Toward open-source robotics:

ROS use case in industrial and mobile robotics

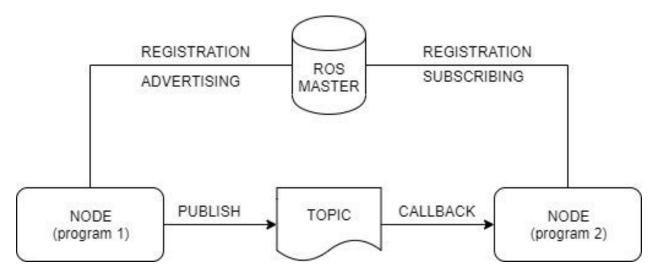
Nikola Knežević, University of Belgrade, School of Electrical Engineering David Seničić, Htec, Belgrade Kosta Jovanović, University of Belgrade, School of Electrical Engineering


Content

- Introduction
- ROS tools and packages
- Industrial robot use case for ROS
- Mobile robot use case for ROS
- Conclusion

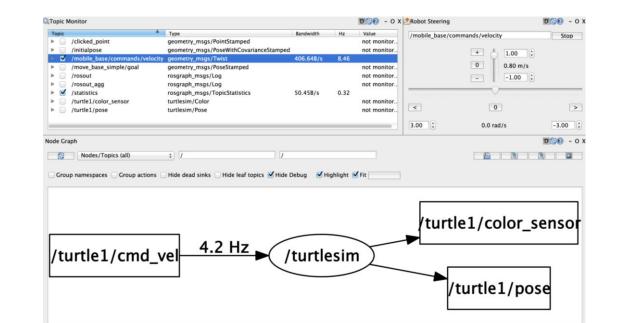
• Industrial robot sales

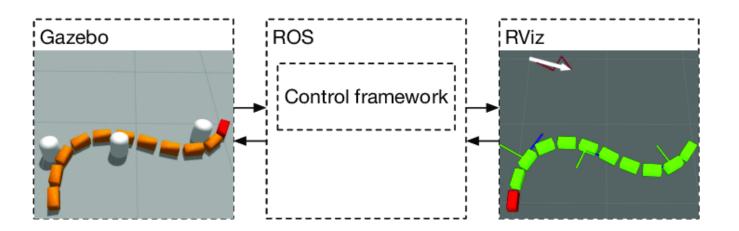
- Service robots
 - Robots in homes
 - Robots in hotels
 - Robots in hospitals
- Major challenges :
 - Dealing with unstructured human environment
 - Localization
 - Navigation
 - Each robot product has its own software!



- Obstacles for robot integration
 - A small number of highly educated staff.
 - A high cost of robotic equipment
 - Closed and expensive software and hardware

- Robot Operating System (ROS)
 - Meta Operating System for robots framework.
 - It provides many libraries and tools for easy and fast development of robotic applications.
 - Open-source
 - Modular and reusable




• ROS infrastructure

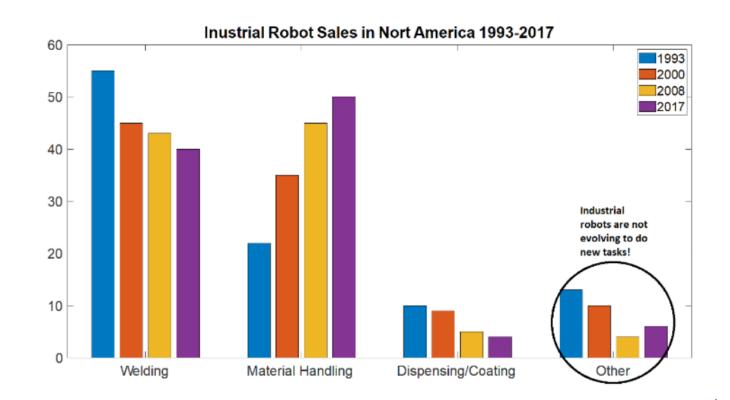
- Allows using different programming languages:
 - C++, Python, Lisp, Java, R and other

- ROS tools
 - Tools for visualization.
 - Tools for debugging.
 - Tools for simulation.

