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Abstract

A confluent and terminating reduction system is introduced for graphs, which preserves
the number of their perfect matchings. A union-find algorithm is presented to carry out
reduction in almost linear time. The Konig property is investigated in the context of
reduction by introducing the Konig deficiency of a graph G as the difference between
the vertex covering number and the matching number of G. It is shown that the problem
of finding the Konig deficiency of a graph is NP-complete even if we know that the
graph reduces to the empty graph. Finally, the Konig deficiency of graphs G having a
vertex v such that G — v has a unique perfect matching is studied in connection with
reduction.

Keywords Graph matching - Independent set - Konig property - Graph reduction -
Graph algorithm

1 Introduction

In a recent paper, Levit and Mandrescu (2016) have given an interesting characteri-
zation of graphs having a unique perfect matching and satisfying the Konig property
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at the same time. Such graphs are exactly the ones that can be reduced to the empty
graph by a simple leaf elimination procedure. The procedure can be implemented in
linear time. This result is in line with our conjecture (Bartha and Krész 2010) that the
property of having a unique perfect matching is decidable for all graphs in linear time.
The Konig property is, however, too restrictive even for the class of graphs having a
unique perfect matching (UPM graphs, for short), which class is already very small
to begin with.

In this paper we add a second component, called line reduction, to the leaf elimi-
nation procedure. Line reduction, which has been studied by Bartha and Krész (2006,
2009), also preserves the number of perfect matchings and has a linear-time imple-
mentation. It is therefore natural to combine leaf elimination with line reduction and
see if the resulting reduction can still be implemented in linear time. We give a positive
answer to this question in Sect. 4, thus obtaining a larger subclass of UPM graphs that
is still decidable in linear time. This class consists of graphs that can be reduced to
the empty graph by the help of the combined reduction. Such graphs will be called
zero-reducible.

We also investigate the possibility whether, on the analogy of the main result of
Levit and Mandrescu (2016), one could come up with a characterization of zero-
reducible graphs in terms of the Konig property. Unfortunately it turns out that such a
characterization is not likely to exist. Moreover, in Sect. 5 we prove that the problem
of finding the independence number of zero-reducible graphs is still NP-complete.
Finally, in Sect. 6 we consider graphs that have a unique near-perfect matching, that
is, graphs with a vertex v such that G — v has a unique perfect matching. We call
these graphs almost UPM, and extend the Levit and Mandrescu type characterization
of UPM graphs having the Konig property to almost UPM graphs having the Konig

property.

2 Basic underlying concepts and results

Throughout the paper, we are going to follow the terminology and notation of
Lovasz and Plummer (1986) concerning elementary concepts in graph theory. Let
G = (V(G), E(G)) be an undirected graph. Our concern is with the relationship
between the numbers v(G) (the matching number of G), t(G) (the vertex covering
number of G), and «(G) (the independence number of G) in the light of a reduction
procedure which has the power to substantially simplify graphs. Two properties of
graphs will be of distinguished interest for us. The so called Konig property (also
known as the Konig—Egervari property), and the property of having a unique perfect
matching, abbreviated as the UPM property. By definition, graph G has the Konig
property if v(G) = ©(G). It is known that v(G) < t(G) for all graphs G. Also,
a(G) = |V(G)| — 1(G), since the maximum independent sets of G are exactly the
complements of the minimum vertex covers. Thus, «(G) + v(G) < |V(G)| with the
two sides being equal iff G has the Konig property. We introduce the number

k(G) = 1(G) —v(G) = |V(G)] — (a(G) +v(G))
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Fig.1 Bad graphs for the Konig v
property

(a) (b)

as the Konig deficiency of G.

For any v € V(G), G — v stands for the graph obtained from G by deleting vertex
v together with all the edges incident with v. By definition (Gallai 1963), a graph
G is factor-critical if G — v has a perfect matching for each v € V(G). A perfect
matching of G — v is then called a near-perfect matching of G. In our discussion we
shall use the so called Gallai-Edmonds decomposition (G-E decomposition, for short)
of graphs (Edmonds 1965; Gallai 1964; Lovasz and Plummer 1986), which splits the
set V(G) into three disjoint subsets D(G), A(G), and C(G) as follows.

D(G): vertices not covered by at least one maximum matching of G;
A(G): vertices in V(G)\ D(G) adjacent to at least one vertex in D(G);
C(G): vertices in (V(G)\A(G)\D(G).

According to the Gallai-Edmonds Structure Theorem, each connected component of
the subgraph of G spanned by D(G) is factor critical, and the subgraph spanned by
C(G) has a perfect matching. Moreover, every maximum matching of G composes
of:

— aperfect matching of C(G),

— anear-perfect matching for each component of D(G), and

— edges covering all of A(G) together with as many still uncovered vertices in D(G)
as possible.

The number of vertices ultimately left uncovered in D(G) is invariant, and is called
the (matching-) deficiency of G.
The following two results are quoted from Lovasz and Plummer (1986).

Theorem 1 (Lovasz and Plummer 1986, Lemma 6.3.6) A graph G has the Konig
property iff, in the G-E decomposition of G, D(G) is an independent set and the
subgraph induced by C(G) has the Konig property.

Notice that D(G) being an independent set is equivalent to the fact that each factor-
critical component spanned by D(G) is a single vertex.

Theorem 2 (Lovasz and Plummer 1986, Theorem 6.3.7) Let G be a graph having a
perfect matching. Then G has the Konig property iff it does not contain a nice subgraph
which is an even subdivision of one of the two graphs in Fig. 1.

Recall that a nice subgraph of G is a subgraph G’ having a perfect matching M’
that can be extended to one of G.

