical diffusion times
based on the run with 483,

The magnetic field evolution shown in Figure [[lis only
the early saturation phase. At later times, the magnetic
energy continues to increase for two of the runs, as shown
in Figure 2l In fact, the system reaches values that ex-
ceed &k by a factor of 4-5.

Following Brandenburg (2001), we fit the late-time evo-

lution of the magnetic energy to a curve of the form

eff

k
En—Ek ~ Ex =L
ky

[1 _ e,znkf(t*tsat)} for t > tgat, (2)

where kfff and tgy; are fit parameters that characterize
the effective forcing wavenumber and the effective satura-
tion time, respectively (see Appendix [Alfor a derivation).
In the simulations in which 7 is formally zero, we also
replace 1 by 7% as an effective parameter that can be
obtained from a fit to the evolution of &y (t). These pa-
rameters are listed in Table [T along with other parame-
ters characterizing the simulations. In particular, we also
compare with the estimated turbulent magnetic diffusiv-
ity, Mo = urms/3k¢ (see, e.g. Blackman & Branden

2002). The ratio 31y /n% corresponds to the magnetic
Reynolds number. In a few cases, however, we also add
an explicit magnetic diffusivity; see the column denoted

Fic. 3.— Visualizations of B; and vectors of B (in white) on
the periphery of the domain at times 200, 300, and 3500. Yellow
(blue) shades denote positive (negative) values.

in Table [l by 7_g. Those runs will be discussed sepa-
rately in Sect.

As we see from Table [I] the value of k¢ does not
vastly exceed the nominal value of k¢. This is some-
what surprising, given that one would have expected
that the numerical diffusion operator might be more ef-
ficient at high wavenumbers, as is the case with hyper-
diffusion; see the corresponding numerical experiments
of Brandenburg & Sarson (2002). This is apparently not
the case. In some of the runs with explicit diffusion, how-
ever, there are cases where k¢ exceeds the nominal value
of k¢ by a factor of 3-5.

There are two more fit parameters. One is 7%, which
is inferred from a fit to the saturation behavior given
by Equation [@). Its values are found to be small by
comparison with the product uymsdz ~ 5 x 1073, where
0x = 1/32 is the mesh spacing. The other fit parame-
ter is tgat, whose values are listed for completeness; they
characterize merely the time when the early saturation
phases ends and this depends also on the value of the ini-
tial field. It is therefore not a parameter characterizing
the numerical diffusion scheme. It turns out to be about
the same for the 482 and 323 runs.

In Figure B we show a visualization of B, on the pe-
riphery of the computational domain at selected times
during the late saturation phase. We see that, at late
times, B, shows a sinusoidal variation in the y direction.
There is also a similar variation of B,, but it is phase
shifted by 90° relative to B, and not shown here. This
type of field structure is one of three possible field con-
figurations that all have negative magnetic helicity; see

(2001)) for details.

In Figure [ we show magnetic energy spectra,
Eyi(k,t), at different times. They are normalized such
that

/ Eni(k, t) dk = Eni(0), (3)
0
is the mean magnetic energy density. We clearly see that

TABLE 1
PARAMETERS OF THE VARIOUS RUNS.

Res  kr  wrms kST tsar n_g n°%  3mo/n°T
323 25 028 38 170 0 50 360
48 25 030 3.2 170 O 66 270
643 25 030 — @ — 0 — —
643 25 0.25 11.7 5 5 34 470
323 45 028 80 60 0 100 150
483 45 029 — @ — 0 — —
643 45 030 — @ — 0 — —
643 45 025 121 5 5 64 140
642 4.5 021 4.7 10 50 150 49

All quantities are in code units; n_g and nejg denote values in units of 106,
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F1c. 4.— Magnetic energy spectra at times 200, 300, and 3500.
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FiG. 5.— Current helicity dissipation spectra, k2Hc(k,t), at
times 200, 300, and 3500.

