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Abstract—Next generation networks, as the Internet of Things
(IoT), aim to create open and global networks for connecting
smart objects, network elements, applications, web services and
end-users. Research and industry attempt to integrate this evolv-
ing technology and the exponential growth of IoT by overcoming
significant hurdles such as dynamicity, scalability, heterogeneity
and end-to-end security and privacy. Motivated by the above,
SEMIoTICS proposes the development of a pattern-driven frame-
work, built upon existing IoT platforms, to enable and guarantee
secure and dependable actuation and semi-autonomic behaviour
in IoT/IIoT applications. Hence, in this paper, we describe the
design of the SEMIoTICS architecture that addresses the afore-
mentioned challenges. Specifically, the functional components
of the proposed architecture are presented including also an
overview of the appropriate realization mechanisms. Finally,
we map two verticals in the areas of energy and health care
and one horizontal in the areas of intelligent sensing use-cases
scenarios to the suggested architecture in order to demonstrate its
applicability to different IoT enabling platforms, types of smart
objects, devices and networks.

Index Terms—Internet of Things (IoT); Software Defined Net-
working (SDN); Network Function Virtualization (NFV); Design
Patterns

I. INTRODUCTION

Global networks like IoT create an enormous potential for
new generations of IoT applications, by leveraging synergies
arising through the convergence of consumer, business and in-
dustrial Internet, and creating open, global networks connect-
ing people, data, and things. A series of innovations across the
IoT landscape have converged to make IoT products, platforms
and devices technically and economically feasible. However,
despite these advancements the realization of the IoT potential
requires overcoming significant business and technical hurdles
such as dynamicity, scalability, Heterogeneity and end to end
security and privacy.

All the above challenges give rise to significant complexi-
ties, and relate to the implementation and deployment stack of
IoT applications. To address them, the overall aim of SEMI-
oTICS1 is to develop a pattern-driven framework, built upon
existing IoT platforms, to enable and guarantee secure and de-
pendable actuation and semi-autonomic behaviour in IoT/IIoT

1https://www.semiotics-project.eu

applications. The SEMIoTICS framework will support cross-
layer intelligent dynamic adaptation, including heterogeneous
smart objects, networks and clouds. To address the complexity
and scalability needs within horizontal and vertical domains,
SEMIoTICS will develop and integrate smart programmable
networking and semantic interoperability mechanisms. The
above will be validated by industry, using three diverse usage
scenarios in the areas of renewable energy and healthcare, and
smart sensing and will be offered through an open API. The
SEMIoTICS proposed concept is illustrated in Figure 1.

In this work, we present the development of the SEMI-
oTICS Architectural Framework consisting of a number of
different components and technologies able to satisfy the
above challenges in the IoT domain. The remainder of this
paper is organized as follows. In Section II, an overview
of SEMIoTICS Architectural Framework and the components
of each is presented. In addition, Section III describes the
different SEMIoTICS use cases. Finally, Section IV provides
conclusions and future work.

II. SEMIOTICS ARCHITECTURAL FRAMEWORK

SEMIoTICS vision in delivering smart, secure, scalable,
heterogeneous network and data-driven IoT is based on two
key features:

• Pattern-driven approach: As re-usable solutions to
common problems and building blocks to architecture,
patterns are leveraged in SEMIoTICS to encode proven
dependencies between security, privacy, dependability
and interoperability (SPDI) properties of individual smart
objects and corresponding properties of orchestrations
(composition) involving them. As a result enables ver-
ification of correct behavior at run time and at creation.

• Multi-layered Embedded Intelligence: Effective adap-
tation and autonomic behavior at field (edge) and infras-
tructure (backend) layers will be achieved by bringing
the intelligent analysis locally as per each layer to enable
semi-autonomous, prompt reaction as well as broadened
intelligence at higher levels.