The third result, due to Kotzig (1959), is still the most powerful one in the study
of UPM graphs. We quote the result as stated in Lovadsz and Plummer (1986, Theo-
rem 5.3.10). The result allows UPM graphs to be demolished by successively removing
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certain cut edges from it. Recall that a cut edge e in G is one the removal of which
disconnects the component of G containing e.

Theorem 3 Every UPM graph G contains a matching-positive cut edge, that is, a cut
edge belonging to the unique perfect matching of G.

Now we turn to a brief overview of the second fundamental concept used in the paper.
An abstract reduction system (Derschowitz and Jouannaud 1990) consists of a set A
and a finite number of irreflexive binary relations Ry, .. ., R, over A. Itis customary to
write a — g, b for (a, b) € R;. The reduction is carried out by the relation R = U; R;
in such a way that a reduces to b if a —7% b. The relation — 7% denotes the reflexive
and transitive closure of — p. It is generally not required that — g be antisymmetric,
even though in our case it will be. An element a € A is called irreducible or minimal
if there exists no b € A such that a — g b. (Remember that R is irreflexive.) Let us
agree that we simply write — for — g if R is understood.

Reduction R is confluent (has the Church-Rosser or diamond property) if, for every
a,b,c € A,a — band a — c imply that b —* d and ¢ —* d for an appropriate
d € A. Confluence is a vital property with regard to finding irreducible elements in
abstract reduction systems. It says that, if a € A can be reduced in two different
ways: @ — b and a — c, then b and c can further be reduced (possibly in several
steps) to a common element d € A. A terminating system is one in which there exists
no infinite chain a9 — a; — ... of reductions. Notice that termination implies the
antisymmetry of —*. As it is well-known, in a confluent and terminating system every
element a € A reduces to a unique minimal one @. This minimal element is common
to all b € A such that a <>* b.

3 Reducing graphs

In this section we introduce a confluent and terminating reduction system on graphs,
operating with only two component reductions: leaf reduction and line reduction. As
mentioned in Sect. 1, both components have been studied earlier separately in Levit
and Mandrescu (2016) and Bartha and Krész (2006, 2009), respectively, and it has
been observed that they preserve the number of perfect matchings in graphs. Moreover,
leaf reduction (elimination) preserves the Konig deficiency as well.

Definition 1 For graphs G and G’, G is (one-step) leaf-reducible to G’'—notation
G —¢ G'—if G’ is obtained from G by deleting a leaf vertex together with the unique
vertex adjacent to it.

By the usual terminology, the unique edge e = (v, ) incident with a leaf v is called
pendant. Deleting an edge, together with both of its endpoints, is generally referred to
as exploding the edge. Thus, one leaf reduction step amounts to exploding a pendant
edge in G. Clearly, leaf reduction by itself is a confluent and terminating reduction
system on the set of (isomorphism classes of) graphs. It is also clear that leaf reduction
preserves the number of perfect matchings in G, but not necessarily the number of
maximum matchings in general. Indeed, every perfect matching of G must cover any
leaf with its pendant edge.
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Fig.2 A reduction example

From this point on, by a graph we shall mean a multigraph having no loops. Leaf
reduction works naturally for multigraphs as well, and the observation in the previous
paragraph on the number of perfect matchings remains true.

Recall that a subdividing vertex in V (G) is one having exactly two neighbors, to
which it is connected by a single edge. Let ¢ € V (G) be a subdividing vertex in G that
is adjacent to the (necessarily distinct) vertices fi and f>. The triple r = (f1, ¢, f2)
is called a redex with center ¢ and focuses f1, f>.

Definition 2 Contracting aredex r = (f1, ¢, f>) in G (or shrinking G along r) means
deleting the center ¢ and merging the two focuses of r into one vertex, while deleting
the (possibly multiple) edge connecting f| with f. For graphs G and G’, G is (one-
step) line-reducible to G' —notation G — G’ —if G’ is obtained from G by contracting
one redex.

To be precise, by merging f; and f> we mean deleting these two vertices from G and
replacing them with a new vertex f in G’ such that for every vertex v € V(G) N
V(G)), (f,v) € E(G) iff (f1,v) € E(G) or (f2,v) € E(G)). By this definition,
multiplicities of the edges incident with the merged vertices are added up.

Example 1 Consider the graph G of Fig. 2 containing four redexes centered at vertices
4,7, 11, and 14. Contracting the ones at 11 and 14 gives rise to a new redex a in the
resulting graph G;. (In graphs G and G of Fig. 2, small arrows indicate which two
vertices are collapsed in one reduction step.) Shrinking G, along the redexes at a and
7 yields G3, showing another new redex b. Finally, shrinking G3 along the redexes 4
and b results in a single edge, the graph r(Gg), which is irreducible for —1.
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Fig.3 The diamond property for reduction

Line reduction by itself is also confluent and terminating (Bartha and Krész 2006),
and it preserves the number of perfect matchings, too.

Theorem 4 The reduction —=—>¢ U —> is confluent.

Proof 1t is sufficient to show that if G —¢ G| and G —| G,, then G; —* G’ and
Gy —* G’ for some graph G'. Let G —¢ G through a leaf v adjacent to u, and
G —1 Gy viaaredex r = (f1, ¢, f2). The following three cases are possible.

Case A: the vertices u, v, c, f1, f> are pairwise distinct (Fig. 3a). The redex r is
then still available in G and the leaf v is present in G;. The two reductions can be
done simultaneously, and for the resulting graph G’, G| — G’ and G, —¢ G'.
Case B: ¢ = u, and consequently v = fj orv = f> (Fig.3b). Take G’ = G| = G.
Case C: u = f) oru = f, (Fig. 3c). Let G’ be the graph obtained from G by
deleting all of the vertices v, u, f1, ¢, f>. Clearly, G| —¢ G’ and G, —¢ G'.

