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A new class of laser, which harnesses coherence in both light and atoms, is possible with ultra-cold
alkaline earth atoms trapped in an optical lattice inside an optical cavity. Different lasing regimes,
including superradiance, superradiant and conventional lasing, are distinguished by the relative
coherence stored in the atoms and in the cavity mode. We analyze the physics in two different
experimentally achievable regions of the superradiant lasing regime. Our calculations confirm the
narrow linewidth of superradiant lasing for the doubly forbidden clock transition 3P0 → 1S0 of
strontium-87 atoms. Under strong driving of the dipole-forbidden transition 3P1 → 1S0 of strontium-
88 atoms the superradiant linewidth narrows further due to the coherent excitation of the cavity
field.
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I. INTRODUCTION

In a conventional laser [1], amplification and opti-
cal phase coherence is established by stimulated photon
emission from a population-inverted medium. This re-
sults in the Schawlow-Townes [2] spectral line-width, in-
versely proportional to the photon number in the cavity.
Seminal work by Dicke [3] suggested that the coherence
can also be stored in the emitters that constitute the gain
medium, if they interact collectively with common radi-
ation field modes. Earlier studies concentrated on tran-
sient radiation caused by the collective superradiant de-
cay of initially excited emitters. Recent theoretical [4–6]
and experimental [7–9] studies showed that steady-state
superradiance may yield lasing with millihertz line-width
from ultra-cold alkaline earth atoms trapped in an optical
lattice inside an optical cavity, see Fig.1.

Such a superradiant laser can operate either in a su-
perradiant regime with less than one cavity photon and
only atomic coherence [3] or in a superradiant crossover
regime with multiple photons and coherences in both the
emitters and the cavity field [10]. In contrast, in the
conventional lasing regime the atomic coherence does not
play any significant role.

We employ second order mean-field theory [4] to inves-
tigate two realistic systems with the aim of comparing the
different physics in the atom-coherence dominated super-
radiant lasing regime. More precisely, we consider the
dipole-forbidden transition 3P1 → 1S0 with a decay rate
γ = 2π × 7.5 kHz of bosonic strontium-88 atoms, which
was used in [8] to demonstrate lasing in the deep super-
radiant lasing regime, and the doubly forbidden optical
clock transition 3P0 → 1S0 with a decay rate γ = 2π mHz
of fermionic strontium-87 atoms, which was used in [9]
to show superradiance pulses. In these experiments, the
fundamental cavity mode has a loss rate κ = 2π × 160
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Figure 1. Many atoms are trapped in an one-dimensional opti-
cal lattice and coupled to the fundamental mode of an optical
cavity with a strength g. The atoms decay and are incoher-
ently pumped with rates γ and η while the cavity photons
decay with a rate κ. We compare different regions in the su-
perradiant lasing regime by studying the systems using the
strontium-88 transition 3P1 → 1S0 [8] and the strontium-87
optical clock transition 3P0 → 1S0 [9].

kHz and couples resonantly to the 3P1 → 1S0 transition
with a strength g = 2π×10.6 kHz, and to the 3P0 → 1S0
transition with a strength g = 2π × 2.41 Hz.

Since the atoms are trapped along the cavity axis,
they couple to the fundamental cavity mode with same
strength and we shall assume identical coupling, decay,
dephasing and incoherent excitation rate for all atoms.
Under this assumption, the system state is symmetric un-
der permutation of the atoms and the collective behavior
is well captured by second order moments [4], which con-
stitute a small set of variables and are readily calculated.
However, in order to visualize the emitter dynamics and
interpret the results, we shall employ the intuitive picture
of the Dicke states, characterized by angular momentum
quantum numbers J,M [3]. To unravel the mechanism
responsible for the spectrum line-width, we simulate the
coupling of the system to a filter cavity. These theoretical
tools allow us to go beyond first order mean field theory.
More importantly, we will examine the interplay between
optical excitation, coherence and correlations in the sys-
tem and their consequences for the emission linewidth.

This article is organized as follows. In the following
section, we present the quantum master equation for our
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system. In Sec. III and IV we present the simulations for
steady-state radiation and spectrum from the system and
analyze the influence of the incoherent pumping and the
atom number. In the end, we provide concluding remarks
and comment on possible developments in future.