most of the magnetic energy is at the smallest possible
wavenumber, k = ki, corresponding to the largest pos-
sible scale of the system. In this case, the spectra show
no particular feature at the forcing wavenumber. This
may partly be caused by the relatively small scale sep-
aration ratio, i.e., k¢ is not very large compared to k.
Another reason may be the small resolution of only 323
mesh points. The largest wavenumber in the domain is
the Nyquist wavenumber, kny = 7/éx = 7N/L ~ 100
for this resolution, and ~ 100 for 642 mesh points. Cor-
responding current helicity spectra, He(k,t), scaled with
k2, are shown in Figure [l Note that Hc(k,t) is normal-
ized such that [Hcdk = (J - B), where J = V x B
is proportional to the current density. The scaling with
k2 has been adopted so that the high wavenumber part
of the spectrum can be seen more clearly. Theoretically,
however, we would have expected that, at late times,
(J-B) = 0, so that the positive and negative parts of Hc
should cancel, but not those of k?H¢; see Appendix [Al
Our higher resolution run with 643 mesh points does
not develop a large scale magnetic field. The resulting
magnetic energy spectrum is shown in Figure The
magnetic energy spectrum is seen to peak at kL = 30,
which corresponds to k/kq ~ 5. This is twice as large
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FIG. 6.— Spectra for the higher resolution run with 64% mesh

points at time 3500, i.e., the end of the run.
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FiG. 7.— Late saturation for resolutions 323, 483, 643 and

k¢/k1 = 4.5. The upper abscissa gives time in microphysical diffu-
sion times based on the empirical value nag found for the run with
483 mesh points.

as the value of k¢/k; = 2.5. Such behavior is typical of

small-scale dynamo action (Schekochihin et all[2004).

3.2. Larger scale separation ratio

We have increased the value of k¢ to include wavenum-
bers between 4 and 5. This scale separation ratio is still
not very large, but we should keep in mind that the res-
olution is not very large either, and kny/ki is only 16
for our 322 simulations. The results turn out to be quite
different in many ways: first, the mean magnetic energy
density shows oscillatory behavior (Figure[7]) and second,
the magnetic field develops a large-scale component al-
ready very early on. This behavior is rather unexpected.
We also see that in the kinematic phase, the magnetic
energy grows slightly faster than in the case of a smaller
scale separation ratio. For the run with 64> mesh points,
there is again no large-scale dynamo. Furthermore, nor-
malized by the kinetic energy, the magnetic energy gen-
erated by the small-scale dynamo is now about half as
strong as in the case with k¢/k; = 2.5. This can be ex-
plained by the fact that the effective magnetic Reynolds
number based on the value of k¢ is now smaller.

In Figure [} we show the evolution of current helicity,
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Fic. 9.— Comparison of magnetic energy and helicity spectra

for the run with 323 mesh points and k¢/k; = 2.5 at t = 3500.
Positive (negative) values of Hyy are plotted as red (blue) symbols.

(J - B) for runs with different resolutions (322, 64%) and
different scale separation (k¢/k1 = 2.5 and 4.5). Except
for the run with 642 mesh points and ke/k1 = 2.5, where
(J - B) is seen to fluctuate around zero, we find a clear
evolution away from zero with subsequent saturation at
a negative value for the other two runs. It is therefore
clear that the numerical evolution of magnetic helicity is
— unlike the proper resistive case — not simply controlled
by the value of the current helicity, because a finite value
of (J - B) should continue to drive magnetic helicity,
(A-B), to a new state all the time; see Appendix[A]l Here,
A is the magnetic vector potential with B =V x A.
To compute magnetic helicity spectra, Hw(k,t), we
make use of the fact that, under isotropic conditions,
Hy(k,t) is related to the current helicity spectrum
Hc(k,t) via Hy(k,t) = He(k,t)/k?. For the spectrum
shown in Figure[@ we have verified this relation by com-
puting Hyy(k,t) directly from A in Fourier space (indi-
cated by tildes) as A; = €5 iijl/kQ. It is normalized
analogously to H¢ as [ Hu(k,t)dk = (A - B). In Fig-
ure [@ we compare the magnetic energy with the scaled
magnetic helicity spectrum for the run with 323 mesh
points and k¢/k; = 2.5 at t = 3500 (in code units).

F1G. 10.— B, and By at time 200 (in code units) for k¢/k1 = 4.5.
Note that the fields now vary with z, and that the phases of By
and B, are shifted by 90° relative to each other. Yellow (blue)
shades denote positive (negative) values.

We see that the spectral magnetic helicity is negative
for k = k1 and positive for all larger values of k, except
for one data point near the Nyquist wavenumber.

