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Abstract: Previously in her secondment at the University of Alberta, Nina created the
continuous stirring tank heater case study. This case study can be used for testing techniques
in various aspects of process systems engineering, such as system identification, fault detection
and diagnosis, and controller design. With my research being about data-driven fault detection
algorithms for process monitoring, this case study is of great interest to me. Although many
previous works have already used this case study for testing the fault detection and diagnosis
algorithms, there is potential for more practical faulty scenarios. Inspired by the discussions
with Nina, I try to create two fault scenarios. The first one develops gradually over time and
the second one is to simulate a fault that may be physically induced in the experiment. The
data from both healthy and faulty scenarios are collected Canonical Variate Analysis, which is
a multivariate approach for modelling linear and dynamic processes, is applied to the data for
fault detection. This test can be the starting point towards fault detection and prognosis for
nonlinear and dynamic processes with multiple operating modes and transition periods.
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1. INTRODUCTION

In June 2015, I first met Nina at the University of Alberta,
Edmonton, Canada, where I was studying my Master of
Science (MSc) in Process Control. During Nina’s visit,
we had a great group discussion regarding the ongoing
researches in the Process Control group and Nina kindly
offered her insights and opinions to the questions my
colleagues and I had. What I will always remember is
that, between the meetings, Nina asked me what the plan
after my study was. If I were told that I will be doing
my PhD with Nina being my supervisor by then, I would
not have believed. Luckily enough, various unforeseen and
foreseeable events have made it happen. It is absolutely
great to work with Nina.

Long before I started my MSc study, Nina used a Con-
tinuous Stirring Tank Heater (CSTH) test rig, which
was located at the University of Alberta, for experiment
and data collection. The first principles model of this
rig was derived by combining the measured data and
the first principles relationships, including the volumet-
ric and the energy balances, the heat transfer and the
characteristics of actuators and sensors. Afterwards, the
CSTH case study has been set up in Simulink. The case
study bridges the physical process, the simulated model
and the data analytic algorithms. Although one may not
have access to the test rig, the simulated model can pro-
duce data for testing data analytic algorithms in vari-
ous scenarios. The fact that the noise and disturbance
data were also generated by experiment adds on to the
practical value. The case study has been described in
Thornhill et al. (2008) while a website (http://personal-
pages.ps.ic.ac.uk/∼nina/CSTHSimulation/index.htm) pro-
vides the Matlab and Simulink files.

In this work I try to use this case study for faulty data
generation and fault detection. One of the suggestions
for applications in Section 8.1 in the original paper is
that the CSTH case study may be used for testing of
fault detection and diagnosis algorithms. Many works have
already done so. Most of them considered faulty scenarios
such as increased measurement noise (Yu et al., 2016),
sensor bias (Shang et al., 2019), step changes in Set Points
(SPs) (Tong et al., 2014), or varying operating modes
(Ge et al., 2016). Other tested faulty scenarios include
sticking valves and increasing valve demands (Tong et al.,
2014; Amin et al., 2019). The motivation for me is that,
according to discussions with Nina, there are possibilities
for physically inducing faults to the process. Therefore, I
would like to test faulty scenarios which are more practical
in the process. Moreover, as there is a growing interest
towards fault prognosis, it may also be interesting to
observe the behaviour of process variables with a gradually
developing fault especially in a process under closed-loop
control. In the CSTH case study, there are saturation units
for setting the minimum and maximum flow rates through
the valves, the maximum water temperature and the full
tank level. The ability of the control loops to compensate
process faults is therefore limited, which is true to the
behaviour of the control loops in real-life processes.

A coincidence is that the original paper presenting this
case study belongs to the Festschrift, which is a special
issue in the Journal of Process Control, honouring the 65th
birthday of Professor Dale Seborg. While Professor Seborg
was the awardee of the prestigious Nordic Process Control
Award in 2018, Nina receives this award in 2019. It is
great to see that the exploration inspired and led by great
researchers continues while the great researchers are being



honoured. I hope that Nina will enjoy reading this small
piece of work.