The proof is now complete. O

Since both —¢ and — are terminating, Theorem 4 implies that every graph G can
be reduced to a unique minimal graph G free from leaves and redexes. If G has a
perfect matching, then the number of perfect matchings in G is the same as in G.

Now we investigate the relationship between reduction and the Kénig property.

Proposition 1 For all graphs G and G', if G —¢ G’, then k(G) = k(G').

Proof First observe that exploding a pendant edge in G always decrements the size of
a maximum matching in the graph. This is a straightforward exercise left to the reader.
Now let (v, u) be the edge to be exploded (incident with leaf v), and S be a maximum
independent set in G. Assume, without loss of generality, that v € S. Then S —vis a
maximum independent set for G’. On the other hand, if S is a maximum independent
setin G’ = G — {u, v}, then S + v is maximum independent in G. Thus, exploding
the edge (v, u) will decrement the size of a maximum independent set as well. Since
the number of vertices decreases by 2, the number

k(G") = |V(G")| — (¢(G") + v(G"))
equals k(G). O
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Proposition 2 For all graphs G and G’, if G —| G', then
k(G") < k(G) <k(G") + 1.

Proof Again, first observe as an easy exercise that the size of a maximum matching
is decremented when contracting a redex r = (fi, ¢, f2) in G. (For, consider the G-E
decomposition of G, and discuss the cases ¢ € C(G), c € A(G) and ¢ € D(G).)

As for the maximum number of independent vertices, it may or may not be decre-
mented as a result of contracting r. For example, if G is the redex r itself with f; and
f> not being adjacent, then «(G’') = a(G) — 1. If, however, f| and f> are adjacent
(i.e., G is a triangle), then a(G’) = a(G). In general, if S is a maximum independent
setof G and ¢ € S, then S\{c} is independent in G’. (It may not be maximum, though.)
On the other hand, if ¢ ¢ S, then f| € Sor f, € S. If both f] and f> are in S, then
S\{f1, f2} U {f} is independent in G’, where f is the vertex in G’ corresponding to
the collapsed pair { f1, f2}. If only one of fi and f> isin S (say f1 € S), then S\{ f1}
is independent in G’. Thus, the size of a maximum independent set cannot decrease
by more than one as a result of the reduction. Obviously, it cannot increase either, so
that

k(G <k(G) <k(G')+1,

as it was to be proved. O

Proposition 2 implies that —| preserves the Konig property, but not the Konig defi-
ciency in general. Our next theorem is in fact a refinement of Proposition 2. Let H
denote the graph obtained from the graph H in Fig. la by deleting the vertices v
and vy. The leaf vertex popping up in H is then called unsafe. In general, a vertex
u € V(G) in an arbitrary graph G is unsafe if an instance of H with possible even
subdivisions on its edges can be pasted on G as a subgraph, so that the unsafe vertex
of H coincides with u. If G has a perfect matching, then an unsafe vertex v is nice if
the UPM of H (with its possible subdivisions) can be extended to a perfect matching
of G.

Theorem 5 Let G — G’ via redex r = (f1,c, f2), and assume that G’ has the
Konig property. Then G does not have the Konig property iff (f1, f2) € E(G), and,
furthermore, for the vertex f in G’ that corresponds to the collapsed pair { f1, f>},
either f € D(G") or f € C(G') with f being unsafe and nice.

Proof Our first observation is that, in order to test the Konig property for G by The-
orems 1 and 2, we do not need to pay attention to the complete graph K4 appearing
as a nice subgraph in C(G), because line reduction preserves the presence of K4 with
even subdivisions. Therefore, by Theorem 2, we can concentrate on the occurrences
of the “bad” graph H in Fig. 1a (with even subdivisions) in C(G).

The second key observation is thatif f; and f> are notadjacentin G, then contracting
r inside an occurrence of H is essentially equivalent to lifting (not deleting!) two
subdividing vertices from an edge in that occurrence. Indeed, since fi and f> are not
adjacent, we can assume without loss of generality that ¢ is one of the subdividing
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vertices, say on edge e. The subdivision is even, however, therefore there exists another
subdividing vertex ¢’ on e. Again, without loss of generality, we can assume that ¢’ is
adjacent to c, so that contracting r in G will leave the subgraph H intact with two less
subdivisions on edge e. Regarding the condition that D(G) be an independent set (i.e.,
each factor-critical component of the subgraph spanned by D(G) be a single vertex),
notice that this condition holds before contracting r iff it holds after contracting it,
provided that f; and f> are not adjacent. (See also the argument under Case a below.)
Consequently, the Konig property could be lost only if f; and f; are adjacent in G.

Let us assume now that the edge ( f1, f2) does exist in G. With respect to the G-E
decomposition of G and G’, the following three cases are possible.

Case a: f € D(G'). Clearly, ¢ must then be in A(G) U D(G). The center cannot
be in A(G), however, since the surplus of ¢ on D(G) must be positive and the two
focusses are in the same connected component of D(G). Therefore the whole redex
r is in D(G), implying by Theorem 1 that G does not have the Konig property.
Case b: f € C(G’). By Theorem 2, G has the Konig property iff f is not nicely
unsafe in G’.

Casec: f € A(G’). Again, c cannot be in A(G), because its surplus on D (G) must
be positive (and at most one of f] and f> is in D(G)). Therefore either ¢ € C(G)
or c € D(G), so that the presence of the edge (f1, f2) does not make a difference
regarding the G-E decomposition of G’. Consequently, G does have the Konig

property.

