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Papers on “neural networks & music”: milestones
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End-to-end learning for automatic music composition (van den Oord et al., 2016)
End-to-end learning for music audio classification (Dieleman & Schrauwen, 2014)

CNN learns from spectrograms for music audio classification (Lee et al., 2009)
LSTM from symbolic data for automatic music composition (Eck & Schmidhuber, 2002)
MLP learns from spectrograms to classify pop/classical (Matityaho & Furst, 1995)

RNN from symbolic data for automatic music composition (Todd, 1988)
MLP from symbolic data for automatic music composition (Lewis, 1988) I I
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Papers on “neural networks & music”: input data
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Music classification
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Celma, Oscar, 2010 "Music recommendation", Music recommendation and discovery, Springer.




Music

Music (artwork) Speech (object)

Image

Audio D) D) D)
Multi source polyphonic Multi timbre (texture) polyphonic Mostly single speaker
Unstructured sound sources Structure of sound sources A structured sound source

Dynamic control (mixing)



Semantic labels
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Semantic labels are highly diverse and have different levels of abstraction

Grosche et al., 2012 "Audio content-based music retrieval", Dagstuhl Follow-Ups.
Casey et al., 2008 "Content-based music information retrieval: Current directions and future challenges”, Proceedings of the IEEE.
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From feature engineering to end-to-end learning

Feature engineering
(MFCC + Classifier)
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Low-level feature learning

v
| STFT |

!

| Absolute |

!

| Linear-to-Mel |

| Magnitude Compression |

(Unsupervised feature learning + Classifier)

Convolutional neural networks

(Supervised feature learning)
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Nam et al., 2018. "Deep learning for audio-based music classification and tagging", IEEE Signal Processing Magazine.
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Engineered feature based model

raw waveform

- MFCC, Chroma, Bag of low-level-features

Front-end Mel-spectrogram

- Scattering transform

- 1D CNNs

- 2D CNNs

Back-end
-  RNNs

- Attention

Pons et al., 2018. "End-to-end learning for music audio tagging at scale", ISMIR.

prediction Choi et al., 2016. "Automatic tagging using deep convolutional neural networks", ISMIR.

Purwins et al., 2019. "Deep Learning for Audio Signal Processing", IEEE Journal of Selected Topics in Signal Processing.



Fixed parameters in preprocessing stage

raw waveform

| STFT |
| | Absolute 1 l
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[ Magnitude Compression |

Window, hop sizes
Phase

Frequency scale, filter bandwidth
Dynamic range

111




Scattering transform
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raw music signal

Andén et al., 2011. "Multiscale Scattering for Audio Classification", ISMIR.

Song et al., 2018. "Music auto-tagging using deep Recurrent Neural Networks", Neurocomputing.
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Frame-level waveform based model

raw waveform

raw waveform
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Dieleman and Schrauwen, 2014. "End-to-end learning for music audio”, ICASSP.



Multi-scale approaches

raw waveform

raw waveform

prediction

E 3

[%}

o

= A~ AV ngproeeeed | 1MS,5MS, T0MS
c

g conv256-max256 —) MWWVMWWW
: L
a

: L — T e
4 ; el [ con\a'-maxs |

g ]

£ g

® ©

E E

3 E

8 8

: 4

prediction

Zhu et al., 2016. "Learning multiscale features directly from waveforms", Interspeech.



SincNet

raw waveform

conv256-max256

1D convolutional block

¥

1D convolutional block x5

Tty

prediction

Ravanelli and Bengio, 2018. "Speaker recognition from raw waveform with sincnet", IEEE Spoken Language Technology Workshop (SLT).



SincNet

raw waveform

conv256-max256

1D convolutional block

1D convolutional block x5

prediction

Ravanelli and Bengio, 2018. "Speaker recognition from raw waveform with sincnet", IEEE Spoken Language Technology Workshop (SLT).



SincNet
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(a) CNN Filters (b) SincNet Filters

Ravanelli and Bengio, 2018. "Speaker recognition from raw waveform with sincnet", IEEE Spoken Language Technology Workshop (SLT).



HarmonicCNN

Harmonic embedding

features are stacked at

4*:,7,_1 channel dimension
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2D CNNs

Won et al., 2019. "Automatic music tagging with harmonic CNN", ISMIR LBD.



HarmonicCNN

Feature engineering
(MFCC + Classifier)
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Won et al., 2019. "Automatic music tagging with harmonic CNN", ISMIR LBD.
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mel-spectrogram

1D convolutional block x5

i

Connect 1D CNN model to sample-level model

by reducing the sizes of windowf/filter and hop/stride , and, accordingly, increasing the number of convolutional blocks.
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Lee et al., 2017. "Sample-level deep convolutional neural networks for music auto-tagging using raw waveforms", SMC.

prediction prediction



mel-spectrogram

1D convolutional block x5

Connect 1D CNN model to sample-level model

by reducing the sizes of windowf/filter and hop/stride , and, accordingly, increasing the number of convolutional blocks.
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Lee et al., 2017. "Sample-level deep convolutional neural networks for music auto-tagging using raw waveforms", SMC.