SEMIoTICS Architectural Framework aims to leverage
generic architecture components combined in layered structure



Figure 1. SEMIoTICS

in order to deliver an Embedded Intelligence at all layers
of the framework with the mechanisms empowering SPDI
patterns verification across all layers. Created SEMIoTICS
pattern-driven framework will be capable of supporting diverse
scenarios with specific focus on Smart Energy, Healthcare and
Smart Sensing use cases. Figure 2 presents the component
logical architecture consisting of three layers: Application
Orchestration Layer, SDN/NFV Orchestration Layer and Field
Layer; while more details of each layer is presented further.

A. Application Orchestration Layer

Application orchestration layer consist of all applications
receiving the communication from field layer. Backend or-
chestrator will be leveraged for the application orchestration
purposes and to provide common functionalities across all
deployed applications. Additionally, application orchestration
layers hold the use case flows as well as SPDI patter definition.

1) Backend Orchestrator: Backend Orchestrator compo-
nent is responsible for provisioning all applications and
components residing in the backend. As a result a created
framework will offer application availability (health checks)
and application resource consumption monitoring as well as
a set of common API’s for: pattern enforcing components,
monitoring components and continuous integration (CI) and
continuous delivery (CD) tools. Moreover autoscaling features
will be provided for applications, ease application/component
deployment and one centralized place for backend component
management. Approaches taken into consideration include: (i)
Kubernetes/Openshift [1] on bare metal, (ii) OpenStack [2] on
bare metal, and (iii) Kubernetes/Openshift on OpenStack.

Figure 2. SEMIoTICS Architecture

2) Recipe Cooker: Recipe Cooker (RC) is a module able
to instantiate recipes. A recipe is a template for a workflow
of interactions between multiple ingredients, i.e., devices or
services. When a recipe is instantiated, ingredients are replaced
with concrete things, described with their own respective
Thing Description. Besides the workflow of the recipe, QoS
constraints and SPDI patterns can be defined on the inter-
actions. The user of this tool would be typically an IoT
application developer. This user wants to focus on the logic of
the application flow. Specifically, the user does not have to be
an expert in configuring the network and physical connections
between the involved IoT devices. The benefit of the recipe
approach is that these configurations are automatically done
by the tool and the underlying technologies, user only sets
SPDI properties (e.g. latency, rate).

3) Thing Directory: The Thing Directory hosts Thing De-
scriptions of registered things. The Thing Description (TD)
model is a recommendation of the W3C Web of Things [3]
working group to describe things. The directory features an
API to create, read, update and delete (CRUD) a TD. The
directory can be used to browse and discover Things based on
their TDs.

4) Pattern Orchestrator: The Pattern Orchestrator module
features an underlying semantic reasoner able to understand
cooked recipes, as received from the Recipe Cooker module
(see above) and transform them into architectural patterns. The
Pattern Orchestrator is then responsible to pass said patterns to
the corresponding Pattern Engines (as defined in the Backend,
Network and Field layers), selecting for each of them the
subset of patterns that refer to components under their control
(e.g. passing Network-specific patterns to the Pattern Engine



present in the SDN controller). Through the above functions,
the module achieves automated configuration, coordination,
and management of the SEMIoTICS patterns across different
layers and service orchestrations.

5) Backend Pattern Engine: The Pattern Engine features
the pattern engine for the SEMIoTICS framework. Variants of
pattern engine can be found at the backend, at the network
(SDN controller) and field (IoT gateway) layers. As such,
it will enable the capability to insert, modify, execute and
retract patterns at design or at runtime in the backend; these
interactions will happen through the interfacing with the
Pattern Orchestrator (see above), though additional interfaces
may be introduced to allow for more flexible deployment and
adjustments if needed.

6) Backend Monitoring: Responsible for monitoring, learn-
ing and predictive analytics. It receives low-level events as the
messages generated by the gateway monitoring component.
The reception of a set of low level events can lead to
the generation of a new high-level event. Finally, it issues
configures the egde monitoring component to properly select
and configure the signaling mechanisms as needed.