The proof is now complete. O

4 An almost linear-time reduction algorithm

How efficiently can reduction be implemented by an algorithm? This is an important
question, since the reduction may substantially decrease the size of the graph, so it
could be used as a preamble to some other graph algorithms having a more significant
time complexity. Two obvious examples are finding the number of perfect matchings
in a graph and deciding if a graph has the Konig property. The latter example could use
Theorem 5 above as a theoretical basis. Other application areas have been mentioned
in Bartha and Krész (2009). Line reduction, as described in Bartha and Krész (2009),
has been successfully applied in the search of maximum matchings (Korenwein et al.
2018) using parameterized complexity analysis as a theoretical measure, backed up
by an experimental study showing a significant speed-up in implementation.

Along this line one may even hope for a polynomial-time algorithm for calculating
the Konig deficiency of graphs that can be reduced to the empty graph. As introduced
in Sect. 1, such graphs are called zero-reducible. Indeed, while reversing the steps of
the reduction, one might think that a suitable maximum independent set or minimum
vertex cover could gradually be built up from scratch for the graph. This appears to
be likely, since the class of zero-reducible graphs is just a narrow subclass of the class
of UPM graphs, which is already very restricted itself. Disappointingly, however, we
are going to show in Section 4 that finding the Konig deficiency of a zero-reducible
graph is an NP-hard problem.
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As it is customary in complexity analyses concerning graphs, n and m will stand for
the number of vertices and edges in graphs, respectively. If the basis of the reduction
is just —¢, then graphs reducible to the empty graph are called zero-leaf-reducible.
Leaf reduction by itself can be carried out by a straightforward linear-time (O (m))
algorithm. For a concrete implementation, see Levit and Mandrescu (2016). Thus,
zero-leaf-reducibility of graphs is decidable in linear time. Performing line reduction
(i.e., obtaining the minimal graph for an input graph G) is a much more complicated
issue. A true linear-time algorithm has been worked out for this problem in (Bartha
and Krész 2009), building on a single bottom-up pass of a depth-first tree constructed
for G. In fact, the algorithm is akin to the so called static tree set union implementation
(Gabow and Tarjan 1985) of the well-known union-find problem, where the structure
of unions to be performed is known in advance.

Unfortunately, the algorithm in Bartha and Krész (2009) cannot directly be adopted
to accommodate leaf reduction. The problem is that, when deleting the vertex adjacent
to aleaf, the depth-first tree keeping track of the redex information will fall, and it must
be reconstructed. The extra cost incurred is of course intolerable. For this reason, in the
present paper we take a completely different approach to implement reduction, even
though we firmly believe that the original depth-first algorithm can be fixed somehow
to accommodate leaf reduction just by “patching up” the base tree whenever needed.
We shall return to this issue shortly.

Our present solution is based on the standard union-find technique by Tarjan (1975)
to implement the dynamic union of disjoint sets forming a partition of a given universe
set A. For the sake of implementation, A is identified with the set {1, ..., n}, and each
group S of the current partition is identified by a canonical representanti € S. Starting
from the trivial partition of n groups, one can perform the union of two groups, or
find out the (canonical representant of the) group [i] in which a given element i
resides. The goal is to keep track of the partitioning information in such a way that the
amortized cost of one operation (either union or find) becomes minimal. The concrete
description and implementation of different union-find techniques can be found in
most undergraduate textbooks on algorithms. The reader is referred e.g. to Sedgewick
and Wayne (2011) for a detailed study of this matter.

The fastest way to implement union-find is the so called quick union with path
compression method, originally introduced by Tarjan (1975). Groups in the current
partition are structured as trees, and the weighted quick-union rule joins the tree of
the smaller group to the tree of the larger one as a subtree attached to the root. Path
compression means that, whenever a £ind(i) operation is performed, a pointer is
introduced from node i to the root r of the tree that i resides in. Moreover, to speed
up subsequent £ind’s, the pointer to » will be added (and later updated) to each node
along the branch from i to r as part of the £ ind (i) operation, which will actually visit
these nodes. See Sedgewick and Wayne (2011) for details.

It was shown in Tarjan (1975) that the time required to execute m > n find operations
and at most n — 1 intermixed unions by this implementation is O(m - «(m, n)), where
the two-variable function « (not to be confused with the independence number «) is
related to the functional inverse of the Ackermann function and is very slow growing.
The actual definition of « is complicated (see Tarjan 1975), but the value of «(m, n)
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is claimed to remain under 3 for all practical purposes. For this reason, the union-find
technique is said to be practically linear-time.

Our idea is to implement the shrinking of a graph G along a redex r = (f1, ¢, f>2)
by creating a meta-graph G having a meta-vertex f = {f}, f>}, the adjacency list
of which is the join of f;’s and f>’s adjacency lists, excluding the edges between
f1 and f>. We then proceed iteratively, combining and deleting meta-vertices as the
reduction requires. In each step, the meta-vertices of the current meta-graph G form
a partition of V(G), which partition is maintained by union-find. There is one catch,
however, which must be avoided. One cannot calculate the exact adjacency list of each
newly created meta-vertex, because this would require the full scan of both component
adjacency lists to see if there are any edges to be dropped. The cumulative impact of
this scan on the overall complexity of the algorithm would of course be fatal. On the
other hand, we need to recognize if a meta-vertex becomes a leaf or the center of a
redex, that is, its degree becomes 1 or 2. The trick to solve this dilemma is simple.
The adjacency lists of the two components of a union will only be joined formally,
leaving in the so called “redundant” edges connecting the two focuses, which will be
screened out gradually later. We then use a function Check () to perform a smart
garbage collection every time a meta-vertex is involved in a reduction step to see if
the degree of the meta-vertex has reached 2. The details are as follows.