Connect 1D CNN model to sample-level model

Music auto-tagging

0.91
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b s
3
 0.88
-*-Spec
0.87 -*-Specfrogram / SE
*Waveform / Basic
0.86 Waveform / SE

window/filter | 729 729 243 243 81
hop/stride | 729 243 243 81 81
#blocks 4 5 5 6 6

Kim et al., 2019. "Comparison and Analysis of SampleCNN Architectures for Audio Classification", IEEE Journal of Selected Topics in Signal Processing.



Sample-level waveform based model
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Lee et al., 2017. "Sample-level deep convolutional neural networks for music auto-tagging using raw waveforms", SMC.



1D convolutional block x9

More building blocks

raw waveform
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Kim et al., 2018. "Sample-level CNN architectures for music auto-tagging using raw waveforms", ICASSP.
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Pons et al., 2018. "End-to-end learning for music audio tagging at scale”, ISMIR.
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L earned filter visualization

First convolutional layer filter of frame-level waveform model
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Dieleman and Schrauwen, 2014. "End-to-end learning for music audio”, ICASSP.

Ardila et al., 2016. "Audio deepdream: Optimizing raw audio with convolutional networks", ISMIR LBD.



L earned filter visualization

Activation Maximization

1. Generate random waveform

2. Feed-forward to the target filter

3. Obtain the gradient of the input layer (waveform)
4. Update waveform

5. Repeat

Image borrowed from “https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html”

Erhan et al., 2009. "Visualizing higher-layer features of a deep network", University of Montreal.


https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

L earned filter visualization
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Lee et al., 2017. "Sample-level deep convolutional neural networks for music auto-tagging using raw waveforms", SMC.



L earned filter visualization
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Kim et al., 2019. "Comparison and Analysis of SampleCNN Architectures for Audio Classification", IEEE Journal of Selected Topics in Signal Processing.



L earned filter visualization

Layer 6
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1D convolutional block x9

Extended Architecture

raw waveform
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Hu et al., 2018. "Squeeze-and-excitation networks", CVPR.



Excitation Analysis

c CxT

Averaged excitation value of the

Squeeze

first SE block by class. Averaged relative loudness by class.
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Kim et al., 2019. "Comparison and Analysis of SampleCNN Architectures for Audio Classification", IEEE Journal of Selected Topics in Signal Processing.



Colored : Excitation value
Black : Averaged channel magnitude
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Summary

- Music classification
- Audio classification models

- Waveform based model analysis
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Deep Learning for Audio Signal Processing
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Source Separation

Time to explore end-to-end learning




Why end-to-end music source separation?

source
separation

vocals

music mix




Why end-to-end music source separation?

source
separation

music mix vocals

I) Are we missing crucial information when discarding the phase?

II) When using the phase of the mixture at synthesis time,are we
introducing artifacts that are limiting our model’s performance?



Why filtering spectrograms with masks?

spectrogram time-freq mask estimated
(model input) (model output) source

[II) Filtering spectrograms does not allow recovering masked (perceptually hidden sound) signals

Figure from: Jansson et al., 2017. "Singing voice separation with deep U-Net convolutional networks" in ISMIR.



music mix

ik R
source - bl Bl ‘:‘ |~_:.,;,.i;fﬁ.

| d vocals
14

separation e m!!"ﬁ

I) Are we missing crucial information when discarding the phase?

II) When using the phase of the mixture at synthesis time,are we
introducing artifacts that are limiting our model’s performance?

[II) Filtering spectrograms does not allow recovering masked signals



End-to-end music source separation

Music Mix vocals

deep
learning




Other (active) research directions:
Use the complex STFT as i/o interface?

Kameoka et al., 2009. “ComplexNMF: A new sparse representation for acoustic signals” in ICASSP.
Dubey et al., 2017. “Does phase matter for monaural source separation?” in arXiv.

Le Roux et al., 2019. “Phasebook and friends: Leveraging discrete representations for source separation”
in IEEE Journal of Selected Topics in Signal Processing.

Tan et al., 2019. “Complex Spectral Mapping with a CRNN for Monaural Speech Enhancement” in ICASSP.

Liu et al., 2019. “Supervised Speech Enhancement with Real Spectrum Approximation” in ICASSP.



Other (active) research directions:
Alternative models at synthesis time?