II. QUANTUM MASTER EQUATION

We consider N identical two-level atoms with a fre-
quency ωa and a decay rate γ, a dephasing rate χ, as
well as a pumping rate η. η may be realized by excit-
ing the atoms from the lower level to a higher excited
level from which they decay rapidly to the upper level of
our lasing transition [4]. The atoms are coupled with a
strength g to an optical cavity mode with frequency ωc

and photon loss rate κ. This system is described by the
quantum master equation (~ = 1 throughout the paper):

∂

∂t
ρ = −i[H, ρ] + κL[a]ρ+ γ

N∑
i=1
L[σ−i ]ρ

+η
N∑

i=1
L[σ+

i ]ρ+ χ

N∑
i=1
L[σz

i ]ρ. (1)

The system Hamiltonian is H = ωca
+a + ωa

∑N
i=1 σ

z
i +

g
∑

i(a+σ−i + aσ+
i ) with photon creation a+ and annihi-

lation operator a and the Pauli operators σz
i , σ
−
i , σ

+
i of

the ith atom. Dissipation is accounted for by Lindblad
terms with the superoperator L[c]ρ = cρc+ − 1

2{c
+c, ρ},

employed for different operators c = a, σ−i , σ
+
i and σz

i

with appropriate rate factors.

Since the system is incoherently pumped, the exact so-
lution of Eq.(1) does not produce a steady-state with a
finite coherent field amplitude. While a symmetry break-
ing mean field ansatz may yield useful results, we expect
a second-order mean-field theory without the symmetry-
breaking assumption to offer solutions with a wider range
of applicability. As in [4] we obtain from the master
equation (1) an equation for the mean intra-cavity pho-
ton number 〈a+a〉, which couples to atom-photon corre-
lations 〈aσ+

i 〉 (identical for all the atoms). These corre-
lations in turn depend on atom-atom correlation 〈σ+

i σ
−
j 〉

(identical for any atom pair i 6= j) and the atomic popula-
tion inversion 〈σz

i 〉. Eventually, higher order correlations
like 〈σz

i a
+a〉 appear, and to close the hierarchy of equa-

tions at second order, we utilize third-order cumulant
expansion to approximate such higher order terms with
products of non-vanishing lower order quantities such as
〈σz

i 〉〈a+a〉, see Appendix A. Notice that the separated
photonic and atomic coherence do not exist since 〈a〉 and
〈σ−i 〉 vanish, while they have well defined relative phases
through non-vanishing 〈a+σ−i 〉 and show phase stability
over time via second-order temporal correlations, such as
〈a+(t)a(t+ τ)〉 6= 0.

Figure 2. Intra-cavity photon number (a,b) and J/N,M/N
numbers (c,d) from the systems using the 3P1 → 1S0 transi-
tion of strontium-88 atoms (a,c) and the 3P0 → 1S0 transition
of strontium-87 atoms (b,d) for different N and η. In panel (a)
and (b), the white dashed and black dash-dotted line indicate
the Purcell rate Γc = 2π × 2.81 kHz and 2π × 0.15 mHz, the
atomic decay rate γ = 2π×7.5 kHz and 2π mHz, respectively,
while the green dashed vertical line indicates the pumping
ηexp = 2π × 23.87 kHz reported in [8]. The blue dashed line
indicates single intra-cavity photon. In the panels (c,d) the
results for different N are shifted horizontally and the scaled
J/N and M/N attain values in [0, 0.5] and [−0.5, 0.5], respec-
tively. The colors indicate the varying pumping rates and the
thin dotted green lines indicate the boundaries of the Dicke
states.

