
Toward open-source robotics – ROS use case in industrial and mobile robotics

Nikola Knežević1, David Seničić2, Kosta Jovanović1

1 University of Belgrade – School of Electrical Engineering, Belgrade, Serbia
2 Htec, Belgrade, Serbia

 knezevic@etf.rs, senicic.david@gmail.com, kostaj@etf.rs

Abstract: Many industrial facilities use robots daily,
for a variety of tasks. Besides this, service robots are
playing an increasing role in our lives, starting from
vacuum cleaning robots to robots that serve as hosts in
many hotels nowadays or robots that assist people in
recovery of injuries. Increasing demand in the market for
the number of robots is also occurring in a large number
of robot manufacturers. Each of them has its closed
architecture and software. In this way, manufacturers
provide specified characteristics, but also limiting end-
users and force them to use specific software solutions. In
the past decade, great effort has been made by the open-
source community to make robotics available to a wider
range of users. To this end, a Robot Operating System
(ROS) was developed. ROS is a meta operating system
that provides developers a large number of libraries and
tools for easy and fast development of robotic
applications. In this paper, the main concepts of ROS and
how it can be used in industrial and mobile robots will be
presented.

Keywords: open-source; Robot Operating System;
robotics; industrial robots; mobile robots.

I. Introduction

In 2017, robot sales increased by 30% to 381,335
units. Robot sales in the automotive industry increased by
22% and remain still the major customer of industrial
robots with a share of 33%. The electrical/electronics
industry has been catching up with 32% of the total share
[1]. Many of these robots use commercial softwares. The
reason for this is safety features that robot manufacturers
can guarantee by remaining close to end-users. Open-
source software today doesn't offer real safety features,
and developers/end-users need to develop their safety
systems. Without these safety systems, robots can not be
part of the factory.

When it comes to service robots, there are a lot of
these robots, but still, we aren't seeing many of them in
our homes and in our everyday use. This type of robot
must deal with the unstructured human environment. If
they are capable of dealing with these conditions, they
can perform tasks like vacuum cleaning, cooking, or
hosting people in hotels [2][3]. A technological
breakthrough, especially in the field of artificial
intelligence (AI), gives robots a possibility to work in the
human's environment [4]. Besides technology readiness,
robots need to be cheaper and more open to users in order
to be widely adopted.

Nowadays, modern factories work on the popular
concept of Smart Industry or Industry 4.0 that focuses on
flexible and smart automatization [5].

ROS (Robot Operating System) community is trying
to overcome all these obstacles to introduce open-source
concepts to robotics [6]. The main concept of ROS,
besides being open-source, is modular and reusable
software in order to make robot programming accessible
to everyone [7]. In this way, ROS promotes flexibility
and accelerates deploy time. Because of its good features
ROS is a part of academic research for a while. For it to
become a part of an industrial environment
standardization is very important. ROS community
recently released ROS 2.0 that has increased safety and
synchronization being one step closer to real-time
framework [8]. ROS community is trying to become
open-source middleware for robotics systems that will be
running in factories, homes, hotels, etc.

In section II, basic ROS tools and libraries for fast
prototyping are presented. Section III and Section IV
point out an industrial robot and a mobile robot ROS use
cases respectively while concluding remarks are given in
Section V.

II. ROS tools and packages

ROS provides a set of software libraries and tools to
help developers to build robot applications. Since it is an
open-source platform, the main goal of the community is
to introduce ROS as a standard in robotics. ROS allows
researchers and developers to use different programming
languages for creating their applications. ROS works with
C++, Python, and Lisp. There is a beta version of client
libraries that supports Java, C#, R, and other languages.

ROS program is called a node. Nodes can
communicate with each other. Communication between
ROS nodes is peer-to-peer. There are three methods of
communication: through topics, services, and action
services.

A. ROS tools

The main tools ROS provides are rviz, rosbag,
rqt_bag, rqt_plot, rqt_graph, command-line tool, and
other. For 3D visualization rviz is used as presented in
Figure 1. This tool can let you combine sensor data, robot
models, and for example work cell 3D model for a better
understanding of the ongoing scenario. For data logging
and visualization of sensor data, ROS use rosabg and
rqt_bag. The tool for making plots is rqt_plot. By
selecting the desired topic, this tool automatically
generates a plot from its data. And to see what nodes,
topics, and services are running on the system rqt_graph
is needed. Gazebo software can be used to run physics
simulation on the ROS platform.