Virtanen and Klapuri, 2000. “Separation of harmonic sound sources using sinusoidal modeling,” in ICASSP.

Chandna et al., 2019. “A vocoder based method for singing voice extraction” in ICASSP.



End-to-end music source separation

Music Mix vocals

deep
learning




Historical perspective: unsupervised & linear models

deep

ICA = NMF = .
learning

bw;dependence non-negative
etween sources sources

linear models



Linear model example

linear approximation activations

) e
X~X=) wh,=WH
o

Unsupervised factorization of the mixture
into bases (w) and activations (h)



Historical perspective: unsupervised & linear models

unsupervised supervised

/ \ T

ICA = NMF - deep
learning

bn;dependence non-negative non-linear
etween sources sources model

linear models



Historical perspective: waveform-based models?

unsupervised supervised

/ \ T

ICA = NMF - deep
learning

bn;dependence non-negative non-linear
etween sources sources model

linear models



Historical perspective: waveform-based models?

unsupervised supervised

/ \ T

ICA = NMF - deep
learning

bn;dependence non-negative non-linear
etween sources sources model

linear models



waveform-based ICA
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Problem 1: phase sensitive basis
Problem 2: simplicity of the linear model

Figure from: Blumensath and Davies, 2004. “Unsupervised learning of sparse and shift-invariant decompositions of polyphonic music,” in ICASSP.



Historical perspective: waveform-based models?

unsupervised supervised

/ \ !

ICA = NMF - deep
learning

bn;dependence non-negative non-linear
etween sources sources model

linear models



Historical perspective: waveform-based models?

unsupervised supervised

/N !
ICA > deep

learning
|
independence
between sources

linear models

=

non-negative non-linear
sources model

NMF cannot be used with waveforms
due to its non-negative constraint!
(waveforms range from -1 to 1)



Historical perspective: waveform-based models?

unsupervised supervised

/ \ |

ICA = NMF -  deep
learning

bn;dependence non-negative non-linear
etween sources sources model

linear models



A widely-used set of tools:

filtering spectrograms
linear models
unsupervised learning

audio domain knowledge



..maybe we could try another toolset?

fiterinrg — synthesis?
rearmedels — non-linear models?
unsuperviseeHearning — supervised learning?
agdio-domainkrowledge — data driven?



End-to-end music source separation: 9 publications

Stoller et al., 2018. “Wave-u-net: A multi-scale neural network for end-to-end audio source separation” in arXiv.

Grais et al., 2018. “Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders” in EUSIPCO.
Lluis, et al., 2018. “End-to-end music source separation: is it possible in the waveform domain?” in arXiv.

Slizovskaia et al., 2018. “End-to-end Sound Source Separation Conditioned on Instrument Labels” in arXiv.

Cohen-Hadria et al., 2019. “Improving singing voice separation using Deep U-Net and Wave-U-Net with data augmentation” in arXiv.
Kaspersen, 2019. “HydraNet: A Network For Singing Voice Separation”. Master Thesis.

Akhmetov et al., 2019. “Time Domain Source Separation with Spectral Penalties”. Technical Report.

Défossez et al., 2019. “Demucs: Deep Extractor for Music Sources with extra unlabeled data remixed” in arXiv.

Narayanaswamy et al., 2019. “Audio Source Separation via Multi-Scale Learning with Dilated Dense U-Nets” in arXiv.

ALL THE PUBLICATIONS IN CHRONOLOGICAL ORDER AS OF OCTOBER 2019



End-to-end music source separation: architectures

1 1

Wave-U-net Convolutional Wavenet
Autoencoder




Introduction: the “generative” Wavenet

Dilation: 128

3 : At _{%ﬁ(ﬁﬁ[“ N d—» Z' € [0,255]
/ Dilation: 64 R25%6 € [0,1]
/ Dilation: 1

Input Speech Fragment

suopoeuLS) dpig

Softmax-output
Causal distribution
modeling p(x)

Van den Oord et al., 2016. “Wavenet: a generative model for audio” in arXiv.



A “regression” Wavenet for music source separation

n = length of target field

1 + ]
\]/suouoauuo D diys
[

ey ———>» R"€[-1,1
Dilation: 128 Vocals [ ]
» R"€[-1,1
Drums [ ]

Dilation: 64

> R"€[-1,1]
Bass

R" € [-1,1]

Dilation: 1

C i i ippom

Mixture Fragment

Other

Regression output

Non-causal p(ylx) discriminative
post-processing!

Lluis, et al., 2019. “End-to-end music source separation: is it possible in the waveform domain?” in Interspeech.



Fully convolutional & deterministic

Denoised Sample

0000eee o
ooOXT000Cocy
0000000
d i\ AJWWM

Lluis, et al., 2019. “End-to-end music source separation: is it possible in the waveform domain?” in Interspeech.