The remainder of this article is organized as follows.
Section 2 briefly introduces the CSTH model. The test
case for fault detection is presented in Section 3, which
also introduces how the healthy and faulty data were
generated. The fault detection results are presented in
Section 4. In Section 5, there are several remarks, based
on my own experience, that might be useful for others who
also would like to use this case study. Section 6 draws the
conclusions from the test.

2. THE CSTH MODEL

In the CSTH test rig, hot and cold water flows are mixed
in a stirred water tank, where the mixed water is heated
by hot steam via a heating coil. The mixed and heated
water flows out of the tank through a draining pipeline
at the bottom of the tank. For brevity, the P&ID of the
test rig and details for the instrumentation and the tested
conditions are omitted here.

The first principles model of the tank using energy and
volumetric balance is built in Simulink. In addition, the
models for the sensors and the valves in the rig were
calibrated using experimental data. Two control loops
exist in the Simulink model. One loop controls the water
temperature in the tank. Given that the tank is well mixed,
the measurement is taken at the outflow pipeline. The
manipulated variable here is the steam valve opening. The
water level in the tank is controlled by a cascade control
loop where the inner loop controls the inlet cold water
flow rate and the outer loop controls the tank level. The
inlet hot water flow rate and the outflow rate, which are
not controlled variables, may also be set by adjusting the
corresponding valve opening. The tank level, the water
temperature and the cold water flow are controlled using
PI controllers. The open-loop and closed-loop behaviour
of the test rig and the Simulink model compared in the
original paper proves that the Simulink model can be a
reliable digital twin of the test rig.

When running the simulation, the SPs for the level and the
temperature can be specified. Since the original process
model is nonlinear, linearized models can be realized at a
steady state by fixing the SPs. The disturbance sequence
in the level and the temperature and the noise sequence in
the temperature, collected from experiment, were used as
the inputs to the process to excite the process dynamics
and to facilitate closed-loop identification.

3. TEST SETUP

This section introduces the test setup in the Simulink
model for generating healthy and faulty data.

3.1 Healthy data generation

In the test, the process is running at the Standard operat-
ing condition 2. The level SP is 12 mA, the temperature
SP is 10.5 mA and the hot water valve opening is set to
be 5.5 mA. The training data set comprises 500 samples
which are generated by using the first 500 samples of
the cold water disturbance sequence, the level disturbance
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Fig. 1. Process data: healthy
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Fig. 2. Process data: validation

sequence and the temperature noise sequence as the inputs
to the process. These noise and disturbance sequences are
used as inputs to the simulation in all tested scenarios.
The measurements taken in fault detection are the cold
water flow rate, the tank level and the outflow temperature
measured in mA, as Fig. 1 shows. Since that it is not neces-
sary for a monitoring model to represent an input/output
relationship, the inputs to the simulation are not included
in the test data.

To test the robustness of the fault detection algorithm, a
cross-validation data set is generated by using Sample 501
to Sample 1000 of the disturbance and noise sequences as
the inputs. The validation data are plotted in Fig. 2.

3.2 Tested scenarios

The following faulty scenarios have been induced to the
simulation model. The first fault is a developing fault
which may cause conflicting behaviour of the controllers.
The second fault aims to simulate a behaviour that may
physically induce faults to the test rig.

Too much hot water inlet The objective of creating
this faulty scenario is to challenge closed-loop control
effect. The existing control loops for the temperature
and the tank level can already cope with a variety of
disturbances or drifting that may occur in the process.
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Fig. 3. Test sequence in the hot water input
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Fig. 4. Process data: Fault scenario 1

For example, if a fault is induced by reducing the hot
water inlet, the controllers may compensate the influence
on the temperature and the tank level by simultaneously
increasing the steam flow rate and the cold water flow rate.
On the other hand, the increasing hot water flow rate may
not be easily managed since the cold water flow will be
reduced to keep the tank level constant while it may be
difficult for the steam heater to react to the extra enthalpy
brought by the hot water inlet.