Algorithm 1. The algorithm maintains a list of meta-leaves Leaves, and a list of
meta-redex-centers Redexes. Each vertex on Leaves and Redexes is the canon-
ical representant of the corresponding meta-vertex as a non-empty subset of V (G).
As long as either Leaves or Redexes in not empty, the algorithm executes either
Step (a) or Step (b), with priority given to Step (a).
Step (a)
1. Take a vertex v from Leaves;
2. For the single vertex u on v’s adjacency list, let # =find (1), and mark every
vertex in [u#] deleted; (Remember that [#] denotes the group of i.)
3. For every vertex w on u’s adjacency list do: if w is not marked deleted, then
let w =find (w);
if w is on Redexes , then move w to Leaves ,
else if w is on Leaves , then remove it from there;
Check (w), and put w on Leaves or Redexes if Check () returns 1 or 2.

Step (b)

1. Take a vertex ¢ from Redexes;

2. For f1 and f> on ¢’s adjacency list, let fl =find (f}) and fz =find (f2);

3. If either f] or fz (or both) is on Redexes, then remove it from there; (Note: fl
cannot be on Leaves, because Step (a) has priority over Step (b).)

4. If fi = f», then ¢ has unnoticeably become ineligible, therefore quit Step (b)
without taking any further action;

5. Let f =union (fi, f>), and adjust f’s adjacency list by joining f;’s list to that
of f> or vice versa, depending on the weighted union rule;

6. Mark c deleted; (Note: an ineligible ¢ will not be marked deleted.)

7. Check(f), and put f on Leaves or Redexes if Check () returns 1 or 2.

The description of the function Check () is as follows.
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Check(v), vertex v, returns integer;

1. Initialize count :=0;
2. For every vertex u on v’s adjacency list, until count>2 or the list is out, do:
if u is marked deleted or £ind(u) = v, then remove u from the adjacency list of
v,
else let count : =count+1;
let u : =next(u) on v’s adjacency list, and repeat 2;
3. If count< 2, then return count, else return —1.

Analysis of Algorithm 1

Every time it is invoked, the garbage collector method Check () will check if the
argument vertex v has become a leaf or redex-center. It does so by identifying some
of the redundant edges incident with v. The method scans v’s adjacency list from
the beginning and removes every vertex corresponding to a redundant edge until the
list is out or more than two non-redundant edges have been found. The number of
find operations during the call is therefore at most three greater than the number of
redundant edges found. The actual redundancy of an edge will be detected at most
once during the algorithm (not from both endpoints, that is), because an edge becomes
redundant if one of its endpoints has been deleted or the two endpoints are joined. For
this reason, the total number of £ind operations inside some Check () during the
whole algorithm is m + 3C, where C is the number of Check () calls.

We claim that C < m. Indeed, every Check(v) call, either in Step (a) or Step
(b), can be associated with the vertex v “losing” one or more degrees, that is, having
one or more vertices on v’s adjacency list which has just been deleted. In Step (a3),
w is adjacent to some vertex in [i] that is being deleted. In Step (b7), f represents
the union of fi and f», each of which is losing a degree by deleting the center c.
Consequently, the number of Check () calls cannot exceed m, the number of edges
in G. (Mind v’s neighbor that is being deleted, therefore it is losing all of its degrees.)

Other than the £ind s inside Check (), Step (a) and Step (b) together will perform
at most m f£ind operations in total. Thus, the grand total of £ind s is at most
3m 4+ m + m = 5m, and the total number of union s is at most n — 1. Any other
cost will clearly remain under the O(m) bound. The overall time complexity of the
algorithm is therefore

OGBm - a(5m, n)) ~ O@m).

O

Now we return to the question of finding a true linear-time algorithm for reduction.
As we have indicated above, the problem is related to the issue of deleting edges from
the graph and still being able to maintain a fixed data structure that shows e.g. the cut
edges of the graph and/or some other information. This general problem is known in the
literature by the name decremental dynamic connectivity. Edges are deleted one-by-
one and in the meantime queries are made about the graph being connected or not. It is
somewhat more difficult to display the set of cut edges than to show the set of connected
components as an answer to a query. Of course, one would hope for an implementation
of decremental dynamic connectivity by which the amortized cost of one operation
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(delete an edge or display the components/cut edges) is constant. Unfortunately, no
such implementation exists at present. The best solution for decremental dynamic
connectivity uses O(logn(loglogn)?) time (on a pointer machine) for connectivity
queries (Thorup 2000) and (’)(log4 n) time for cut-edge queries (Gabow et al. 2001).
Both methods employ search as a fundamental tool.

We believe that an amortized constant-time implementation exists for decremental
dynamic connectivity, which solution is structural, rather than search-based. Such a
solution would bring the well-known reverse delete minimum spanning tree algorithm
in line with Kruskal’s one in the sense that both would require O(m) time only,
provided that the set of edges has previously been sorted according to weights. As for
now, however, even a O(log n)-time solution for decremental dynamic connectivity
would be a breakthrough result. Other than an efficient implementation for reverse
delete, it would also provide an algorithm to decide the UPM property of graphs in
O(mlogn) time. Due to Theorem 3, this problem is a special case of decremental
dynamic connectivity with cut edge queries, hence the projected O(m logn) time
complexity. Our conjecture is, however, that the UPM decision problem can be tackled
by an O(m) algorithm even if general decremental dynamic connectivity fails to be
constant-time. The presently fastest algorithm for deciding the UPM property is still
the search-based one by Gabow et al. (2001), which uses O(m log4 n) time. Needless to
say, a structural type constant-time decremental dynamic connectivity implementation
would also support a true O (m)-time reduction algorithm to implement our combined
leaf-and-line reduction procedure.

5 Computing the Konig deficiency in zero-reducible graphs

We start out by providing a simple alternative proof of the characterization result
obtained by Levit and Mandrescu (2016) on UPM graphs having the Konig property.
In our language, the characterization says that these graphs are exactly the zero-leaf-
reducible ones.