Fully convolutional & deterministic

Denoised Samples

- Dilation: 8

(XS
B _

‘ Dilation: 4
."

» Dilation: 2

Dilation: 1

N— - /N —
Previous Samples Current Samples Future Samples

Real time inference!

1601 samples input —> denoising time: = 0.56 sec per second of music on GPU!

Lluis, et al., 2019. “End-to-end music source separation: is it possible in the waveform domain?” in Interspeech.



End-to-end music source separation: architectures

7
4 )
o | S
Wave-U-net Convolutional Wavenet
Autoencoder

- J




Autoencoders

estimated sources

mixture



Multi-resolution & Convolutional autoencoder

estimated sources

CAZYITEY PRIV, ,--'-A?‘

N“*'!‘\/‘”"C‘lA' ¢ A

ANAA L

VARVARV AR TATR) i
Multi-resolution CNN: efficient way

to represent 3 periods!

Multi-resolution CNN = Inception CNN
(different filter shapes in
the same CNN layer)

mixture

Grais et al., 2018. “Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders” in EUSIPCO.



Multi-resolution & Convolutional autoencoder

estimated sources

VY NN EY PRI DY |

ﬂ“*'nl\lll C‘IA

output
multi-resolution layer

/ concatenate \
transposed-CNN
multi- resolutlon layer
CNN CNN  CNN 4 CNN
length=1025 length=512 256 5
CNN

multi- resolutlon layer \_ ength=50/

input

mlxtu re

Grais et al., 2018. “Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders” in EUSIPCO.



End-to-end music source separation: architectures

(s )

1 1

kWave—U—net j Convolutional Wavenet
Autoencoder




Wave-U-net

Source 1 output Source K-1 output

] - pine—d

Mixture audio

i ' I 1D Convolution, Size 1 |
Crop and concat 4
................................. .>
I 1D Convolution, Size 15 I I 1D Convolution, Size 5 I
Y
...................................................... >
v Crop and concat
| Downsampling I I Upsampling |
Y
Downsampling block 1 Upsampling block 1
Downsampling block 2~ --------------n-- > Upsampling block 2
¢ Crop and concat T
Downsampling block L ~ ----------------- > Upsampling block L
Crop and concat A

1D Convolution, Size 15 }7

Stoller et al., 2018. “Wave-u-net: A multi-scale neural network for end-to-end audio source separation” in arXiv.




Wave-u-net extensions

Multiplicative conditioning using instrument labels at the bottleneck.

Slizovskaia et al., 2019. “End-to-end Sound Source Separation Conditioned on Instrument Labels” in ICASSP.

Data augmentation: = 1 dB SDR improvement.

Cohen-Hadria et al., 2019. “Improving singing voice separation using Deep U-Net and Wave-U-Net with data augmentation” in arXiv.



Data augmentation strategies

It is used to artificially expand the size of a training dataset by creating modified versions of it.

e Random swapping left/right channel for each source
e Random scaling sources

e Random mixing of sources from different songs

e Pitch-shifting

e Time-stretching

Uhlich et al, 2017. “Improving music source separation based on deep neural networks through data augmentation and network blending” in ICASSP.

Cohen-Hadria et al., 2019. “Improving singing voice separation using Deep U-Net and Wave-U-Net with data augmentation” in arXiv.



Wave-u-net extensions

Multiplicative conditioning using instrument labels at the bottleneck.
Slizovskaia et al., 2019. “End-to-end Sound Source Separation Conditioned on Instrument Labels” in ICASSP.
Data augmentation: = 1 dB SDR improvement.

Cohen-Hadria et al., 2019. “Improving singing voice separation using Deep U-Net and Wave-U-Net with data augmentation” in arXiv.

Add BiLSTMs at the bottleneck: = 1 dB SDR improvement.

Kaspersen, 2019. “HydraNet: A Network For Singing Voice Separation”. Master Thesis.

Loss function in the spectral domain.

Akhmetov et al., 2019. “Time Domain Source Separation with Spectral Penalties”. Technical Report.

Use dilated convolutions and dense CNNs.

Narayanaswamy et al., 2019. “Audio Source Separation via Multi-Scale Learning with Dilated Dense U-Nets” in arXiv.

Achieve comparable results to a spectrogram-based model: Demucs.

w/ BiLSTMs at the bottleneck, data augmentation, and some additional architectural changes: = 1.6 dB SDR improvement.

Défossez et al., 2019. “Demucs: Deep Extractor for Music Sources with extra unlabeled data remixed” in arXiv.