In Figure [I0, we show visualizations of B, and B, for
k¢/k1 = 4.5 and 323 mesh points. A large-scale magnetic
field develops very quickly. Unlike the case shown in
Figure Bl the mean magnetic field now varies in the z
direction and is here, except for an insignificant overall
phase shift, of the form B = (cos k;z,sin k1 z,0).

3.3. Runs with explicit magnetic diffusivity

FLASH allows for the possibility of adding an explicit
magnetic diffusivity n. We now present simulations usin%
for n the effective value of 5 x 107° found in the 32
simulations with k¢/k; = 2.5. In this case we carry out
simulations with 643 mesh points, where previously no
large-scale magnetic field was found with FLASH. We also
include a run with n = 5 x 107°. In Figure [[1] we show
the results for k¢/k; = 2.5 and 4.5.

It turns out that there is large-scale magnetic field
growth in the case with k¢/ky = 4.5 and = 5 x 1075,
but not for 5x 1075 or more, and also not for k¢ /k; = 2.5.
In both cases, however, there is large-scale dynamo ac-
tion with n = 5 x 1075, Interestingly, the value of % is
always larger than that of 1 by a factor of 3 to 13; see
Table [Tl

To understand the absence of large-scale dynamo ac-
tion for ke/k1 = 2.5 and n = 5 x 10~°, we must re-
member that k¢/k; must exceed a certain limit, which
Haugen et all (2004) found to be around 2.2; see their
Figure 23. Whether the smallness of k¢ is indeed the
reason for the absence of dynamo action in our case with
ke/k1 = 2.5 cannot be conclusively answered and requires
more dedicated tests with the PENCIL CODE, which are
described next.

3.4. Comparison with the PENCIL CODE

We now compare with DNS results obtained with the
PENcIL CODE.2. Again, we use n = 5 x 10~° along with
our two values of k¢/ky, namely 2.5 and 4.5. In both
cases, we find large-scale dynamo action. As expected,
the amplitudes are different; compare the values of kfﬂ
for the different values of k¢ in Table The kinematic
growth rate varies between A = 0.15 and 0.30, which is
compatible with the value of 0.18 obtained with FLASH.

Given that we perform DNS without subgrid scale
modeling, there is a limit to the smallest value of v that
can be used at the resolutions adopted here, which are

2 lhttps://github.com/pencil-code
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FiG. 11.— Saturation for runs with explicit magnetic diffusivity

using (a) k¢/k1 = 2.5 and (b) k¢/k1 = 4.5 with n = 5 x 1073 (red),
5 x 10™* (blue), 5 x 1072 (green), and 5 x 10~° (orange), all at
a resolution of 643 mesh points. The upper abscissa gives time in
effective microphysical diffusion times based on the runs with the
largest saturation value.

323 or 643 mesh points. It turns out that in all cases
with 7 =5 x 107° and v = 5 x 1074, the code produces
acceptable results for ¢ < 2000 time units, but the code
crashes at later times. This problem disappears when the
viscosity is increased to v = 2 x 1073, while n = 5x 107
is kept unchanged. The corresponding values of the mag-
netic Prandtl number, Pry = v/n are given in Table
We see that the results for k?ﬂ are not very sensitive to
the value of v.

It is important to realize that in DNS, there is no n°f,
because the coefficient entering in Equation (2]) is always
the same as the input parameter 7 used. In all cases, the
fit works well and there is no spurious diffusivity entering
the resistively slow saturation phase. This is different in
the FLASH code, where n°ff tends to exceed 7 by a factor

TABLE 2
PARAMETERS OF RUNS WITH THE PENCIL CODE.

Res k¢ Prv Urms kfﬁ tsat  3m0/7
323 22 10 0.11 1.40 120 81
323 26 10 0.11 1.76 110 81
323 45 10 0.11 3.20 70 78
643 45 10 0.12 3.86 90 82
643 45 20 0.10 4.15 105 70
64% 45 40 0.08 4.20 150 55

In all cases, n°ff = =5 x 1077, and Rey; = 3n¢0/1m-
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Fi1G. 12.— Direct numerical simulations with the PENcIL CODE
using n =5 x 1075 and k¢/k1 = 4.5.
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Fic. 13.— Evolution of (J - B) for the run of Figure I2

of 3 to 13.