29DOI: 10.5281/zenodo.3466748

mailto:kostaj@etf.rs
mailto:senicic.david@gmail.com
mailto:knezevic@etf.rs
https://doi.org/10.5281/zenodo.3466748

The Gazebo provides a necessary interface between
simulations and robots. Weall know that in every robotic
application good and precise simulations are precious for
fast and accurate prototyping and algorithm testing. Also,
without simulations, practically most of the AI robotic
tasks can not be trained. Therefore, in reinforcement
learning, you need to let robot to explore the
environment. This action for real robot can lead to robot
damage.

A. ROS packages

ROS software is organized in packages. A package
might contain nodes, independent libraries, configuration
files, third-party software, or anything else that
constitutes a useful module. The main goal of organizing
software in packages is to provide easy-to-consume and
reusable software. ROS packages follow a “Goldilocks”
principle: enough functionality to be useful, but not too
much that the package is heavy-weight and difficult to
use from other software.

In order to control a robot from ROS, appropriate
drivers need to be installed. Also, all drivers for any
device are organized in packages.

One of the most valuable ROS packages for industrial
robots is ros_control. The ros_control is a set of packages
that includes controller interface, controller managers,
transmissions, and hardware interface. The package takes
as input joint state data form the robot’s encoders and an
input set point. It uses a generic control loop feedback
mechanism to control the output sent to actuators. Also,
tracking of coordinate frames is very important in
robotics. The package that lets users keep tracking of
multiple coordinate frames over time is tf. In a robotic
system, there are many 3D coordinate frames that change
over time, such as a world frame, base frame, gripper
frame, etc. This is very important if there is a need, in an
application, for calculating pose of the object in robot
gripper relative to its base. Or if information about the
current pose of the base frame in the map frame is
needed.

For mobile robotics, there are a couple of important
packages, such as move_base, navigation,
robot_pose_ekf, gmapping, etc. The move_base provides
an implementation of the algorithm that, for a given goal
in the world, will try to reach it with a mobile robot base.
The navigation package combines information from

odometry, sensor streams, and tries to compute safe
velocity commands. These commands use as input to the
move_base package. Because of noise, slippage, and
incorrect modeling of robot geometry odometry might not
give a correct robot position. The robot_pose_ekf package
applies Extended Kalman Filtrar (EKF) to sensor data to
improve “the belief” of robot position. In the end, the
robot needs to know the environment and use gmapping
package for map building. This package uses OpenSlam
Gmapping algorithm for mapping. As the output from this
package user gets 2-D occupation grid map.

Most robotic applications have demands for image
processing. In order to provide a real-time computer
vision, vision_opencv package is implemented for ROS.
This package provides a popular OpenCV library for
ROS. Also, nowadays AI algorithms are common part of
robotics applications. ROS provides openai_ros package
with complete infrastructure for Reinforcement Learning.
This package can execute learning algorithms using
Gazebo simulator in order to collect data necessary for
learning algorithms.

III. Industrial use case for ROS

Industrial robotics has always been tied to
manufacturer of industrial robots. Robotics solutions were
primarily implemented via the framework provided by
manufacturers. System integrators, main users of these
frameworks, made programs per clients specifications.
ROS - Industrial, ROS - I for short, offered open-source
based framework with the idea to replace the
manufacturer‘s one. Main idea is to create a framework
that should work on all industrial robots regardless of size
and type of the controller. Additional support for this idea
came from research that showed the main focus for
industrial robotics in the last 24 years was welding and
material handling [9]. Figure 2 shows distribution from
research.

Industry lacked flexibility, an adaptation of new
technologies, lacking vision systems, and connectivity to
Industry 4.0. Additional problem for ROS came in a form
of standardization and real-time ROS for control. All of
these problems will be solved from ground up in ROS2
which will strongly emphasize on real-time part of robot
operations.

The use case for ROS in the industry is presented
through H2020 project RAMPup [10]. The main idea of

30

Figure 1: Rviz UI.