Wave-u-net extensions: Demucs

MV

Decoder; (Cip, = 64, Coys = 4 * 2) /

Decoders(Cip = 128, Cpyr = 64) /

/

Decoderg(Cin = 2048, Cour = 1024)  /
[ Linear(Cin = 4096, Cous = 2048) |

hidden size=2048
2 bidirectional layers

Encoderg(Cin = 1024, Cour = 2048) '\

Encoders(Cip, = 64, Coyr = 128) \

Encoder; (Cip, = 2, Cour = 64) \
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Wave-u-net extensions: Demucs

MV

Decodery (Cip, = 64, Cour = 4 % 2) /

Decoderz(Cip = 128, Coyur = 64) /

/

Decoderg(Cin = 2048, Cour = 1024)  /
[ Linear(Ci, = 4096, Cous = 2048) |

hidden size=2048
2 bidirectional layers

Encoderg(Cin = 1024, Cour = 2048) '\

[Decoderi ] IEncoderiH or LSTM]

\ ] GLU(Conv1d(Coyt, 2Cout, K = 1,8 = 1)) \

Encoders(Crn = 64, Cous — 12) \ /  Relu(Conv1d(Cin, Cour, K =8,5 =4)) \




Wave-u-net extensions: Demucs

Decodery (Cin = 64, Cout = 4 % 2) / \ Relu(ConvTrld(Cin, Cout, K = 8, S = 4)) /
/  GLU(Conv1d(Cin, 2Cin, K =3,5=1)) \

i

Decoders(Cip = 128, Coyur = 64) /

/

i

Decoderg(Cin = 2048, Cour = 1024)  /
[ Linear(Cin = 4096, Cour = 2048) |

hidden size=2048
2 bidirectional layers

Encoderg(Cin = 1024, Cour = 2048) '\

[Encoderi l [Decoderiﬂ or LSTM]

IDecoderi ] [Encoderi+1 or LSTM]

\ | GLU(Conv1d(Cout, 2Cou, K =1,8 =1)) |
Encodors(Cr. — 64, Couy — 128) \ /  Relu(Convld(Cin, Cour, K =8,8 =4)) '\

Ay S



Wave-u-net extensions: Wave-U-net vs. Demucs

| Block Operation Shape |
Input (16384, 1)
DS, repeated for Convl1D(Fe - 4, fq)
i=1,...,L Decimate (4, 288)
ConvlD(Fe - (L +1), fa) (4,312)
Upsample
UZ.S’_reLPea‘ed 1;‘” Concat (DS block i)
T Convl1D(Fe - 4, fu) (16834, 24)
Concat(Input) (16834, 25)
Conv1D(K, 1) (16834, 2)

Wave-U-net: building blocks

\

ENCODER

\

Decoder;_ or output

\_ Relu(ConvTrld(Cin, Cour, K = 8,5 =4)) /

/ GLU(Convid(Cin,2Cin, K =3,5=1)) \

[Encoderi ] [Decoderi_ﬂ or LSTM]

{Decoderi] [Encoderiﬂ or LSTM]

| GLU(Conv1d(Cout, 2Cou, K =1,§ =1)) |

/  Relu(Convd(Cin, Cour, K =8,5 =4)) \

Encoder;_; or input

Demucs: building blocks



Wave-u-net extensions: Wave-U-net vs. Demucs

| Block Operation Shape |
Input (16384, 1)
DS, repeated for Convl1D(Fe - 4, fq)
i=1,...,L Decimate (4, 288)
ConvlD(Fe - (L + 1), fa) (4,312)
US, repeated for lﬁms_m_llUpsample g
i=TL... 1 Conca oc )
bz 3 Conv1D(Fs - i, fu) (16834, 24)
Concat(Input) (16834, 25)
ConviD(K, 1) (16834, 2)

Wave-U-net: building blocks

A

DECODER

~

Decoder;_ or output

\ Ret{ConvIrld§Cin, Cour, K =8,5 =4)) /
/ GLU(Convid(Cin,2Cin, K =3,5=1)) \

[Encoderi ] [Decoderi_H or LSTM]

{Decoderi] [Encoderiﬂ or LSTM]

| GLU(Conv1d(Cout, 2Cou, K =1,§ =1)) |

/  Relu(Convd(Cin, Cour, K =8,5 =4)) \

Encoder;_; or input

Demucs: building blocks



Deconvolutions and high-frequency artifacts

3k Hz
2k Hz

1k Hz

frequency

OHz

Checkerboard artifacts in images

High-frequency buzz in audio

Odena et al., 2016. "Deconvolution and Checkerboard Artifacts" in Distill.



Comparison: a perceptual study

Lluis, et al., 2019. “End-to-end music source separation: is it possible in the waveform domain?” in Interspeech.