III. STEADY-STATE RADIATION

The upper panels of Fig. 2 show the steady-state
intra-cavity photon number as function of the incoherent
pumping strength η and the number of atoms N for the
two strontium transitions. In Fig. 2 (a) we see that the
photon number is very small if η is weaker than the Pur-
cell enhanced atomic decay rate Γc = 4g2/κ ≈ 2π × 2.81
kHz, which is identified as a subradiant regime [4].
When η overcomes Γc, the photon number increases but
is still below unity, which is identified as the superradiant
regime. Notice that single photons are indicated with the
blue dashed contours. When η overcomes the atomic de-
cay γ, the photon number increases dramatically, which
is then the superradiant lasing regime. For even larger
η the intra-cavity photon number decreases again. The
range of η leading to a large photon number becomes
wider with increasing atom number. With the pumping
reported in the experiment, we can achieve 5×103 cavity
photons with 105 atoms. In Fig.2 (b) for the very narrow
optical clock transition we observe similar results as for
few hundred atoms on the wider transition in Fig.2 (a).
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However, since the isolated and Purcell enhanced atomic
decay rates are about six orders of magnitude smaller, the
pumping rates considered here are also similarly smaller.

This behavior, which was also observed in the generic
analysis in [10], is due to the collective atomic response to
the pumping and interaction mechanisms. To illustrate
this, we recall the symmetric collective states |J,M,α〉
introduced by Dicke [3] with the quantum numbers J

and M representing the eigenvalues of ~J2 and Jz. Here,
~J = 1

2
∑

i ~σi denotes the collective spin of the ensemble of
effective spin-1/2 atoms, and α is an auxiliary quantum
number to distinguish states with degenerate spin eigen-
values. Since all the atoms are identical, the states with
different α have equal population and it is sufficient to
utilize the symbol |J,M〉 to represent any of them. The
Dicke state basis is equivalent in complexity to the SU(4)
method [11], and for small atom numbers it is useful for
density matrix calculations [12]. Due to absence of co-
herences it may be also used for highly efficient stochastic
wave function simulations of many atoms in a bad cav-
ity [13]. The superradiant coupling to the cavity mode
and the ensuing emission are associated with the collec-
tive spin lowering operator J− =

∑
i σ
−
i , which acts on

the Dicke states by the familiar expression

J−|J,M〉 =
√

(J −M + 1)(J +M)|J,M − 1〉. (2)

The collective transient superradiant decay of an initially
excited atomic ensemble follows a progression of states
|J,M〉 in the J = N/2 manifold of symmetric pure states.
The initial and final transition amplitudes are collectively
amplified by ∝

√
N while during passage of states around

M ' 0, the transition amplitude attains (superradiant)
values ∝ N . Due to atomic decay and pumping, our
system will also explore symmetric states with J less than
N/2 [12], but the expression (2) also yields the (reduced)
transition amplitudes in these cases. Hence, it is useful
to characterize the collective dynamics with the Dicke
quantum numbers rather than the second order moments.
To this end, we evaluate M = 〈Jz〉 = 1

2
∑

i〈σz
i 〉 and

define J as the square root of the expectation value of the

operator ~J2, which is given by atomic second moments

through 〈 ~J2〉 = 3
4N + 1

4
∑

j 6=k(〈σ−j σ
+
k 〉+ 〈σz

jσ
z
k〉).

The lower panels of Fig.2 show the mean Dicke quan-
tum numbers for the steady state of the atomic systems
accompanying the mean photon number shown in the up-
per panels. With increasing number of atoms from left
to right, the separate series of points in each panel rep-
resent solutions for increased pumping rate, as indicated
by their colors.

It is interesting to see how the increased incoherent
pumping of the atoms causes their excitation (M/N) to
increase. At first this occurs at the expense of a decrease
in J/N , and the atomic state follows the lower Dicke
states with M ∼ −J . For stronger pumping we embark
into population inverted states with positive values of M .
The pumping now necessarily drives the states towards
larger J values. These behaviors agree with the analysis

of quantum jumps in Dicke states, see [13] and Appendix
B. For the lower atom number the moderate pumping
leads to atomic states with M < J . These state have a
higher emission rate, cf. Eq.(2), than states with M ' J
obtained under stronger pumping. With experimentally
realistic pumping rates it is not possible to fully invert
the atomic population and hence we do not observe the
subsequent saturation and decrease in photon number
for larger number of atoms. The behavior is similar in
Fig. 2(d) for the narrow clock transition, where the pho-
ton number is however reduced due to the much weaker
coupling to the inverted atomic ensemble.