7) Backend Security Manager: Main security component
responsible in the backend of SEMIoTICS’ for providing the
following services: (1) authentication of users and compo-
nents, (2) key distribution, (3) management of users, roles,
and access rights, and (4) storing and taking decisions on
security policies. The Security Manager at the backend layer
is the global Policy Decision Point (PDP) for all security
policies. In contrast, the Security Managers at SDN and edge
level are Policy Enforcement Points (PEP), taking local and
enforcing global decisions. For authentication, the Security
Manager supports both local authentication and external iden-
tity providers using OAuth2.

8) Backend Semantic Validator: The aim of Backend Se-
mantic Validator component (see SEMIoTICS deliverable
D4.4) is to tackle the semantic interoperability issues that arise
in the SEMIoTICS framework, at the application orchestration
layer. The Backend Semantic Validator can receive a request
from IoT application for interaction between two Things (i.e.
sensor, actuator), which are described with two different TDs
(based on W3C Thing Descriptions that are serialized to
JSON-LD standard format), respectively.

9) Graphical User Interface: Responsible for the presenta-
tion layer, giving meaningful insights into the platform and
centralized visualization of the whole framework. Several
approaches are to be considered: GUI dedicated to the given
application or more generic user interface that embeds view
from external application. The other considered approach is
GUI that communicates with an external application through
the API and presents the content in the standardized way.

B. SDN Orchestration Layer

SDN Orchestration Layer provides data and control plane
decoupling resulting in a cloud computing approach that
facilitates network management and enables pro grammatically
efficient network configuration.

1) VTN Manager: Responsible for assignment of individual
network services to various network tenants. It further ensures
a separation of L2 traffic in scope of a virtual tenant network.

2) Path Manager: Main network path computation engine
of the SDN Controller, responsible for identification of nodes
and ports combined into a path that fulfills the pattern require-
ments (i.e., considers the fault-tolerance or bandwidth/delay
constraints).

3) Resource Manager: Provides the Path Manager with
a resource view of the network (i.e., the available topology
resources such as the port speed, number of queues etc.)
exposing the metrics observable using the available interface
(e.g., using OpenFlow).

4) SDN Security Manager: The main role of the Security
Manager is the support for authentication and accounting
services for administration of tenants and assignment of ap-
plications with respective tokens used for fast authentication
during runtime. Security Manager should accomplish the au-
thentication and accounting services to the rest of the SDN
Controller as well as the users and applications that interact
with the controller. Moreover, it exposes interfaces for the
administration of local SDN Controller accounts, in order to
achieve authentication.

5) VIM Connector: In SEMIoTICS, the SDN Controller is
considered an external entity to the NFV Management and
Orchestration (MANO) framework. This brings benefits in
terms of resilience, due to the isolation of network services
to separate hosts, but also allows for optimization of both
overlay and physical network paths, which could help satisfy
SEMIoTICS use cases requirements. Infrastructure flexibility
is one of the most relevant features provided by NFV [4], and
network overlays play a crucial role in network virtualization.

6) SFC Manager: Service Function Chaining (SFC) Man-
ager used in SFC given the ordering and IP addresses of the
nodes that are to be traversed by a tenant’s traffic [5]. SFC
Manager will handle service function chaining of network
functions. It identifies an abstract set of service functions and
their ordering constraints that should be applied to packets
and/or frames selected as a result of classification. Further-
more, the implied order could not be a linear progression, due
to the fact that the architecture allows for nodes which copy to
more than one branch; also, the architecture allows for cases
where there is flexibility in the order in which services need
to be applied.

7) Clustering Manager: A component comprising an un-
derlying registry used in state-keeping of other component’s
knowledge base, as well as for its strong consistent replica-
tion across the SDN controller instances for the purpose of
fault-tolerance and high-availability. The design is adaptable
to support Byzantine Fault Tolerance [6] depending on the
strictness of requirements on dependability in the respective
domain.