O 0 0 ©

Mixture Spectrogram-based Waveform-based Waveform-based
(DeepConvSep) (Wavenet) (Wave-U-net)



Evaluation metrics: SDR, SIR, SAR

2
SDR := 10log, [ targe | “overall performance”
||einterf + €noise 1 ea,rtif”2

2
SIR := 101log;, M “interference from other
| €intert |2 sources”
SAR =10 loglo H target interf nmse” algc.)rlthrrllc
|| eartit]|? artifacts
http://craffel.qithub.io/mir_eval/ https://qgithub.com/sigsep/sigsep-mus-eval/

Vincent et al., 2006. “Performance measurement in blind audio source separation” in IEEE TASLP.


http://craffel.github.io/mir_eval/
https://github.com/sigsep/sigsep-mus-eval/

Comparison: a perceptual study

Lluis, et al., 2019. “End-to-end music source separation: is it possible in the waveform domain?” in Interspeech.

D) ) ) )
Mixture Spectrogram-based Waveform-based Waveform-based
(DeepConvSep) (Wavenet) (Wave-U-net)

MOS  Wavenet-based  Wave-U-Net
Vocals 30+1.0 3.3 +0.85

(t-test: p-value=0.049, 15 participants)



Additional references
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MUSIC SIGNAL PROCESSING

Musical Source Separation

An infroduction

any people listen 1o recorded music as part of their ev-
eryday lives, e., from radio or TV programs, compact
discs, downloads, or, increasingly, online streaming ser-
vices. Sometimes we might want to remix the balance within
the music, perhaps to make the vocals louder or to suppress an
unwanted sound, or we might want to upmix 2 two-channel
stereo recording 10 a 5.1-channel surround sound system. We.
might also want to change the spatial location of a musical
Allof
straightforward, provided we have access to separate sound
‘channels (stems) for each musical audio object.

However,if we only have access to the final recording mix,
which is usually the case, this is much more challenging. To
estimate the original musical sources, which would allow us
10 remix, suppress, or upmix the sources, we need to perform
‘musical source separation (MSS).

Inthe geoural soure sepaion ek, e e given cos

some original source. ugmls D —

ie.

source signals given the mixtures. In some cases, ths is rela-
tively straightforward, e.g, if there are at least as many mix-
tures s there are sources and if the mixing process is fixed,
with no delays, filters, or nonlinear mastering (1]
However, MSS is normally more challenging. Typically,
there may be many musical instruments and voices
channel recording, and the sources have often been processed
with the addition of fillers and reverberation sometimes o
ss.
sources may move or the production parameters may chxngc,
‘meaning that the mixture s time varying.
‘Nevertheless proper.
For exampl
signals often have a regular harmonic structure of frequencies
at regular intervals and can have frequency contours charac-
teristic of each musical instrument. They may also repeat, in
particular, temporal patterns based on the musical structure.

os3s888/19O01PEEE VEESGAAL PROCESSNG MAGAZNE | Jomay 2019 | a

1810.12187v2 [cs.SD] 28 Jun 2019

arXiv

End-to-end music source separation:
is it possible in the waveform domain?

Francesc Lluis* Jordi Pons* Xavier Serra

Music Technology Group, Universitat Pompeu Fabra, Barcelona.

name. surname@upt . edu

Abstract

Most of the currently successful source separation techniques
use the magnitude spectrogram as input, and are therefore by
deflt omiing pt f e il e pese T twidari

information, we of us-
ing nd-o-end models for music soure separation — which
take into accountal the information availsble n the raw audio
o, incluingth phase. Albough duig e st decades
endto- separation «

sounds, it is rare to find identical waveforms produced by the
same sound source.  As a result of this varisbility, 2 single
basis' cannot represent a sound source and therefore, one re-
s i) a e ot of bees, oc ) hifvan bses 0

waveform-based mixtures [7, 8, 9], these have never worked
as well as the spectrogram-based ones.
Due 10 the above mentioned difficultes, the phase of com-

Sonchtoabic Gt ol oM s el based Wikl
can perform similarly (Gf not better) than a spectrogram-based
deep learning model. Namely: a Wavenet-based model we pro-
pose and Wave-U-Net can outperform DeepConvSep, a recent
spectrogram-based deep leaning model.

Tndex Terms: source separation, end-to-end learning.