The above analysis shows that the system always oc-
cupy the Dicke states near to the boundaries, which al-
lows us to apply the Holstein-Primakoff approximation
to analyze the involved physics. For the Dicke states of
a given J along the lower boundary, we have

∑
i σ

+
i ≈√

2Jb+,
∑

i σ
−
i ≈

√
2Jb and

∑
i σ

z
i = −J1 with oscilla-

tor creation b+ and annihilation operator b. Then, the
atom-cavity mode coupling becomes

√
2Jg(b+a + ba+),

which shares the excitation generated by other means
between the atoms and photons. Notice that the states
with M = −J and J < N/2 represent atomic exci-
tation located in non-radiative states. For the Dicke
states of same J along the upper boundary, we have∑

i σ
+
i ≈

√
2Jb,

∑
i σ
−
i ≈

√
2Jb+ and

∑
i σ

z
i = J1 and

the atom-cavity mode coupling
√

2Jg(ba + b+a+). This
coherent coupling allows simultaneous creation of excita-
tion in both the (inverted) atomic and photonic oscilla-
tors and creates atom-light entanglement responsible for
non-vanishing cavity field and strong linewidth narrow-
ing (see below). However, this coherent interaction domi-
nates only if the collective coupling exceeds the cavity loss
rate, i.e.

√
Ng > κ. This requires about 450 strontium-

88 atoms, which is well below the atoms achievable in the
experiment. For strontium-87 it requires about 4.4× 109

atoms, which is about four orders of magnitude larger
than achievable in current experiment.

IV. STEADY-STATE SPECTRUM

Superradiant lasing offers the possibility to obtain a
light source with a linewidth set by the atomic lifetime
rather than by the optical cavity. The two strontium
transitions would thus lead to linewidth in the kHz and
mHz regime, respectively. To resolve the linewidth of the
field emitted by the cavity, we simulate its detection af-
ter passing through a filter cavity. Since the intensity
transmitted is proportional to the photon number inside
such a filter cavity and the field leaving the first cavity is
proportional to its intracavity field, we may eliminate the
traveling fields and obtain the spectrum by merely adding
terms −i[Hf , ρ] + L[

√
βf ]ρ to the master equation (1).

The Hamiltonian is Hf = ωff
+f + G(a+f + af+) with

filter cavity photon creation f+ and annihilation opera-
tor f , mode frequency ωf , and the system-filter cavity
coupling constant G. The photon loss in the filter cavity
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Figure 3. Line-width ∆ν of emission spectra from cavity cou-
pled to the strontium-88 atoms through the 3P1 → 1S0 transi-
tion (a), and the strontium-87 atoms through the 3P0 → 1S0
clock transition (b). The discrete symbols show ∆ν deter-
mined by our second-order mean field equations as function of
incoherent pumping strength η for different numbers of atoms
N . The blue dashed horizontal lines indicate the minimal ∆ν
of the superradiant laser. The black and red vertical lines in-
dicate the single atom decay rate γ and the pumping rate ηexp
achieved in experiments [8]. Panels (c,d) show corresponding
analytical values for ∆ν. The expression (3) predicted with
mean field and laser diffusion theory [10] (solid curves) works

well for moderate pumping, while 2
√
Ng and NΓc [the left

dot-dashed lines in the panel (c) and (d) respectively] and
(Γκ− 4Ng2)/(Γ + κ) (the dot-dashed lines on the right), re-
sulted from Eq. (4), describe the weak and strong pumping
better, respectively.

is described by the Lindblad term with a rate and hence
cavity linewidth β.

The spectrum is obtained by calculating the filter cav-
ity photon number 〈f+f〉 for different values of ωf , and
the line-width ∆ν is extracted by fitting the spectrum
with a Lorentzian function. To disregard reflection from
the filter cavity into the main system and to properly
resolve the spectrum, we require G to be very small
and β to be smaller than ∆ν for steady-state sources.
This procedure to extract the emission spectrum is for-
mally equivalent to the quantum regression theorem. The
current approach can be straightforwardly implemented
within the second order mean field theory where we
merely include second moments involving the field ob-
servables of the filter cavity, see Appendix C.