Lemma 1 (Levit and Mandrescu 2016, Lemma 4) Every maximum independent set of
a non-empty UPM graph G having the Konig property contains at least one leaf.

Proof Note that it is implicitly part of the statement that G itself does have a leaf
vertex. We prove by induction on the number of vertices in G. If |V (G)| = 0, then
we have nothing to prove. If G is not empty, then it has a cut edge e = (v1, v2)
belonging to its UPM by Theorem 3. We can assume, without loss of generality, that
G is connected, so that G — {vy, v} splits up into two uniquely determined disjoint
subgraphs G| and G, the way it is depicted in Fig. 4. In other words, G| + G is the
remainder of G after exploding e. Let S be an arbitrary maximum independent set in
G. Then S consists of an independent set S of G1, an independent set S> of G, and
possibly one of the two vertices vy, vz. Since k(G) = 0, the Konig deficiency cannot
be positive for G| or G either. Indeed, if it was, then the difference between v and «
could not be compensated in G by including only a single extra vertex (namely v; or
v2) in S. Mind that the size of a maximum matching has definitely been incremented
by adding the edge e to it. This argument also implies that S1 and S> must be maximum
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Fig.4 Visualization of the graph
in the proof of Lemma 1

in G and G, respectively, and one of vy, v; isin S. Thus, G| and G, are both UPM
graphs having the Konig property. By the induction hypothesis, both S; and S> contain
at least one leaf (in the respective subgraphs G and G2, of course). But at least one
of these leaves must remain a leaf in G, too, otherwise they would all be adjacent to
either v or v, meaning that neither v; nor v, could be in S. The proof is complete. O

Corollary 1 (Levit and Mandrescu 2016, Theorem 3) Graph G is zero-leaf-reducible
iff it is a UPM graph having the Konig property.

Proof We have observed in Proposition 1 that leaf reduction preserves the Konig
deficiency in all graphs. Therefore the corollary follows directly from the implicit
statement of Lemma 1 that every non-empty UPM graph having the Konig property
contains at least one leaf vertex. O

At this point, even though it is an aside, we take the opportunity to prove a sharper
version of Lovasz and Plummer (1986, Corollary 5.3.14) on the maximum number of
edges in a simple (i.e., no loops or multiple edges) UPM graph.

Theorem 6 If f (n) denotes the maximum number of edges in a simple UPM graph with
2n vertices, then f (n) = n>. The maximum can only be reached by zero-leaf-reducible
graphs.

Proof As in Lovdsz and Plummer (1986), we proceed by induction on n. If n = 0,
then we have nothing to prove. Let G be a UPM graph on 2n vertices (n > 1) having
a maximum number of edges. Split G into two disjoint subgraphs G and G, along a
matching-positive cut edge e as described in the proof of Lemma 1 above. See again
Fig. 4. Let |[V(G1)| = 2n1 and |V (G2)| = 2n3. Then, by definition,

fn) =max(f(n1) + f(n2) +2(n1 +n2) + 1ni+ny=n—1).
In other words, the maximum value of f is reached by G only if it is reached by both
G and G2, and each vertex in G (G2) is adjacent to v (respectively, v2). By the

induction hypothesis, f(n;) = nl2 (i =1, 2). Observe that the maximum value of the
expression n% + n% + 2(ny + no) + 1is indeed

n? = (n1 +ny + 1)2 = n% —l—n% + 21 +n2) +1+2n1no,
which is reached only if either n; = 0 or ny = 0. Thus G, being leaf-reducible to either

G or Gy, is zero-leaf-reducible by the induction hypothesis. The proof is complete.
O
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(a)

Fig.5 Example graphs

(c)

Encouraged by Corollary 1, one would expect a similar characterization of all zero-
reducible graphs in terms of a tangible connection between t and v. A plausible
candidate is articulated in the following conjecture.

Conjecture 1 Let G be a graph having a perfect matching. Then G is zero-reducible
iff it can be turned into a UPM graph having the Konig property by deleting exactly
k(G) forbidden edges in an appropriate way.

Recall that a forbidden edge of G is one that is not part of any maximum matching in
G. In case of a UPM graph, these are the edges not belonging to the UPM of G.

Example 2 Consider the zero-reducible graph G in Fig. 5a, and observe that k(G) = 1.
Indeed, v(G) = 5, but one can only cover 4 matching-positive edges by independent
vertices. Yet, it is impossible to delete a single forbidden edge from G to bring k(G)
down to O.

Example 3 Now let G be the graph in Fig. 5b. Clearly, v(G) = 7 and «(G) = 4, so
that k(G) = 3. By deleting the forbidden edges ¢; (i = 1, 2, 3), G will have the Konig
property. Yet, one can only reduce G to the multigraph shown in Fig. Sc.

Examples 2 and 3 show that Conjecture 1 fails in both directions. The failure of the
conjecture implies that it is not possible to calculate k(G) for a zero-reducible graph
G with the following simple greedy algorithm, which appears to be justified by the
fact that leaf reduction preserves the Konig deficiency.

1. Do leaf reduction on G as long as possible; if G is empty, goto step 3.
2. Delete a forbidden edge from G and return to step 1.
3. The number of deleted forbidden edges in step 2 is k(G).

Even if we knew the “appropriate” way to delete edges in step 2, the algorithm would
still not work. It gives a wrong answer for G in Example 2, the right one for G in
Example 3, but that graph is not zero-reducible.

The irreducibility of the graph G in Fig. 5c raises the following question. Why don’t
we disregard the multiplicity of edges during reduction? If we did, our graph in Fig. 5c
would be zero-reducible. The reason is to preserve the UPM property during reverse
reduction, which could be lost by simply forgetting the multiplicity of edges. (Luckily
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Fig.6 The graph G (left) and the resulting graph G’ (right) of the reduction from Theorem 7

not in the concrete example graph G, which is UPM to begin with.) Nevertheless, in
the end we could still check if the UPM property was lost by de facto reversing the
steps of the reduction in practically the same amount of time. This issue is therefore
mainly theoretical.