1. Introduction

When two or more sounds co-cxist, they interfere with ach
other resulting in a novel mixture signal where sounds are su-
sed (and, sked)

sound

st cotibion o 10 cherved e gl
th the recent advances in deep learni
om tchlqien Rave Spoovd subaily; 1. Toecolngly
though, nearly all successful deep leaming algorithms use the
magnitude spectrogram as input [1, 2, 3] — and are therefore,
by default, omitting part of the signal: the phase. Omitiing the
potentially useful information of the phase entails the risk of
finding a sub-optimal solution. In this work, we aim (o take full
advantage of the acoustic modeling capabilities of deep learn-

of music source separation directly in an end-to-end leaming
fashion. Consequently, our investigation is centered on study-
ing how 1o separi i sutes (65 snging e, bas or
drums) direetly from the raw waveform music mixture.
Pkt bt o e ecoumponbiseuel
‘ods have dominated the field of audio source separation. Sev-
exal algorithms have been proposed throughout the years, with
independent component analysis (ICA) [4], sparse coding [S),
o bon-Segatlve wacxfacerzaton (NMF) (6 el the o
used ones. Given that magnitude or power spectrogram rep-
resentations are always non- mganm imposing & non-negative
constraint (like in NMF) is particularly useful when an
ing these spectrograms — but less appropriate for proce

ing

waveforms, which range from -1 to 1. For that reason, meth-
ods like ICA and sparse coding have historically been used to

ever, given the unpredictable behavior of the phase in real-life

*Contributed equally.

plex as-
suming that magnitude spectrograms already carry mesningl
information about the sound sources (o be separated. Phase
lated problems disappear when sounds are just mpmwnwd as
magnitude or power spectrograms, since different re
ot same. soun re. imos denicl i tis tim. ey
plane. This allows o easily overcome the variability problem
found when operating with waveforms.
st mtrix decomposition methods rely on a signal model
ssming it somes i lnecy i et domaia (o
ver, the addition of signals in the time and frequency
domains s not equivalent if phases are discarded. Only in ex-
pecaon I"(\X(k)\ } = IYi (k) +[Ya(R)]°, where X (k) =
FT{a e can approximate the time-
A, wmmzum\ in the power spectral domain. For that rea-
son, many approaches wtilize power spectrograms as inputs.
Although magnitude spectrograms work well in practice [11],
there s no similar theoretical justification for such ar
tency with the signal model when the phases are discarded.
Finally, note that these methods operating on top of spec-

ogram with (redictd) e roquency mesks, Accoedlngly,
the original noisy phase of the mixture is used when synthe-

lying on this same (potentially problematic) approach (2, 12],
o o i e ome it oyt s wie
arating the sources [13, 14, 1P, or some others relied on &
insolda igna mode st synhsis time [16], Howevr, i oue
rk, we do not want 10 rely on any time-frequency transform

or any signal model. Instead, we aim to directly approach the.

problem in the waveform domai

As seen, many issues stil ¢ the idea of discard-

are we missing crucial information when discard-

ing it? When using the phase of the mixture at synthesis time,
are we introducing artifacts that are limiting our model’s

formance? Or,since magaitude specrograms (dfferenty from

sum ol Dases,whic epesnta sure orcomponets of  sourc
g the fll complex STFT

S. Dubnov, 2002. “Extracting sound objects by independent subspace analysis” in AES Conference.

Blumensath and Davies, 2004. “Unsupervised learning of sparse and shift-invariant decompositions of polyphonic music,”

in ICASSP.

Jang and Lee, 2003. “A maximum likelihood approach to single-channel source separation” in Journal of Machine Learning Research.
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Overview

Why audio? Why raw audio?
Generative models

Likelihood-based models of raw audio
Adversarial models of raw audio

Summary



Why audio”? Why raw audio?



Why audio?

Music generation is typically studied in the symbolic domain
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Why audio?

Many instruments have complex action spaces
Rich palette of sounds and timbral variations

Guitar

e pick vs. finger
e picking position
o frets

e harmonics

o




Why raw audio?

Magnitude spectrogram



Why raw audio?

Phase spectrogram '



Why raw audio?

Phase is often unimportant in discriminative settings,
but is very important perceptually!

O O

original phase random phase



Why raw audio?

Phase is hard to model:

e itis an angle, so it wraps around
e it becomes random as the magnitude tends to O
e absolute phase is less meaningful but relative phase differences matter

as
Phase angle
between
two points




What is “raw audio” anyway?

M 00BN BB

1 Second




Discretising audio

e [Ime

e Amplitude

uniform
guantisation

J-law
guantisation



Generative models



Generative models

Given a dataset of examples X drawn from p(X):

a generative model estimates p(X)



Generative models

Given a dataset of examples X drawn from p(X):

a generative model estimates p(X)

Explicit: given x € X, model can infer p(x)

Implicit: model can produce new samples x ~ p(X)



Generative models

Brock et al., 2019. “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR.



Likelihood-based models

Likelihood-based models parameterise p(X) directly

Objective function: maximise > _, log p(x)



Autoregressive models

Autoregressive models factorise p(X)
iInto simpler (scalar) distributions

X = (X,, X,, ) SP X )
p(x) =[1. p(x|x_) chain rule of probability

We can use the same model p(x:|x_) for all i!