As discussed above, (J-B) should approach zero at late
times. This is shown in Figure [[3] which demonstrates
that (J - B) is initially zero, begins to rise after about
100 time units, reaches then a positive maximum after
about one third of a diffusion time, and then decays to
zero on a resistive time scale. It is interesting to note
that (J - B) is positive, while in the ideal simulations
with FLASH, it has a negative value; see Figure

Looking at the corresponding magnetic energy spec-
trum of Figure [ with FLASH, we see that there is a
strong dominance of the large-scale field over the small-
scale field. This is also consistent with the correspond-
ing current helicity spectra shown in Figure[5l keeping in
mind that we scaled Ho(k,t) with k2 to show the rather
weak contributions from small scales. Thus, we can con-
clude that the reason for the wrong sign of (J - B) in
the FLASH code is its inability to reproduce the relative
strengths of small-scale and large-scale fields correctly.

3.5. Total magnetic helicity production

An important question concerns the total magnetic he-
licity production during the early small-scale and later
large-scale dynamo processes. We quantify this in terms
of the evolution of the fractional magnetic helicity de-
fined as (A - B)k;/(B?), which is always between +1
and —1; see, e.g., i ili (2010). Tts evolu-
tion is shown in Figure[I4] where we compare the results
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F1c. 14.— Evolution of the fractional magnetic helicity for the
case with 323 mesh points, k;/k1 = 2.5, and neff = 5 x 1075
(black line), compared with the evolution in DNS with 323 mesh
points, k¢/k1 = 2.5, and = 5 x 1075 (blue). Also shown are a
DNS with 643 mesh points (k¢/k1 = 4.5, 7 = 5 x 1072, red line),
and a solution with FLASH with explicit resistivity (k¢/k1 = 4.5,
n =25 x 1072, orange line).

from ideal simulations with those of DNS. We find that
both simulations produce negative magnetic helicity, but
the FLASH code reaches about 90%, while the expected
value from the DNS is only about 60%. By comparison,
even with a larger scale separation of kf/ky = 4.5 in-
stead of 2.5, we still only obtain about 80% in the DNS.
This supports our earlier conclusion that the FLASH code
produces too much power at large length scales.

We also see that, even at early times, the FLASH code
produces already nearly 40% magnetic helicity with 323
mesh points and about 15% with 64 mesh points. The
expected value based on the DNS is basically zero when
ke/k1 = 2.5, and about 2-3% when k¢/k; = 4.5. This
difference at these early times is particularly remarkable,
because this is still the phase when the slow resistive evo-
lution did not yet have time to act. It is even worse in the
run with explicit magnetic diffusivity, were a fractional
helicity of 90% is generated almost immediately.

4. DISCUSSION

Our study has shown qualitative agreement between
earlier resistive simulations and the present ideal MHD
simulations when both the resolution is small (32% or
48% mesh points) and the forcing wavenumber is small
(k¢/k1 = 2.5). At higher resolution (64% mesh points),
we find no large-scale dynamo action at all (neither at
ke/ki = 2.5 nor at 4.5). Of course, given that the am-
bition of an ideal MHD code is to reproduce the results
for zero resistivity, our finding of no large-scale dynamo
activity at 643 mesh points is, in principle, the correct
one, i.e., the magnetic helicity stays zero, and as a con-
sequence also the current helicity never changes. It is
curious, however, that the change between our 483 and
643 results is so abrupt. Furthermore, the qualitatively
different behavior in the form of oscillations found by in-
creasing k¢/k; from 2.5 to 4.5, is also rather surprising.
In addition, as we just saw, the magnetic helicity is not
really zero in the 64> simulation with k¢ /k1 = 2.5, which
is inconsistent with the ideal case. Particularly worri-
some is the case with explicit resistivity, which does show
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an effective resistivity that is larger than what is put in,
and there is rapid magnetic helicity production early on.
All these features — the discontinuous dependence on
resolution, the oscillatory behavior in some cases, and
the spurious magnetic helicity production at early times
— suggest that the ideal state may not be well defined and
that different types of solutions may emerge instead, at
least in this specific case of an ideal MHD solver based on
the divergence-cleaning eight-wave scheme. The behav-
ior expected from the resistive evolution, as reproduced
by the PENCIL CODE, is not a typical outcome of ideal
simulations, except for some cases of low resolution, or
with explicitly added magnetic diffusivity. How generic
this result is, however, remains open. It would therefore
be interesting to subject the problem discussed in the
present paper as a benchmark to other types of codes.
For codes that are kept numerically stable with some
type of explicit magnetic diffusion, e.g., through a mod-
ified scale dependence such as magnetic hyperdiffusion,
the final outcome can in principle be predicted quanti-
tatively, as was done by (2002).
However, there could well be other schemes with quite
different behaviors that have not yet been anticipated.
In the MHD solver invoked here in FLASH, the con-
straint V - B = 0 is solved through a divergence clean-
ing algorithm (Brackbill & Barned|1980). By calculating
derivatives with a sixth order finite difference scheme,
we have verified that ((V - B)?)/(J?) stays of the order
of 107%, and does not increase. In the PENCIL CODE,
by contrast, V - B = 0 is ensured by solving directly
for A. It might therefore be possible that the artificial
magnetic helicity production in FLASH could be related
to the use of the divergence cleaning algorithm. This is
not obvious, however, because the contribution from a
gradient correction to B should not produce magnetic
helicity if A is computed in the Coulomb gauge. In any
case, as the resolution is increased from 483 to 643, not
only does the fractional helicity production during the
non-resistive phase decrease, but also the rate of mag-
netic helicity production decreases. This suggests that
at sufficiently high numerical resolution, magnetic heli-
city should be well conserved also in FLASH. It would
be interesting to see how magnetic helicity production is
affected by using instead the constrained transport algo-

