Geophysical evolution during rocky planet formation

Tim Lichtenberg

ETH Zurich: Taras Gerya, Maria Schönbächler, Sascha Quanz, Patrick Sanan; **U Bern**: Dan Bower, Yann Alibert, Christoph Mordasini, Remo Burn U Oxford: Mark Hammond, Shang-Min Tsai, Raymond Pierrehumbert BGI Bayreuth: Gregor Golabek U Michigan: Michael Meyer U Sheffield: Richard Parker

LMU Munich: Joanna Drążkowska ELSI/Tokyo Tech: Irene Bonati U Zurich: Tom Hands, Miles Timpe U Heidelberg: Kees Dullemond

Origins Institute, McMaster University, Hamilton, 8 November 2019

The Solar System: our home in the universe

ESO/M. Kornmesser

The Exoplanet Revolution

Exoplanet diversity

Cold H₂/He

Modified from Kaltenegger 17

Jupiter-like

100% H₂O

 $50\% H_2O$

25% H₂O

MgSiO₃ (rock) 25% Fe 50% Fe

100% Fe

Modified from Kaltenegger 17

Mercury-like

H₂/He

100% Fe

Vadim Sadovski; NASA/JPL-Caltech

Modified from Kaltenegger 17

Si+Fe

H₂/He

100% H₂O Ganymede-like 50% H₂O 25% H₂O MgSiO₃ (rock) 25% Fe 50% Fe Iron core 100% Fe Rocky mantle Ice mantle Saline ocean · lce crust

Vadim Sadovski; NASA/JPL-Caltech

Modified from Kaltenegger 17

 H_2O

Si+Fe

H₂/He

100% H₂O

50% H₂O

25% H₂O

MgSiO₃ (rock) 25% Fe 50% Fe

100% Fe

'Earth-like' mixture

Volatile 'oversaturation'?

Modified from Kaltenegger 17

 H_2O

Si+Fe

H₂/He

100% H₂O

50% H₂O

25% H₂O

MgSiO₃ (rock) 25% Fe 50% Fe

100% Fe

Limited storage in terrestrial core+mantle

Sotin+ 07; Meyer+ 08; Vadim Sadovski; NASA/JPL-Caltech

Star-planet composition relation?

Olivine/MgO/MgS

Star-planet composition relation?

Atmosphere:

- C/O < 0.8:
 - Atmosphere dominated by H₂O and CO_2
- **C/O > 0.8**:
 - Atmosphere dominated by CO and CH_4

2.5

Composition determines climatic setting

Atmosphere:

- C/O < 0.8:
 - \rightarrow Atmosphere dominated by H₂O and CO_2
- C/O > 0.8:
 - Atmosphere dominated by CO and CH_4

Composition determines climatic setting

Gaillard & Scaillet 14

Composition determines climatic setting

Gaillard & Scaillet 14

Geophysical evolution during accretion

Geophysical evolution during early accretion

Elkins-Tanton 10, Weiss & Elkins-Tanton 17

16

Radiogenic heating drives thermal evolution

20

Lichtenberg+ 16a,18,19a,b

Planetesimal interior evolution

Lichtenberg+ 16a, 18, 19a, b

Estimates for planetesimal birth function

- $R_{plts} = 10 100 \, \text{km}$ (Cuzzi+ 08)
- $R_{plts} = 100 1000 \text{ km}$ (Morbidelli+ 09)
- $R_{plts} = 50 200 \text{ km}$ (Chambers 10)
- $R_{plts} \le 25 200 \text{ km}$ (Johansen+ 15, Simon+ 16, 17, Abod+ 18)
 - ► **dN/dR**_{plts} ~ **R**-2.8
 - $dN/dM_{plts} \sim M^{-1.6}$
- $\mathbf{R}_{plts} \ge 50 \text{ km}$ (Morbidelli+ 09, Delbo+ 17, Singer+ 19)
- $M_{plts} \sim 10^{17} 10^{21} \text{ kg} \sim 10^{-4} 10^{0} M_{Ceres}$

Streaming instability Vortices/Turbulent concentration Asteroid belt inversion Kuiper belt cratering record

Planetesimal interior evolution

Interior magma ocean volume

0.00

Volatile retention/loss & differentiation

final

e-rock

Retained water ice in planetesimals

Magma ocean volume

10.25

0.50

0.75

0.00

Early accretion in the Solar System: distinct reservoirs, rapid core formation, compositional trend with orbit

Trinquier+ 07, 09; Warren 11

Early accretion in the Solar System: distinct reservoirs, rapid core formation, compositional trend with orbit

Warren 11, Hunt+ 18

Kruijer+17

Early accretion in the Solar System: distinct reservoirs, rapid core formation, compositional trend with orbit

Warren 11, Hunt+ 18

1. Isotopic + compositional dichotomy

Spatial heterogeneity

2. Timing: early vs. late(r) core formation

Temporal heterogeneity

Kruijer+17

Planetesimal formation in \approx wind-driven disk

Rapid accretion in midplane-quiescent disks

Compositional bifurcation of reservoirs

Lichtenberg & Golabek, in prep.

