
Building Software and
Communities With Peer Review:

rOpenSci, pyOpenSci, and Beyond

noamross @

Noam Ross
PyData NYC, 2019-11

@EcoHealthNYC ecohealthalliance.org

Building technical and community
infrastructure for R to support

open, reproducible science

@rOpenSci
ropensci.org

@pyOpenSci
pyopensci.org

(Production)
Code Review

(Academic)
Peer Review

granular project-wide

narrow scope broad scope

project collaborators (anonymous) peers in
your field

quality control quality + legitimacy

Frequent
iteration,

High
familiarity

Infrequent
review,

Low
familiarity

Pair
Programming

Pull Request
Review

Project Peer
Review

Why peer review?

drive adoption of best practices and standards

increase quality in the long tail of applications

build a community of practice

drive adoption of best practices and standards

increase quality in the long tail of applications

build a community of practice

Why peer review?

"The review process taught me a lot

about different tools available for

making my code more robust and

resilient to future changes."

"I learn a lot from closely reading other

people's code and it is hard to do when

I'm not forced to review so closely."

Why peer review?

the long tail: monthly downloads
of all CRAN packages

drive adoption of best practices and standards

increase quality in the long tail of applications

build a community of practice

Why peer review?

drive adoption of best practices and standards

increase quality in the long tail of applications

build a community of practice

Why peer review?

drive adoption of best practices and standards

increase quality in the long tail of applications

build a community of practice

Why peer review?

drive adoption of best practices and standards

increase quality in the long tail of applications

build a community of practice

"[I liked] meeting people in the R

community who I didn't know

before, and strengthening ties to

the community."

Why peer review?

training

quality control

team-building

How to do a review?

Use a set of shared standards

Automate all you can

Do it their way: Run the author’s workflow

Do it your way: Break the author’s workflow

Make a map of the source: Files, Functions, Tests, and Docs

Write as you follow your map

Have a set of
common standards.

Start small, steal
most of them

devguide.ropensci.org

www.pyopensci.org/dev_guide

Thanks Mozilla Science!
mozillascience.github.io/codeReview/intro.html

http://mozillascience.github.io/codeReview/intro.html

Automate, Automate!
• functionality

• implementation

• style + readability

• interface

• tests

• documentation

Parts of all these
can be checked

automatically

Let humans focus
on what humans

are best at

Automate, Automate!

>R CMD check/BiocCheck #repository standards

>testthat::test_package() #functionality

>covr::package_coverage() #testing completeness

>devtools::spell_check() #documentation

>lintr::lint_package() #code style

>goodpractice::gp() #antipatterns/complexity

── goodpractice::gp() report ─────────────────────────────────────

It is good practice to

write unit tests for all functions, and all package code in general. 86% of code lines are covered by test cases.

R/ccex.r:583:NA

... and 16 more lines

omit "Date" in DESCRIPTION. It is not required and it gets invalid quite often. A build date will be added to the package

when you perform `R CMD build` on it.

use '<-' for assignment instead of '='. '<-' is the standard, and R users and developers are used it and it is easier to read

your code for them if you use '<-'.

R/ccex.r:61:15

... and 128 more lines

avoid long code lines, it is bad for readability. Also, many people prefer editor windows that are about 80 characters wide.

Try make your lines shorter than 80 characters

R/ccex.r:240:1

... and 2 more lines

avoid 1:length(...), 1:nrow(...), 1:ncol(...), 1:NROW(...) and 1:NCOL(...) expressions. They are error prone and result 1:0 if

the expression on the right hand side is zero. Use seq_len() or seq_along() instead.

R/ccex.r:283:12

... and 3 more lines

Automate, Automate!

>devtools::use_travis() #Linux + MacOS

>devtools::use_appveyor() #Windows

>rhub::check() #Linux + Windows

Run the Developer’s Workflow

Break the Developer’s
Workflow with Your Own

Mapping the Source
Organize reading

the source by
Files?
Docs?

Functions?
Objects?

Tests?

covr::report()

Mapping the Source

cloc::cloc()

Mapping the Source

https://rpubs.com/jtr13/vis_package

Mapping the Source

https://rpubs.com/jtr13/vis_package

Following Your Map

Read the source! Run things as needed.

Keep your standards guide handy.

List big ideas and little notes separately.

Keep track of the good as well as bad!

Look for patterns and analogues.

Writing it Up
Set the context.

Go from big ideas to small.

Highlight the good parts as well
as areas to improve.

Don’t worry that you don’t cover
everything– cover your expertise.

Be Nice.

scientists
analytics team

developers
quality code

good training

strong community
we want As so we can do awesome work

Thanks!

Join us at:
ropensci.org/software-review
pyopensci.org/

noamross @

Karthik
RamLincoln

Mullen

Scott
ChamberlainMaëlle

Salmon

Anna
Krystalli

Melina
Vidoni

Brooke
Anderson

http://ropensci.org
http://ropensci.org