8) Bootstraping Manager: A component used in initial
flow configuration of just-connected switches, so to allow for
seamless interaction with IoT devices (e.g., to enable flow
rules for propagation of unmatched application packets up



to the controller for the purposes of ARP-based end-device
discovery and an automated addition of infrastructural network
services).

9) SDN Pattern Engine: SDN Pattern Engine: Enables the
capability to insert, modify, execute and retract patterns at
design or at runtime in the SDN controller [7]. PE can be
based on a rule engine which will be able to express design
patterns as production rules. Enabling reasoning, driven by
production rules, appeared to be an efficient way to represent
SEMIoTICS patterns. More specifically, since Drools rule
engine is based on Maven, it can support the integration of
all required dependencies with the ODL controller, as well as
the integration of the entities that interact with the controller
to run Drools at design and at runtime.

C. NFV Orchestration Layer
NFV provides a flexible, programmable, dynamic and scal-

able networking paradigm, making it ideal for satisfying the
QoS demands of SEMIoTICS use cases.

1) NFV Orchestrator: NFVO allocates (or decommissions)
the necessary resources for NS instantiation (or termination).
Also, it provides VNF lifecycle management, allows modi-
fication of VNF parameters, and modification of VNF inter-
connection. These are complex endeavours, mainly because
VNF’s requirements and constrains need to be satisfied simul-
taneously on top of a very dynamic environment. These tasks
are performed by the NS and Resource Orchestration functions
(NSO and RO, respectively) inside NFVO. Capabilities of
each function are exposed via standard interfaces consumed
by other elements of the NFV MANO.

2) VNF Manager: VNF Manager is responsible for the
creation and management of the needed virtualized resources
for the VNF, as well as the traditional Fault, Configuration, Ac-
counting, Performance, and Security Management (FCAPS).
VNF Manager’s functions make sure requirements are met at
instantiation time. Furthermore, they maintain the virtualized
resources that support the VNF functionality without inter-
fering with its logical functions. Like NFVO, VNF Manager
functions are exposed through APIs to other MANO functions.

3) VIM: NFVI defines two administrative domains: the In-
frastructure and Tenant domains. The former contemplates the
physical infrastructure upon which virtualization is performed.
The latter makes use of virtualized resources to spawn VNFs
and create NSs. A VIM lies in the Infrastructure Domain. It
takes care of abstracting the physical resources of the NFVI
and making them available as virtual resources for VNFs. It
also enables communication with external SDN controllers in
order to provide virtual or physical network resources to NSs.

D. Field Layer
Field layer is responsible for hosting all types of IoT

devices such as sensors and actuators as well as IoT gateway
which provides common way for communication and ensures
enforcement of SPDI patterns in this layer. Generic gateway
components are capable to work with any set of IoT devices
what ensures ability to deliver diverse use cases in various
sectors.

1) Semantic API & Protocol Binding: This component
exposes the brownfield devices in a common IoT access
layer and will be based on W3C Web of Things (WoT)
building blocks, i.e., the Thing Description, Binding Templates
and the WoT Scripting API. The Thing Description will be
used to semantically describe field device resources, their
interfaces, security meta-data, etc. Reuse and extention of
existing semantics to provide a semantic integration into IoT
semantic models is planned. The WoT Scripting API exposes
Things (field devices) that have been integrated over Binding
Templates and described with Thing Descriptions. It provides
uniform standardized access to Things and their data.

2) Security Manager: In the gateway serves as local fron-
tend for the Security Manager at the backend layer. Its two
main purposes are: (1) facilitating authentication of sensors
and actuators towards SEMIoTICS, and (2) enforcing security
policy decisions locally. Sensors and actuators in many cases
will be connected to the gateway using low-level protocols and
technologies such as MQTT, Bluetooth, etc.; in these cases it
simplifies authentication if the gateway contains its own SM.