• ROS packages

- All ROS software is organized in packages.
- A package can contain nodes, libraries, config files, third-party software or anything else that constitutes a useful module.
- The main goal of organizing software in packages is to prove easy-to-consume and reusable software.
- All robot drivers are organized as ROS packages.

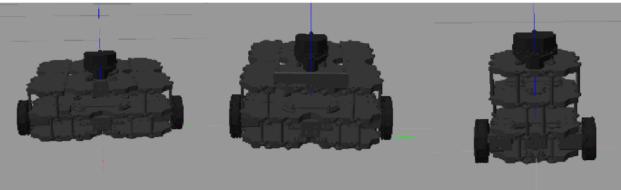
• ROS packages


Industrial robots ROS package	Mobile robots ROS package
ros_control	move_base
tf	navigation
safety_limiter	robot_pose_ekf
moveit	gmapping
pcl	
vision_opencv	
openai_ros	

• Problems:

- Robotics solutions are implemented using the framework provided by manufactures.
- Programs were mainly made per client specification.
- Provided solution:
 - ROS Industrial (ROS-I) –
 The framework that should work on all industrial robots regardless of size and type of the controller.
 - Modular and reusable software solution provide fast application development.

• Usage of industrial robots in the past 20 years:


- Implementation
 - ROS in the industry is presented through many H2020 projects (ROS-IN, RAMPup, ReconCell ...)
 - RAMPup Developing modules for industrial implementation of common industrial tasks screwing, gripping, gluing, peg-in-hole and others.
 - Main users and testers will be SME which have small batches, 50 1000 units per batch, where reprogramming of industrial robot is weekly required.
 - Easy to use modules and safe tools and software is mandatory.

- Implementation of a RAMPup peg-in-hole problem
 - Collaboration between the School of Electrical Engineering and one of the RAMPup consortium companies.
 - Force-based insertion of an object.
 - Tasks:
 - Creating plug-and-play modules that provides force-based insertion.
 - Module should be agnostic toward type of robot and force-torque sensor.
 - Simulation should be available begore testing on real robot in work cell.
 - End user can program and modify robot's task combining modular software.
 - Equipment:
 - Kuka Agilus KR10
 - Force torque sensors: Robotiq FT300, Optoforce HEX-E, ATI Dleta SI 330-30
 - <u>Video demonstration</u>

Mobile robot use case

- Motivation
 - Autonomous Mobile Robots course at the School of Electrical Engineering.
 - Learning basic ROS concepts.
 - Introducing control techniques for mobile robots, localization and navigation.
- Equipment TurtelBot3 is a mobile robot develops as an educational platform for learning ROS and autonomous mobile robot basic principles.

Mobile robot use case

- Course implementation
 - Introduction to ROS concepts.
 - Learning control algorithm for TurtleBot3.
 - Detecting obstacles and walls using a LIDAR sensor.
 - Using Extended Kalman Filter with LIDAR data to improve localization.
- Video demonstration of TurtleBot3 performing Simultaneous Localization And Mapping - <u>Link</u>


ReconCell

- ReconCell proposes to develop a widely autonomous robotic workcell that will allow very short, self-adaptable and affordable changeovers under the conditions demanded and based on end-user needs.
- Reconfigurable Assembly of Airport Signalization Lights using Collaborative Robots
 - Collaboration between IVAMAX company and School of Electrical Engineering with Institute Jožef Stefan (project coordinator)
 - Grant agreement ID: 680431

ReconCell

- Two types of the aluminum casing.
- Two types of transparent prisms.
- Silicon sealant.
- One robotic cell.
- Two collaborative robots.

Conclusion

- Although ROS is not on as advanced as commercial software solutions, the ROS community is making efforts to introduce opensource concepts into the field of robotics.
- Two examples presented in this paper are showing that ROS can be used in both industrial and mobile robot examples.
- Developing new ROS2 will provide real-time features that bring ROS closer to commercial software.

Thank you for your attention !!!

Question ?