Now we are ready to prove the main result of this section on the intractability of
computing k(G) for a zero-reducible graph G.

Theorem 7 Computing k(G) for a zero-reducible graph G is NP-hard, with the cor-
responding language problem being NP-complete.

Proof The proof is a reduction from Independent Set. Let G be an arbitrary connected
graph. Perform the following transformation steps on G to obtain graph G’.

1. Starting from an arbitrary vertex v as the root, construct a depth-first tree for G.

2. Duplicate every tree edge of G, and drop a subdividing vertex on one of the copies.
Furthermore, add a new vertex u to G, together with a “handle” edge e = (u, v)
to the root v.

3. For each newly introduced subdividing vertex w, attach a new triangle to G
incident with w. Do the same attachment for the vertex u as well. The resulting
graphis G'.

See Fig. 6 for the transformation G—> G’ on a simple example graph G. Dashed
lines in the figure identify edges belonging to the depth-first tree. The following three
statements should be clear.

(A): The graph G’ is zero-reducible, as it is line-reducible to the single edge e.
(B): The transformation G—> G’ can be carried out in linear time.
(©): a(G") =a(G) +|V(G)|.

To explain (C), observe that the matching-positive edge of each triangle can be satisfied
(i.e., covered) by an independent vertex on either endpoint. Since the total number of
triangles is |V (G)| (mind the one incident with u), we have |V (G)| independent
vertices in G’ so far. The number of additional independent vertices in G’ is exactly
a(G), since the subdividing vertices are no longer available, and the independent
vertices satisfying the triangles cannot be traded in for the sake of collecting more
independent vertices in G’ as a whole. See again Fig. 6.

In this way we have found a linear-time (computational) reduction of the general
problem of computing «(G) for an arbitrary (connected) graph G to our problem
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of computing k(G’) for a zero-reducible graph G’. We have v(G’) = 2|V (G)| and
k(G") = v(G") — a(G’), so that

a(G) = a(G") — [V(G)| = v(G') —k(G) = [V(G)| = |V(G)| — k(G").

Thus, «(G) is directly computable from k(G’) once the latter is found. The proof is
now complete, knowing that «(G) is NP-hard to compute. Obviously, the language
problem of computing the Konig deficiency is in NP. O

Judging by the simplicity of the above proof, the reader might have the impression
that the statement of Theorem 7 is trivial. In order to see how much it is not, consider
the following corollary, which would be very difficult to handle in the absence of this
theorem.

Corollary 2 Given a graph G and a redex r in G, it is NP-complete to decide if
contracting r in G decrements the Konig deficiency.

Proof Indeed, by Proposition 2, if G —1 G’ by contracting r, then
k(G < k(G) < k(G') + 1.

Therefore, if e.g. G happens to be line-reducible to a single edge, then its Konig
deficiency can be decremented at most |V (G)|/2 times during reduction. In the light
of Theorem 7 this implies immediately that the decision if one reduction step decreases
the Konig deficiency must already be NP-complete. (The problem is obviously in NP.)

O

6 Characterizing the almost UPM and/or Konig property

One can find two different definitions in the literature for a graph G to almost have the
Konig property. The obvious one (Levit and Mandrescu 2012) is simply equivalent to
the condition k(G) = 1. The second definition (Larson and Pepper 2011) postulates
that, while G itself does not have the Konig property, there exists a vertex v € V(G)
for which G — v does. It is evident that the classes of graphs satisfying these two
definitions are not comparable. Combining the “almost” distinction with the Konig
and/or UPM properties, one obtains the following potential meaningful definitions.
For brevity, K will stand for the Konig property from this point on, just like UPM
abbreviates the property of having a unique perfect matching.

Definition 3 An almost K UPM graph is a UPM graph G with k(G) = 1.

Definition 4 An almost K and UPM graph is a graph G that is not K or not UPM, but
there exists a vertex v € V(G) such that G — v is both K and UPM.

Since the term “almost K and UPM” is rather ambiguous, especially in the context
of Definition 3, it needs further clarification. Definition 4 is about a graph G that is
definitely not UPM (mind that G and G — v cannot both be UPM), G — v is K, while
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Fig.7 The decomposition of a (K-1) UPM graph into two halves

G itself may or may not be K. In other words, G is almost UPM with respect to some
v € V(G) (i.e., UPM disregarding v) such that G — v has the Konig property. To
emphasize this meaning, graphs satisfying Definition 4 will rather be referred to as
almost K&UPM graphs. Similarly, almost K UPM graphs will be explicitly called (K-
1) UPM. In the same vein we define (K-n) UPM graphs as UPM graphs with Konig
deficiency n, and almost (K-n)&UPM graphs as almost UPM graphs G with respect
to some vertex v € V(G) such that G — v has Konig deficiency n. Notice that, e.g. a
(K-1) and almost UPM graph can be either almost K&UPM or almost (K-1)&UPM
(but not both, of course).

As a further notational convenience, we identify an almost UPM graph as a pointed
graph (G, v),indicating the vertex v € V (G) for which G —v is UPM as the designated
point in G. The point v will, however, often be omitted from this couple if it is
understood or irrelevant. Clearly, the point v in an almost UPM graph G need not be
unique, but in general it cannot be arbitrary either.

Our goal is to characterize (K-1) UPM graphs and almost K&UPM graphs in terms
of suitable reductions. To understand the connection between these two classes of
graphs, let (G1, v1) and (G2, v2) be two almost UPM graphs with designated points
v1 and v7, and construct the UPM graph G by taking the disjoint union of G and G»
and connecting vy with v, by a (matching-) positive cut edge.