Figure 2: Industrie use of robots.

this 4-year project is to develop complete solution for
common industrial tasks, screwing, riveting, gripping,
and gluing for example. Each of these tasks will be
constructed as a module. This included hardware as well
as software and it needs to be ROS centered. An
additional task is to enable easy to use and safe
programming for the robot with this RAMPup module.
Main users and testers will be SME which have small
batches, 50 - 1000 units per batch, of a similar product
and need to reprogram industrial robot with RAMPup
module on a weekly basis. This will empower SMEs to
use industrial robots as easy to use and safe tools to
accelerate production and improve quality. The subtask of
this project is a force-based insertion. Robot task is to
pick up an object on a known location and carry it to the
area of insertion. The area is roughly known. Robot task
is to probe the area with object and measure force and
torques to get an idea about the hole location. The second
stage is to guide object into a hole. The object can have
multiple pegs for multiple holes. A task can be opposite,
the object can have holes and needs to be fitted onto
multiple pegs. This was a task for SME which tested this
module.

Future goals of the force based were to:
1) Create plug-and-play module that provides force

based insertion which will be tested in real factory
production line.

2) Modul should be agnostic toward type of robot as
well as type of force-torque sensors attached to robot
flange. Configurations should be available and easy to
use. This is the main power of ROS.

3) Simulation of work should be available before
testing on real robot workcell. This is valuable for testing
real-life simulations of workcell, debugging possible
solutions, and testing how force sensor should interact.

4) End users can program and modify robot’s task
enabling modularity.

5) Modul should be independent of its hardware as
much as possible. If user needs different piece of
equipment, for example larger gripper. Software side is
constructed for modularity in mind.

ROS proved to be a useful tool in handling different
sensors. Module main sensing of force and torque came
from force and torque sensor attached to the robot end
flange. Three industrial grade sensors were used, Robotiq
FT300, Optoforce HEX – E model, and ATI sensor Delta
SI 330 – 30. Robotic sensor had ROS enabled driver by
manufacturer, Optoforce and Delta had their driver
written by community for community. Because ROS is
built upon nodes, changes were needed to be done only in
one node that published on topics /sensor/force and
/sensor/torque. The second thing that needed change is
correction in orientation of coordinate system of force
sensor as well new dimensions of end tool point. ROS
provided drivers to communicate to KUKA controller
which controlled KUKA Agilus KR10. This
communication provided critical information about robot
current status, for example internal coordinates of robot
motors. Sending points of trajectory was also done via
this open-source experimental ROS KUKA packet.

ROS2 will be the next step towards real-time
constraint systems and industrial standard for the future.

- Links 1 and 2 are video demonstration of RAMPup
current progress, and Link 3 provides demonstration of
enforcement learning.

- Link 1 - basic functionality
- Link 2 - RAMPup demonstrations
- Link 3 - Demonstration of enforcement Learning on

High-Precision Assembly Tasks with ROS - Industrial
ROS-I needs to become a stable base for research as

well as industry so that use of industrial robots can be
offloaded to ROS and only solving one problem. Open-
source community had many issues because lack of
availability of industrial robots. ROS-I is collaborating
with robot manufacturers to enable simulating robot as
much as possible.

IV. Mobile robots use case for ROS

The mobile robotics use case is closely related to an
ongoing course at the University of Belgrade, School of
Electrical Engineering on Autonomous Mobile Robots. In
this course, students learn how to develop their nodes and
how to exchange data through topics. Also, they learn
how to control differential drive robot, how to use lidar
data to detect walls, and how to implement EKF for
correction of localization estimation. For this course
TurtleBot3 is used, presented in Figure 3. Designed by
ROBOTIS, this robot uses as an educational platform for
learning ROS and Autonomous Mobile Robot basic
principles.

TurtleBot3 is a differential drive robot equipped with
cost-effective and small-size Single Board Computer
(SBC) that is suitable for the robust embedded system,
lidar sensor, and 3D printed technology. The core
technologies are SLAM, Navigation, and Manipulation,
making this robot suitable for home service tasks. With
appropriate ROS packages, this robot can be controlled
using PC, joypad, gamepad, and any wifi or Bluetooth
controller. Because of the modularity of ROS packages
and the topic principle of communication, this is possible.

Firstly, students need to establish communication
between the robot and their PC. Applying the correct
configuration of the network parameters, communication
can be automatically established. That means if any of the
nodes is publishing some data, collecting that data can be
performed from any device that is part of ROS network.
Using one command, ROS allows running every service
that will bring up the robot. At that moment, users can
collect data from the actuator encoders, a point cloud of
lidar data, IMU data, and robot status information.