3) Gateway Semantic Mediator: Gateway Semantic Me-
diator realizes a common semantic access layer between
brownfield devices and new IoT devices. It maps and inte-
grates semantics from existing brownfield devices into IoT
or IIoT application semantics. Thus, it enables the discovery
of Things representing the legacy applications, so to allow
for the definition of their interactions in the Recipe Cooker.
To realize the semantic mediation of legacy devices, the
mediator must provide a mapping knowledge ( Knowledge
Packs) to map particular brownfield semantic standard into
another IIoT standard (e.g. W3C Thing Description format
serialized to JSON-LD [3]). SEMIoTICS IoT Gateway is
capable of installing and extending the current mappings with
new modular Knowledge Packs and thus enable integration of
arbitrary field devices into a harmonized IoT access layer. The
semantically enriched models are then made accessible over a
local and backend semantic repository.

4) Gateway Monitoring: The SEMIoTICS monitoring
module in the gateway provides: (1) generation of specific
messages in response to the reception of a set of messages
generated by IoT application components and matching some
condition specified by a client application (monitoring re-
quirement); (2) guarantee that the messages needed to de-
cide whether to generate a message can be produced by an
IoT application and received by the monitoring component
(observability property). Monitoring module will allow the
execution of some of the monitoring tasks close to the field
devices and it’s aggregation of the low level events. Delivery
only aggregated results to backend monitoring module reduces
number of transmissions and saves resources (i.e. energy,
bandwidth) which are scarce in edge nodes, e.g. a mobile
phone.

5) Gateway Pattern Engine: Pattern Engine in the gateway
is able to host design patterns as per Pattern Orchestration
located in the backend layer. Due to gateway capability
limitations, Pattern Engine will host patterns in an executable



form compared to the pattern rules as provided in the other
layers. Hence it will guarantee SPDI properties locally based
on the data retrieved and processed by the Monitoring module,
the Thing Directory in the IoT gateway and based on the
interaction with other components in the field layer. Finally,
the Pattern Engine in gateway will store the executable patterns
locally and will be updated by the pattern orchestrator on
request.

6) Local Embedded Intelligence: Local Embedded Intelli-
gence is component able to (i) execute a use case specific
application logic (ii) rely on at least one of the services
provided by the SEMIoTICS platform and (iii) deployed on a
field device. The Controller on board of the Robotic Rollator
part of the SARA UC is an example of Local Embedded
Intelligence since: (i) it addresses a requirements specific of
the UC (i.e. to power the hub wheels in order to balance the
user’s weight) (ii) relies on the Semantic Mediator to discover
how to address the hub wheels available on the specific rollator
(iii) is deployed on the Single Board Computer (SBC) (i.e. a
Raspberry Pi 3) of a Robotic Rollator.

7) Local Thing Directory: The local repository of knowl-
edge containing necessary Thing models. The purpose is to
store semantic description of Things locally in the Generic
IoT Gateway. Semantic Mediator will allow providing these
descriptions in accordance to W3C WoT standard and
iot.schema.org in order to verify if specific Thing shall be
used for a new Edge application development. However, not
only humans but software components or machines may query
Local Thing Directory too, e.g., when automatically generating
a user interface for a Thing or matching Recipe requirements
with capabilities of Things. The component keeps all semantic
meta-data up to date (device capabilities, configuration param-
eters of devices, contextual information (e.g., location, feature
of interest etc.) and will be synchronized with the Thing
Directory running in the Backend.

E. External IoT Platforms

SEMIoTICS will interface third party IoT platforms, most
notably FIWARE. In FIWARE, the Orion Context Broker,
which keeps track of the sensor and actuator Context Informa-
tion, will be be federated with the SEMIoTICS architecture.
FIWARE leverages the NGSIv2 Data Model and API, which
relies on JSON representation to make data from multiple
providers accessible for data consumers. The interaction with
both data providers and data consumers is taking place via
the FIWARE NGSI 10 context data API. SEMIoTICS will
leverage this API for context queries, context subscription and
context updates to interact with the respective context elements
(i.e., sensors and actuators) in the FIWARE domain and add
them at the local SEMIoTICS Thing Directory.