Fig. 3 shows the line-width ∆ν of the steady-state spec-
tra as function of pumping rate η for the cavity coupled
to the strontium-88 atoms via the 3P1 → 1S0 transi-
tion, see panels (a,c), and to the strontium-87 atoms via
the 3P0 → 1S0 optical clock transition, see panels (b,d).
The different symbols indicate different atom numbers

N . The panel (a) shows that for N = 102 atoms (the
black triangles) ∆ν is constant for small η, and reduces
slightly once η overcomes the Purcell rate Γc and drops
significantly when η exceeds the atomic decay rate γ. For
much stronger driving ∆ν increases again.

For the systems with more atoms, e.g. N = 2 ×
102, 103, 104, 105, ∆ν attains larger values for weak
pumping while it gets smaller for strong pumping. Once
the system enters the superradiant lasing regime, the line-
width approaches the Purcell rate Γc (the blue dashed
line). For more atoms, however, ∆ν decreases further.
With 105 atoms, as available in the experiment, the line-
width may even reach the sub-hertz regime with the de-
manding pumping of 10 MHz.

This line-width narrowing may be related to atomic
spin and photon entanglement (squeezing) resulted from

the parametric coupling
√

2Jg(ba+b+a+) of the photonic
and atomic oscillators in Holstein-Primakoff approxima-
tion. With the maximal pumping rate ηexp achieved in
the experiment [8] (the orange dot-dashed vertical line),
our theory yields a line-width, ∆ν = 2π × 6 kHz, which
agrees well with the experiment.

In Fig.3 (b) we study the system of strontium-87 atoms
with the same cavity parameters as used for strontium-
88 atoms. Due to the much weaker atomic dipole, the
atomic decay rate and the coupling to the cavity field
are much weaker, and the dynamical regime explored is
different for the two systems. We find similar trends as
in Fig.3 (a) but ∆ν is mainly determined by the atomic
coherence due to the cavity loss being typically faster
than the coherent excitation by the atoms. Without
the stimulated emission and the coherence in the op-
tical field contributing to the spectrum narrowing, the
minimal line-width thus approaches the Purcell atomic
decay rate Γc = 2π × 0.15 mHz (the blue dashed line).
We emphasize that to obtain the steady-state properties
predicted here the atom loss occurring in current exper-
iments shall be avoided or compensated [13].

It is possible to obtain good analytical expressions for
the linewidths shown in Fig.3 (a,b). Indeed, using first
order mean field and phase diffusion theory, originally
developed for conventional laser [14], Tieri et. al. [10]
have achieved analytical expressions for the spectrum
line-width in the superradiant lasing regime

∆ν = 1
2
C + Γ
Cd0 − Γ

Γ
ω + γ

4g2κ

(κ+ Γ)2 (3)

with C = NΓc, Γ = η+ γ+ 2χ and d0 = (η− γ)/(η+ γ).
The calculations with this expression are shown as the
solid curves in Fig.3 (c,d), and agree with the exact nu-
merical calculations for intermediate pumping strengths.
For the strontium-88 transition, this agreement applies to
the superradiant lasing regime with many photons, while,
surprisingly, it also applies for the narrow strontium-87
transition in the superradiance regime where less than
one photon is excited (for N = 103, 104, 105 atoms). The
validity of the mean field theory in this superradiant
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regime reflects that in the absence of a cavity mean-field
the phase of the emitted field is determined by the stable
correlation present in the excited atoms.

The mean field expression (3), however, fails for
weak and strong pumping. To address these regimes
we consider the second order mean-field theory with
steady-state solution for the filter cavity photon num-
ber 〈f+f〉 ∝ −2GIm[ω̃2〈a+a〉/(ω̃1ω̃2 + Ng2〈σz

i 〉)] −
2GIm[Ng〈aσ+

i 〉/(ω̃1ω̃2 + Ng2〈σz
i 〉] with ω̃1 = ωf − ωc +

i(β + κ)/2 and ω̃2 = ωf − ωa + i[(β + γ + η)/2 + χ]. The
system observables 〈a+a〉 and 〈aσ+

i 〉 do not change under
variation of ωf , while their pre-factors attain the form of
Lorentzian functions. With this we obtain four candidate
expressions for ∆ν and identify the relevant one as

∆ν = Γ + κ

2

[√
1 + 4Γ/κ−M2Γc/κ

(Γ/κ+ 1)2 − 1
]
. (4)

Note that the linewidth relies on the Dicke quantum num-
ber M shown in Fig. 2 (c,d).