31

Figure 3: TurtleBot 3, left: Burger, center: Waffle, right: Waffle PI.

https://www.youtube.com/watch?v=kqA1tlPaT8E&feature=youtu.be
https://www.youtube.com/watch?v=kqA1tlPaT8E&feature=youtu.be
https://rampupproject.eu/demonstrations/
https://www.youtube.com/watch?v=mu1Pz0_3xFo&list=PLVAEHH2bfFLCznwqzUkUoqHhGC_lun73q&index=4&t=0s

Also, the user can send commands to the robot to
manipulate them. The second thing that students need to
learn is how to develop an algorithm for moving robot
around. Using proper drivers, there is no need to worry
about motor control or to think about how communication
works. Students only need to focus on the algorithm that
they develop.

Following link demonstrates TurtleBot3 performing
SLAM: Link 4 – TurtleBot3 SLAM.

If you need to focus on research of a new algorithm
for robot control or testing algorithm for processing of
point cloud data, the ROS packages provide an interface
for your robotics project.

V. Conclusion

This paper presented how ROS can lead to open-
source robotics. Although, ROS is not on a level like a
commercial manufacturer, because of safety standards
and real-time features, the ROS community is making
efforts to overcome these problems. This paper also
presented basic tools and packages that can accelerate the
process of developing and deploying. Use case for
industrial robots shown that ROS poses capabilities for
running applications in which a force/torque sensor
integration. In the case of mobile robots, it has been
shown that students can easily learn basic postulates with
ROS. Using ROS packages developing specific
algorithms becomes an independent task.

ROS community is showing that in the future ROS
might become a robotic standard for industrial and mobile
robots. Also, they are making efforts to introduce robotic
programming as easy to learn and modular.

References

[1] https://ifr.org/downloads/press2018/
Executive_Summary_WR_2018_Industrial_Robots.pdf [Assessed on Sep.
15, 2019]

[2] J. Forlizzi and C. DiSalvo, "Service robots in the domestic environment: a
study of the roomba vacuum in the home," in Proceedings of the 1st ACM
SIGCHI/SIGART conference on Human-robot interaction (HRI '06), New
York, NY, USA, 2006, pp. 258-265, doi:
https://doi.org/10.1145/1121241.1121286.

[3] I. P. Tussyadiah, and S. Park, "Consumer Evaluation of Hotel Service
Robots," Information and Communication Technologies in Tourism pp.
308–320, 2018, doi: https://doi.org/10.1007/978-3-319-72923-7_24.

[4] W. Burgard, M. Moors, D. Fox, R. Simmons and S. Thrun, "Collaborative
multi-robot exploration," in Proceedings of the IEEE International
Conference on Robotics and Automation ICRA, San Francisco, CA, USA,
2000, pp. 476-781, doi: https://doi.org/10.1109/ROBOT.2000.844100.

[5] M. A. K. Bahrin, M. F. Othman, N. N. Azli and M. F. Talib, "Industry 4.0:
A review on industrial automation and robotic," Jurnal Teknologi, vol. 78,
no. 6-13, pp. 137-143, 2016.

[6] http://wiki.ros.org/ [Assessed on Sep. 15, 2019]

[7] J. Kerr and K. Nickels, "Robot operating systems: Bridging the gap between
human and robot," in Proceedings of the 44th Southeastern Symposium on
System Theory (SSST), Jacksonville, FL, USA, 2012, pp. 99-104, doi:
https://doi.org/10.1109/SSST.2012.6195127.

[8] https://index.ros.org/doc/ros2/ [Assessed on Sep. 15, 2019]

[9] https://rosindustrial.org/the-challenge [Assessed on Sep. 15.2019]

[10] https://rampupproject.eu/ [Assessed on Sep. 15, 2019]

32

https://rampupproject.eu/
https://rosindustrial.org/the-challenge
https://index.ros.org/doc/ros2/
https://doi.org/10.1109/SSST.2012.6195127
http://wiki.ros.org/
https://doi.org/10.1109/ROBOT.2000.844100
https://doi.org/10.1007/978-3-319-72923-7_24
https://doi.org/10.1145/1121241.1121286
https://www.youtube.com/watch?v=LfLUG6mqV3w&t=

	Toward open-source robotics – ROS use case in industrial and mobile robotics
	I. Introduction
	II. ROS tools and packages
	A. ROS tools
	A. ROS packages

	III. Industrial use case for ROS
	IV. Mobile robots use case for ROS
	V. Conclusion
	References