Fig. 3 shows the test sequence with 500 samples, which
results in the hot water inlet gradually increasing. For this
test, the input sequence comprises Sample 1001 to Sample
1500 of the noise and disturbance sequences.

The process data generated in this faulty scenario are
visualized in Fig. 4. It can be seen that the inlet cold
water flow reduces in reaction to the increasing inlet hot
water flow. In the meantime, when compared with the
temperature in the healthy case, the temperature in this
faulty case begins to increase slowly especially at the end of
this test, demonstrating that temperature controller may
not be able to maintain the tank temperature. The con-
troller output in Fig. 5 shows the effort of the temperature
controller to reduce the steam flow rate. The controller
output is not used for fault detection.

Outlet pipeline blockage In practice, randomly stepping
on the outflow hosepipe may create blockages in the
outflow. To produce this faulty scenario in the simulation,
the following multiplicative fault model has been adopted
to the outflow section:

f faultyout = αfout. (1)

In the simulation, fout, the outflow of the tank, is an
empirical function of the tank level. To induce the fault,
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Fig. 5. Steam controller output
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Fig. 6. α sequence in the outlet flow
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Fig. 7. Process data: Fault scenario 2

α is a random binary sequence which may take the value
of 90% or 100%. In the fault-free situation, α is constantly
100%, indicating that there is no blockage in the outflow.
α being 90% is to simulate the case when one steps on the
outlet hosepipe, causing the blockage. When the blockage
is removed, α returns to 100%.

Fig. 6 shows the binary sequence of α. Again, 500 samples
are generated using this sequence. The inputs are Sample
1501 to Sample 2000 in the original input sequences.
The measured data are plotted in Fig. 7. It can be
seen that the disturbance in the physical layout of the
process propagates to other process variables. During
the propagation, the profile of the disturbance may have
changed. For example, the step changes in the outflow
result in the sine wave-like profiles in the tank level, the
temperature and the cold water flow measurements. The
influence of the blockage is immediately visible in the flow
and level measurements while there exists a time delay
for the tank temperature to react. If the duration of the
blockage changes, the reaction in the process variables may
be different with respect to the time constants.
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Fig. 8. Monitoring result: Validation

4. RESULTS

By visually inspecting the data, the process variables in
the faulty scenarios behave differently from the variables
in the healthy scenario. However, the fault may not al-
ways be visible in every process variable, making the
multivariate statistical approach necessary. Given that the
process model is linear and dynamic, the Canonical Variate
Analysis (CVA) is adopted. Since the methodology is not
the focus of this work, the introduction has been omitted.
Ruiz-Cárcel et al. (2015) have adopted the CVA algorithm
for fault detection and details of the algorithm can be
found there.

The monitoring statistics T 2 and SPE obtained using the
validation set, the fault scenario 1 and the fault scenario 2
are visualized in Figs 8-10, respectively. Since the time
delay in CVA is taken as 10 samples, the monitoring
statistics are available starting from the 11th sample. For
better visibility, the vertical axis is the logarithmic value of
the monitoring statistics. Fig. 8 shows that the algorithm
is robust to the randomness in the input sequences and
does not trigger many false alarms on the validation data.
By comparing the fault sequence in Fig. 3 and the T 2

statistic in Fig. 9, it can be seen that the trend of the
fault sequence and the trend of T 2 are similar. Therefore,
T 2 may be a good indicator not only for the fault existence
but also for the fault development. For Fig. 10, the fault
detection happens as soon as the blockage is induced for
the first time. Alarms are still triggered in the periods
when the blockage has been removed. This may be caused
by the delay in the temperature, indicating that, even if
the fault has been removed from the process, some of the
process variables may still be abnormal and may take time
to fully return to the healthy condition. Additionally, when
developing dynamic algorithms, the optimal time delay for
different process variables may also be different.