III. SEMIOTICS USE CASES

This section showcases the demonstration scenarios (use
cases) to be presented within SEMIoTICS framework. Each
use case is described from the perspective of the generic

Figure 3. Use Case 1 in SEMIoTICS architecture

SEMIoTICS architecture with special focus on showing speci-
ficity of each use case and how dedicated components are
leveraged in order to be follow generic architectural guidelines.

A. Use Case 1 - Wind Energy

State of the art wind turbine controllers in wind park control
domain are embedded, highly integrated control systems,
requiring rigorous development and pre-qualification prior to
deployment. Adding new sensors, actuators and associated
features may require years of testing and integration before
introduction in field operations. Use Case 1 (3 portrays how
SEMIoTICS IIoT integration can benefit the wind park control
domain. Currently, O& M personnel in a remote control center
needs to monitor the inclination of the steel towers on a
number of specific wind farms to prevent the deformation and
fatigue of the steel. SEMIoTICS will apply localized edge
analytics: only the data container containing the algorithm and
result of the inclination calculation is transferred between the
wind turbine and the remote control center; measurements can
be done more frequently than currently. Thus, unnecessary
traffic between turbines and remote control center is reduced
and abnormalities are detected more quickly.

B. Use Case 2 - e-Health

This use case employs the SEMIoTICS technologies to
develop a solution aimed at sustained independence and pre-
served quality of life for elders with Mild Cognitive Impair-
ment or mild Alzheimer’s disease, with the overall goal of
delaying institutionalization: supporting both ’aging in place’
(individuals remain in the home of choice as long as possible)
and ’community care’ (long-term care within the community
rather than in hospitals or institutions). The SARA UC design



Figure 4. Use Case 2 in SEMIoTICS architecture

envisages two groups of modules: cloud modules and field
modules. In this design the SEMIoTICS Framework will offer
the services (e.g. networking, monitoring, security) facilitating
the integration of the modules belonging to the two groups.
Figure 4 shows the main software modules envisaged in the
preliminary design for the SARA UC.

C. Use Case 3 - Smart Sensing

In contrast to the local-based solutions, the major weak-
ness of cloud-based solutions is that they are less scalable,
centralized, responsive and rely on permanent connectivity.
The Intelligent Heterogeneous Embedded Sensors (IHES) use
case aims to demonstrate the advantages of performing local
embedded intelligence of data processing very close to sensor
level, and that distributed data event detection and sensor
clustering is a key aspect for massive system scalability. Since
UC3 is a horizontal use case, the main objective of this use
case is to show how the technology in development within
SEMIoTICS could possibly trigger alerts in advance, so to
send alarms to the population and prevent the occurrence
of tragedies like the ones mentioned above. Two different
scenarios have been identified of a relevance for demonstrating
UC3 on SEMIoTICS i) Local vs Global anomalies and ii)
Causal discovery and inference. These identified scenarios
will be demonstrated in a convenient laboratory deploying by
emulating them in order to effectively demonstrate interaction
with components from SEMIoTICS ecosystem (Thus demon-
strating the pattern driven flow from local intelligent nodes,
to IoT gateway up to SEMIoTICS network and backend/cloud
infrastructure) Figure 5.

Figure 5. Use Case 3 in SEMIoTICS architecture

IV. CONCLUSION

In this work, we described the SEMIoTICS architectural
framework, which addresses the complicated requirements
of IoT/IIoT applications such as security, privacy, depend-
ability and interoperability. We clarify the core mechanisms
of the SEMIoTICS framework and present their mapping
to the architecture structure. The functional components of
the proposed architecture are illustrated in detail. Finally,
the representation of use case scenarios are described and
presented in the SEMIoTICS Framework.
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