### Using NMR relaxation data to improve the dynamics of methyl groups in AMBER and CHARMM force fields

Falk Hoffmann September 20, 2019

### Contents

- Thermostability of T4 Lysozyme and configurational entropy
- Order parameter and relaxation rates
- Reparametrization of force fields
- Applicability of Lipari-Szabo model for methyl groups
- Force field evaluation

## Thermostability of T4L mutants





## Configurational entropy from NMR relaxation

 $\Delta S_{tot} = \Delta S_{conf} + \Delta S_{rot+trans} + \Delta S_{solvent} + \Delta S_{other}$   $< \Delta S_{conf}$   $\Delta S_{conf} = \Delta S_{bb} + \Delta S_{sc}$ 

Changes in configurational entropy are connected to changes in dynamics

Dynamics can be represented by the orientational motions of representative (backbone and sidechain) bonds



### Methyl order parameter



 $S^2 = \lim_{t \to \infty} C_{int}$ 

5

- 1. Librational motions (fs)
- 2. Methyl rotation (several ps)
- 3. Rotamer jumps (ps-ns)
- 4. Global tumbling (~10ns)

Bond motions measured by NMR order parameter via internal time correlation function C<sub>int</sub>(t)



### NMR order parameter



### Spectral density mapping from Molecular Dynamics (MD) trajectories



Hoffmann, Mulder, Schäfer, J. Phys. Chem. B 2018, 122, 19, 5038-5048 Hoffmann, Xue, Schäfer, Mulder, Phys. Chem. Chem. Phys., 2018, 20, 24577-24590 Introduce tumbling:

- 1) Lipari-Szabo for backbone (BB)
- 2) Anisotropy tensor from backbone
- 3) Relative BB-methyl orientation



tlns

### **Relaxation rates**







$$V_{dih} = k_{dih}(1 - \cos(\phi - \phi_0))$$

Hoffmann, Mulder, Schäfer, J. Phys. Chem. B 2018, 122, 19, 5038-5048

40

 $R(D_z)[s^{-1}]$  from NMR

30

20

10

0

50 60 70 80

8

### Reparametrization



| methyl group       | $\Delta k_{ m dih} \; [ m kJ/mol]$ |
|--------------------|------------------------------------|
| ALA $C^{\beta}$    | -0.06964                           |
| MET $C^{\epsilon}$ | -0.31380                           |
| VAL $C^{\gamma}$   | -0.30220                           |
| LEU $C^{\delta}$   | -0.16270                           |
| ILE $C^{\gamma}$   | -0.30220                           |
| ILE $C^{\delta}$   | -0.16270                           |

$$V_{dih} = k_{dih} (1 - \cos(\phi - \phi_0))$$

|                   | ALA  | MET | THR  | VAL       | LEU       | ILE       |
|-------------------|------|-----|------|-----------|-----------|-----------|
| original FF       | 15.5 | 9.0 | 11.0 | 18.4/17.3 | 16.8/16.2 | 17.4/13.5 |
| reparametrized FF | 14.2 | 7.2 | 11.0 | 13.1/12.1 | 13.9/13.3 | 12.4/10.7 |
| CCSD(T)           | 14.2 | 7.1 | 11.4 | 14.0/11.5 | 14.1/12.9 | 12.2/10.7 |

9

### Reparametrization

#### AMBER ff99SB\*-ILDN

#### AMBER ff15IPQ

#### CHARMM36



Hoffmann, Mulder, Schäfer, J. Phys. Chem. B 2018, 122, 19, 5038-5048 Hoffmann, Mulder, Schäfer, J. Phys. Chem. B, in revision

### Spectral densities and TCFs



# Applicability of LS for methyl groups



Hoffmann, Xue, Schäfer, Mulder, Phys. Chem. Chem. Phys., 2018, 20, 24577-24590

### **Relaxation rates**



### **FF** evaluation



# Consequences for future FF developments

- Similar chemistry does not give similar FF parameters
- Different rotamer states lead to slightly different energy barriers of methyl rotation
- Backbone dynamics is well captured with modern FFs
- Side-chain dynamics has to be improved, especially for fast dynamics (ps)

## Summary

- Reparametization of methyl group rotation leads to better NMR deuterium relaxation rates and spectral densities
- Truncation of time correlation function at rotational tumbling time of protein leads to better methyl order parameter
- Lipari-Szabo model does not describe dynamics of all methyl groups correctly
- MD force fields capture amplitude of motions better than their time scales

Hoffmann, Xue, Schäfer, Mulder, Phys. Chem. Chem. Phys., 2018, 20, 24577-24590

## Acknowledgement

- Prof. Lars Schäfer, Bochum
- Prof. Frans Mulder, Aarhus
- Dr. Mengjun Xue, Aarhus





Code availability: <u>www.molecular-simulation.org/downloads</u> <u>https://github.com/fahoffmann</u> (soon)