Lichtenberg & Gerya, in prep.

Compositional bifurcation of reservoirs

Lichtenberg, Drążkowska, Schönbächler, Golabek, Hands, in prep.

Compositional bifurcation of reservoirs

Lichtenberg, Drążkowska, Schönbächler, Golabek, Hands, in prep.

Solar System: earliest bifurcation of planetary building blocks?

- Reservoir separation induced by protoplanet seeding
 - Not dependent on the presence of Jupiter, but causing its nucleation and growth
- Rocky planets seeded *before* giant planets
- Water accretion sequence to inner Solar System: water-depleted \rightarrow dry \rightarrow water-rich
 - Qualitatively reproduces latest geochemical constraints < 4Myr (Sarafian+17a,b; Peslier+ 17; Piani+ 17,18; McCubbin & Barnes 19)
- Suggests cause for absence of super-Earths in Solar System
- Connects accretion sequence to observable disk parameters

²⁶Al variability across planetary systems

Enrichment with short-lived radionuclides (²⁶Al + ⁶⁰Fe)

 $\approx 10^2 - 10^8 \times \text{Earth's present-day interior radiogenic heating}$

Lichtenberg+ 16b, Parker+ 14,15,17, Gaidos+ 09, Pfalzner+ 15, Kuffmeier+ 16, Lugaro+ 18

²⁶Al-heated icy planetesimals forming planets

A. Angelich (NRAO/AUI/NSF)/ALMA (ESO/NAOJ/NRAO)

Getting rid of the water: radiogenic heating

5

²⁶Al-heated icy planetesimals forming planets

A. Angelich (NRAO/AUI/NSF)/ALMA (ESO/NAOJ/NRAO); ESA/NASA/M.A.Garlick

Rapid dehydration of water-rich planetesimals

²⁶Al-heated icy planetesimals forming planets

A. Angelich (NRAO/AUI/NSF)/ALMA (ESO/NAOJ/NRAO); ESA/NASA/M.A.Garlick

²⁶Al controls bulk water content

Synthetic exoplanet populations

Accretion & decreasing water abundance in planetesimals

²⁶Al controls bulk water content

²⁶Al controls bulk water content

²⁶Al controls bulk water content

²⁶Al controls bulk water content

 $f_{\rm w} > 0, M_{\rm P} < 10 M_{\rm Earth}, G stars$

Lichtenberg+ 19b

²⁶Al shapes exoplanet structure

Leger+ 04, Sotin+ 07, Alibert 14, Noack+ 16/17

Synthetic exoplanet populations

²⁶Al shapes exoplanet structure

Geophysical evolution during late accretion

Molten protoplanets during late-stage accretion

Hadean Earth: from accretion to water oceans

Magma ocean desiccation?

Hamano+ 13

45

Equilibrium partitioning + some evolution

Hirschmann 16

46

Integrated magma ocean — atmosphere model $\int_{F_{ISR}} F_{ISR}$

Lichtenberg, Hammond, Bower, Tsai, Sanan, Pierrehumbert, in prep.

Atmospheric radiative-convective-chemical model

Convective adjustment scheme

Magma oceans from the core-mantle boundary to the top of the atmosphere 15.5

(d) Atmospheric volatile partial pressure

MO-detectability with direct imaging?

Probability of detecting magma ocean planet with future direct imaging facilities

Bonati, Lichtenberg, Bower, Timpe, Quanz (A&A, 2019)

Geophysical evolution shapes young rocky planets

- Not-enriched systems tend to form ocean worlds
- ➡ In Solar System traced by inner/outer chemical and isotopic bifurcation?
- Magma ocean-atmosphere coupling shapes earliest atmospheric and upper mantle (geo-)chemistry:
 - Barrier from planet formation to early planetary evolution
- Interconnect w/ future space missions and laboratory studies?
 - Observational constraints from both solar system- (formation) and exoplanet-focused missions (evolution, atmospheric signatures)

Lichtenberg+ 2016a, Icarus Lichtenberg+ 2018, Icarus Lichtenberg+ 2019a, E&PSL Lichtenberg+ 2019b, NatAstron Lichtenberg+ 2016b, MNRAS Hunt+ 2018, E&PSL Bonati+ 2019, A&A

 \rightarrow Laboratory studies that help to constrain (or depend on) environmental variables, e.g., UV flux, subaerial volatile abundances?

- Systemic ²⁶Al dichotomy across planetary systems:
 - Enriched systems form water-poor (proto-)planets