5. DISCUSSIONS

The CSTH website and the original paper have given a
self-contained description of the case study and the tests
were well-documented. Nevertheless, practical issues may
exist when using this case study for various purposes,
particularly when there are changes to be made to the
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Fig. 9. Monitoring result: Fault scenario 1
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Fig. 10. Monitoring result: Fault scenario 2

original simulation model. This section focuses on the
remarks that might be useful when using this case study.

5.1 The units

In the simulation model, the SPs and measurements are
all taken in the unit of mA and the range for all variables
is 4 20 mA. Although the unified unit may facilitate data
pre-processing and visualization, extra attention needs to
be paid when making changes to the original model. Par-
ticularly when inducing fault sequences, which may have
physical meanings, the sequences should be designed such
that the magnitude is in accordance with the units of
the variables where the sequence has been induced. For
example, the disturbances used for exciting the system
were recorded in the unit of mA even though these dis-
turbances were in different process variables with different
units. When inducing the too much hot water fault, the
fault sequence was generated in mA because it is inserted
as an additive sequence to the hot water valve set point
which is taken in mA. As for the outlet pipeline blockage
fault, the sequence was designed in percentage because it
simulates a multiplicative fault to the empirical equation
of the outflow with respect to the tank level.



5.2 The disturbances and the faults

While noise and disturbances always exist in real-life pro-
cesses, the disturbance used in the simulation model can
excite the dynamic effects in the components of the model
such that the simulated dataset can be used for model
identification. Similarly in this test, the disturbances are
used as the excitation of the process, making it possible
to use the process measurements to train the monitoring
model. Additional faulty sequences, which may simulate
the degradation in some process components and may
result in anomalies in process data, are induced to generate
faulty data that can be used to test the fault detection
performance.

5.3 Variable selection

The Simulink model enables users to measure the variables
and the states of the process, some of which may not be
accessible in practice. The variables being collected should
be specified properly according to the purpose of the.
When using this case study to generate data for system
identification, the inputs and outputs should be specified
properly. For example, the closed-loop models for the tank
level and the tank temperature can be built using the
SPs of the tank level and temperature as the inputs and
the measurements of these two variables as the outputs.
When using the case study for testing fault detection
algorithms, it may not be necessary to specify the input
and output variables. Nevertheless, it is necessary to select
the variables that are influenced by the fault being tested
and are easy to measure. For example, for the too much hot
water inlet fault, if the cold water level is removed from
the data set, it may take longer for the algorithm to detect
the fault as the other two variables are under control. On
the other hand, this fault may be identified easily if the
inlet hot water flow is measured. However, in practice the
root cause of the fault may not always be measured.

6. CONCLUSIONS

In this work, two faulty scenarios were tested for the CSTH
case study. The aim was to generate faulty scenarios which
are gradually developing and are able to be physically
induced to the process. The CVA algorithm was applied
to the data sets generated from the simulation at the
standard operating mode with and without the tested
faulty scenarios for training the monitoring model and for
fault detection, respectively. The fault detection results
demonstrated that the CVA algorithm can detect both
faults whilst being robust to the randomness in the input
sequence. Moreover, the T 2 statistic can also tract the
development of the fault severity.

There are two directions for the future work. The first
one is to consider the fault prognosis in Fault Scenario
1. This can be implemented either by building a time
sequence model for the T 2 obtained by CVA or by building
a predictive model of the process variables using CVA
directly. The second one is to extend the test to nonlinear
and dynamic process monitoring. Given that the original
CSTH case study is nonlinear and the linear models were
obtained by linearization at standard operating modes, it
is possible to create a test case where the input sequence

covers the whole operating space. Algorithms for nonlinear
dynamic process monitoring can then be adopted for
learning a global monitoring model which accounts for
the varying operating modes and the transition periods
between them.
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