For weak pumping with η ≈ 0 and Γ ≈ 0, we have
M = −J = −N/2 and can approximate Eq.(4) by the

collective Purcell decay rate NΓc if 2
√
Ng � κ, and

by the collective Rabi frequency 2
√
Ng if 2

√
Ng � κ.

The former and latter expression fit the regime stud-
ied for strontium-87 and -88 atoms, respectively, and
are represented by the dot-dashed lines in the left hand
side of Fig.3 (c,d). For 4Ng2/κ < Γ ≈ η � κ we
have M = J = N/2 and can approximate Eq.(4) by
(Γ − NΓc)/(Γ/κ + 1). This expression is shown by the
dot-dashed lines in the right hand side of Fig.3 (c,d), and
agrees well with the numerical calculations shown in Fig.3
(a,b). For very strong pumping such that Γ� NΓc, the
expression is further simplified and ∆ν approaches κ, re-
flecting the filtering of the noisy atomic emission by the
system cavity.

For given atom number N , the minimal spectrum line-
width is achieved with the steady-states characterized by
J ≈ 0.1N and M ≈ 0.1N . These states involve superpo-
sitions of product states |J,M〉 |n〉 with total J +M + n
excitations, where |n〉 are photon number states. These
superposition states have zero value for 〈a〉, but non-zero
values for 〈aσ+

i 〉 and 〈σ+
i σ
−
j 〉. In addition, they also lead

to non-vanishing J,M, 〈a+a〉 as calculated in Fig. 2. A
rather wide range of states with n ≈ 〈a+a〉 are popu-
lated for strontium-88 atoms while a small range of states
with n ≈ 1 are populated for strontium-87 atoms. This
difference causes the different behavior of the spectrum
linewidth as shown in Fig. 3.

V. CONCLUSIONS

In summary, we have studied lasing in the peculiar sit-
uation offered by ultra-cold strontium atoms trapped in
an optical lattice inside an optical cavity, where coherence
can be maintained in both the atoms and the cavity field.

We showed that the system explores subradiance, super-
radiance and superradiant lasing regimes with increasing
pumping rate. Using the long-lived optical clock transi-
tion of strontium-87 atoms, the atomic coherence domi-
nates and our calculations confirm previous estimates of a
millihertz optical emission line-width. Using the orders of
magnitude broader 3P1 → 1S0 transition of strontium-88
atoms, we remarkably obtain a line-width much smaller
than the superradiant linewidth given by the single-atom
Purcell rate. We associate this line-width narrowing with
the coherence established between the field and the atoms
under strong pumping of many atoms. To observe similar
narrowing with the strontium-87 atoms it would request
orders of magnitude larger atom number as achieved in
current experiment.

Our calculations are presented for experimental setups
that are currently available in laboratories and may also
be applied to other atoms, like calcium and ytterbium.
The need for a significantly increased pumping rate and
for methods to avoid or compensate atom loss are major
challenges to test limiting cases of our theory.

ACKNOWLEDGMENTS

This work was supported by the Villum Foundation (Y.
Zhang and K. Mølmer) and the European Union’s Hori-
zon 2020 research and innovation program (No. 712721,
NanoQtech, K. Debnath and K. Mølmer) .

Appendix A: Second-order Mean Field Equations

In the main text, we outlined the procedure to solve
the master equation (1) and we shall provide more details
here. We start from the equation for the intra-cavity
mean photon number

∂

∂t
〈a+a〉 = −2gN Im〈aσ+

i 〉 − κ〈a
+a〉, (A1)

which couples with the atom-photon correlation 〈aσ+
i 〉.