rithm (Evans & Hawley [1988).

5. CONCLUSIONS

We have seen that, at low resolution, an ideal MHD
code such as the eight-wave scheme in FLASH can repro-
duce certain aspects of resistive low magnetic Reynolds
number dynamos, although other aspects are still not
entirely physical. For example, in a periodic system,
the current helicity must approach zero at late times,
but no such tendency is found in the present simulations
(see Figure[§). Already at twice the resolution, however,
the FLASH code gives no large-scale dynamo action at
all. This is, in principle, in agreement with the infinite
magnetic Reynolds number case, although the violation
of magnetic helicity conservation at early times speaks
against this. Real systems, on the other hand, are not
fully homogeneous and cannot be described by periodic
boundary conditions. This can lead to the occurrence of
magnetic helicity fluxes (Blackman & Field 2000).

It would in future be interesting to extend our stud-
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ies to systems that do possess a magnetic helicity for the study of dynamos with ideal codes at any resolu-
flux (Hubbard & Brandenburg 2010; [Mitra et all [2010; tion. It remains therefore mandatory to subject any dy-
Del Sordo et all 2013; [Brandenburg [2018). In view of namo simulation to a proper convergence test with fixed
our results, however, we cannot take it for granted that explicit resistivity.

the magnetic field evolution in poorly resolved systems

reproduces in any way the behavior expected for a stan-

dard Spitzer resistivity. This work was performed at the Aspen Center for

Of course, modern simulations tend to have a numer- Physics, which is supported by National Science Foun-
ical resolutions much larger than 323, but at the same dation grant PHY-1607611. We enjoyed the stimulating
time, one usually captures much more complex physi- atmosphere during the Aspen program on the Turbulent
cal processes covering a large range of length scales. At Life of Cosmic Baryons. This research was supported
the smallest scale, therefore, the effective resolution is in part by the Astronomy and Astrophysics Grants Pro-
again just barely enough to resolve the details of mag- gram of the National Science Foundation (grants 1615100
netic structures. In this sense, our work has implications and 1715876).

APPENDIX

A. LATE SATURATION PHASE

To understand the origin of Equation (), we use Equation (), introduce mean fields, B, as suitably defined planar
averages, and define fluctuations correspondingly as b = B — B, and likewise for the magnetic vector potential

a = A — A and the magnetic current density j = J — J, respectively Equation () then becomes
d
dt

where we have ignored the time derivative of (a - b), because the small-scale magnetic field has saturated at ¢ = tguy;
(Figure [Il) is approximately constant during the late saturation phase, ¢t > . Next, we approximate (A - B) =~

—(B*)/k1, (T-B) ~ —(B)ky, and (j - b) ~ +(b2)k$". Finally, we approximate (b2)/87 ~ &, and obtain

(A-B)=—-2n(J - B) —2n(j - b), (A1)

d
(277k% + E) gM = 27’]l€1 k?fng, (AQ)

which can be integrated to yield Equation ().
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