If G is K, then of course both G| —v; and G, — v must be K and UPM. (Remember
the proof of Lemma 1.) Therefore G; (i = 1, 2) is almost K&UPM. Conversely, if
G1 — v and G, — vy are K, then G is either K or K-1, depending on whether one of
v1 or vy could be “squeezed in” as a further independent vertex in the union S; U S$>
of appropriate maximum independent sets S; of G; (i = 1, 2).

If G is K-1, then the following cases are possible.

Case A: G (ie., (G1,v;)) is K and almost K&UPM, while G, is almost (K-
1)&UPM.

Case B: both G and G, are K-1 and almost K&UPM.

Case C: G is K-1 and almost K&UPM, while G, is K-1 and almost (K-1)&UPM.

See Fig. 7 for a graphical summary of these cases. In the figure, circles identify

mandatory independent vertices, ones that must be present in every maximum inde-
pendent set of G. A dashed circle means that the vertex may or may not be mandatory
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Fig.8 The smallest non-empty
irreducible UPM graph

independent in the respective half of the graph, but when it is, it will be lost during
the overall count.

An immediate conclusion of the analysis above is that every simple (K-1) UPM
graph G has at least one subdividing or leaf vertex. Indeed, by Lemma 1, every
K UPM graph, as “one half” G| or G, of G, has a leaf v, which might turn into a
subdividing vertex when connecting it to either v or v, according to the decomposition
by Fig. 7. By the same token, every almost K&UPM graph, too, has a subdividing or
leaf vertex. Along these lines, the characterization of almost K&UPM graphs in terms
of reduction is the key to the characterization of (K-1) UPM graphs, which then leads
to a linear-time decision algorithm for these graphs. Moving on, we hope to have a
similar characterization for (K-2) UPM graphs through a characterization of almost
(K-1)&UPM graphs, so we could decide the (K-2) UPM property as well in linear
time. Unfortunately one cannot continue this line of reasoning for (K-3) UPM graphs,
since these graphs do not necessarily have a subdividing vertex or leaf. See Fig. 8 for
the smallest UPM graph with no multiple edges that is free from subdividing vertices
and leaves, and verify that k(G) = 3, indeed. Nevertheless, a case-by-case analysis
according to the decomposition outlined in Fig. 7 can be carried out for all UPM graphs
relating to their Konig deficiency. Such an analysis suggests an inductive method to
calculate k(G) for an arbitrary UPM graph G. We know by Theorem 7, however, that
this method is not likely to result in an exact polynomial-time algorithm.

In the present study we deal with the characterization of K and almost UPM graphs
only, leaving the rest of the work to a forthcoming paper. Clearly, if (G, v) is such a
graph, then v must be mandatory independent. Moreover, G — v is still K. See Fig. 7A,
top half.

Lemma 2 Let (G, v) be a pointed graph and u € V(G) be a leaf such that u # v. If
G —¢ G’ through eliminating the leaf u, then (G, v) is almost UPM iff (u, v) ¢ E(G)
and (G', v) is almost UPM.

Proof Let (u, w) € E(G) be the pendant edge to be exploded. Then G — v is UPM iff
G — v —u —wis UPM, provided that v # w. On the other hand, v = w is impossible
if G — v is UPM. O

Corollary3 If G —¢ G/, then G is almost UPM (with respect to some vertex) iff G’ is
almost UPM (with respect to a possibly different vertex).
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Proof Let G’ = G — u — w for some leaf vertex u with pendant edge (u, w). First
assume that (G, v) is almost UPM. If u # v, then (G’, v) is almost UPM by Lemma 2.
If u = v, then consider the unique positive edge (w, z) € E(G) and verify that
G —u —w — z is UPM, that is, (G’, z) is almost UPM. Conversely, let (G’, z) be
almost UPM for some vertex z. Then z # u and z # w, so that (G, z) is almost UPM
again by Lemma 2. O

Theorem 8 Graph G is K and almost UPM iff G is leaf-reducible to a single isolated
vertex.

Proof By Proposition 1 and Theorem 3 it is sufficient to prove that every K and
almost UPM graph (G, v) different from the single isolated vertex v has a leaf. This is
obvious, however, since G — v is still K, therefore it possesses a leaf vertex in each of
its maximum independent sets by Lemma 1. Consequently, not all of (G — v)’s leaves
can be blocked by an edge starting from vertex v, which is mandatory independent in
G. O

Notice that the leaf vertex presented in the above proof is different from v. Therefore
we also have a simple reduction algorithm to decide if a pointed graph (G, v) is K
and almost UPM (with respect to v, that is). In other words, we have the following
corollary.

Corollary 4 Graph (G, v) is K and almost UPM iff it is leaf-reducible to the point v.

Using Theorem 8 and Corollary 4 one can easily decide in linear time if a graph G
(pointed graph (G, v)) is K and almost UPM. It is still an interesting open question,
however, if one can design a linear-time algorithm to find the set of all points v for
which a graph (G, v) is K and almost UPM.

7 Conclusion

Motivated by the characterization (Levit and Mandrescu 2016) of UPM graphs having
the Konig property, we have introduced a confluent and terminating reduction system
on graphs, and shown that this reduction can be carried out in practically linear time. As
a consequence, zero-reducible graphs, forming a substantial subclass of UPM graphs,
are decidable in linear time. We have also given a necessary and sufficient condition for
the Konig property to be preserved in one inverse reduction step. As a negative result,
we have proved that the problem of finding the Konig deficiency of a zero-reducible
graph is NP-complete. Finally, we have generalized the Levit and Mandrescu type
characterization to almost UPM graphs having the Konig property.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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