We assume all the atoms identical and use the sym-
bol 〈aσ+

i 〉 to represent the identical correlation with any
atom. The factor N comes from the summation over all
the atoms. In turn, the equation for this correlation is

∂

∂t
〈aσ+

i 〉= iω̃ac〈aσ+〉 − ig〈σz
i 〉〈a+a〉

−ig(N − 1)〈σ+
i σ
−
j 〉 − i(g/2)(1− 〈σz

i 〉).(A2)

Here, we have introduced the complex frequency ω̃ac =
ωa − ωc + i[(κ + γ + η)/2 + χ]. This correlation couples
further with the atomic population inversion 〈σz

i 〉 and the
atom-atom correlation 〈σ+

i σ
−
j 〉 ( i 6= j), which represents

the correlation between any atom pair. The factor N −1
comes from the summation over all the atom pairs. The
equations for the new quantities read
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∂

∂t
〈σz

i 〉 = 4gIm〈aσ+
i 〉 − γ(1 + 〈σz

i 〉) + η(1− 〈σz
i 〉), (A3)

∂

∂t
〈σ+

i σ
−
j 〉 = −2g〈σz

i 〉〈aσ+
i 〉−(γ+η+2χ)〈σ+

i σ
−
j 〉. (A4)

During the derivation we encounter the expectation val-
ues of products of three operators, e.g. 〈σz

i a
+a〉, and the

equations for them will again depend on the expectation
values of products of four operators. To get closed equa-
tions only for the quantities introduced above, we apply
third order cumulant expansion to replace them with the
product of non-vanishing expectation values of two oper-
ators and of single operators, e.g. 〈σz

i a
+a〉 → 〈σz

i 〉〈a+a〉.

J 0 1 2 M

2

1

0

-1

-2

Figure 4. Incoherent transitions caused by atomic incoherent
pumping are illustrated with arrows in Dicke states diagram
for four atoms. The arrow thickness indicates the branching
ratio of different transitions, see the text.

Appendix B: Inconherent Transitions among Dicke
States

In the main text, we connected the second-order mo-
ments with the Dicke states and then used the Dicke
states to illustrate the system dynamics, see Fig. 2 (c,d).
To understand this dynamics, the incoherent transitions
caused by the atomic decay, dephasing and pumping have
been identified in the Dicke states basis [13]. For this
dynamics, it is however sufficient to consider the tran-

sitions related to the atomic incoherent pumping only.
In the time interval δt the pumping causes the transi-
tions from the state |J,M〉 to |J,M + 1〉 with the prob-

ability δtη (2+N)(J−M)(J+M+1)
4J(J+1) , to the state |J − 1,M +

1〉 with the probability δtη (N+2J+2)(J−M)(J−M−1)
4J(2J+1) , and

to the state |J + 1,M + 1〉 with the probability

δtη (N−2J)(J+M+1)(J+M+2)
4(J+1)(2J+1) [13]. These transitions are

illustrated as arrows between Dicke states for four atoms
in Fig. 4. We see that for the Dicke states along the
lower boundary (M = −J) the jumps to the states with
J reduced by one have high probability than the jumps
to other states. For the Dicke states along the upper
boundary only the jumps to the states with J increased
by one are allowed. Together with the contribution from
decay and dephasing [13], these processes determine the
dynamics shown in Fig. 2 (c,d).

Appendix C: Equations for Filter Cavity

To calculate the spectrum, we derive the equation for
the mean photon number 〈f+f〉 in the filter cavity:

∂

∂t
〈f+f〉 = −2GIm〈af+〉 − β〈f+f〉 (C1)

and find that it couples with the photon-photon correla-
tion 〈af+〉. The equation for this correlation reads

∂

∂t
〈af+〉 = iω̃1〈af+〉+ iG(〈a+a〉+ 〈f+f〉)− igN〈σ−i f

+〉,
(C2)

which further depends on the cross-cavity atom-photon
correlation 〈σ−i f+〉. Then, the equation for this new cor-
relation reads

∂

∂t
〈σ−i f

+〉 = iω̃2〈fσ+
i 〉+iG〈σ

−
i a

+〉+ig〈σz
i 〉〈af+〉. (C3)

Here, we have introduced ω̃1 = ωf −ωc + i(β + κ)/2 and
ω̃2 = ωf − ωa + i[(β + γ + η)/2 + χ]. To close the equa-
tions for the quantities introduced so far, we approximate
〈σz

i af
+〉 by 〈σz

i 〉〈af+〉.
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