Flow-based models

Flow-based models transform p(X) to a simple
(factorised) distribution with an invertible mapping

p(x) = p(z) - |det J| change of variables theorem
J=d(g(z))/dz x=g(z)

Important constraints:
dg(z) must be invertible det J must be tractable

Dinh et al., 2014. “NICE: Non-linear Independent Components Estimation”, arXiv.
Dinh et al., 2016. “Density estimation using Real NVP”, arXiv.



Variational autoencoders (VAES)

VAE maps latents z from a simple
reconstruction x distribution to x with a (non-invertible)

f .
generative network generative network

(decoder) p¢(x|z) : :
: The inference network approximates the

latents z z ~ N(0,1) inverse operation
*

(encoder)

e ok q,(2IX) p().() cannot be computed exactly, the

¥ Evidence Lower BOund (ELBO) is

input x maximised instead

Kingma & Welling, 2014. “Auto-Encoding Variational Bayes”, ICLR 2014.
Rezende et al., 2014. “Stochastic Backpropagation and Approximate Inference in Deep Generative Models”, ICML 2014.



Adversarial models
L =E [log(D(x))] + E_[log(1 - D(G(2)))]

real? Generator minimises L
f
discriminator D Discriminator maximises L
f
| |
real data x generated data x

*

generator G

*
latents z

Goodfellow et al., 2014. “Generative Adversarial Nets”, NeurlPS.



More exotic flavours

e Implicit quantile networks
e Energy-based models
e Optimal transport (e.g. Wasserstein autoencoders)

e Score-based generative modelling



Conditional generative models

Conditioning is “side information” which allows for control over the model output

p(x|c) vs. p(x)



Conditional generative models

Conditioning is “side information” which allows for control over the model output
p(x|c) vs. p(x)

sparsely conditioned densely conditioned

grayscale image
(colorisation)

image models class labels bounding boxes segmentation




Conditional generative models

Conditioning is “side information” which allows for control over the model output

p(x|c) vs. p(x)

sparsely conditioned densely conditioned
music audio models composer note density score MIDI other audio signals
instrument(s) musical form
tempo

timbre




Mode-covering vs. mode-seeking behaviour

mode-covering mode-seeking

e Likelihood-based models are mode-covering

e Adversarial models are (typically) mode-seeking

e In more densely conditioned settings, we tend to care
less about covering all the modes



Likelihood-based models



WaveNet

output

hidden
layer

hidden
layer

hidden
layer

input

Q

van den Oord et al., 2016. “WaveNet: A Generative Model for Raw Audio”, arXiv.
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WaveNet: dilated convolutions

output

hidden
layer

hidden
layer

hidden
layer

input

O O O 000000000 0 O0

dilation 2% = 8
@ ® ®© ® 0 O @ ®© © ®© @ 0 O

dilation 22 = 4
@ @

dilation 2" = 2

dilation 2° = 1

van den Oord et al., 2016. “WaveNet: A Generative Model for Raw Audio”, arXiv.



WaveNet: dilated convolutions

output O O O O O O O O O O O O O O O
dilation 23 = 8
hidden
layer /n‘
dilation 22 =4
hidden
layer /‘
dilation 2 =2
hidden
layer
dilation 20 = 1
input

van den Oord et al., 2016. “WaveNet: A Generative Model for Raw Audio”, arXiv.





http://www.youtube.com/watch?v=7-mFPNbVgDw
http://www.youtube.com/watch?v=7-mFPNbVgDw
http://www.youtube.com/watch?v=vL1g79gMCHE
http://www.youtube.com/watch?v=vL1g79gMCHE
http://www.youtube.com/watch?v=PQxZV7zoYes
http://www.youtube.com/watch?v=PQxZV7zoYes
http://www.youtube.com/watch?v=aX6XebS8Hlk
http://www.youtube.com/watch?v=aX6XebS8Hlk

SampleRNN

Xiy oo s Xit+15 Xit+165 -+ s Xi+31

Tier3 >
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Tier 1 Xi4285 « -+ s Xit31 s Xi+32 —>x+30, . x1+33¥ Xi431s oo s
P(xis32 | X<i+32) P(xis33 | X<it33) P(xis3a | X<i+34) P(Xis35 | X<i+3s)

Mehri et al., 2017. “SampleRNN: An Unconditional End-to-End Neural Audio Generation Model”, ICLR.



Parallel WaveNet, ClariNet

WaveNet Teacher [0 0 0000000000000 Teacher Output
P(z;|z<;)
e o e o o o o
Linguistic features -----»
O O O O O O O 0 O
)
T T T T T Generated Samples

® ®© ® © ©¢ ® @ © © ©® ® ©¢ @ @ @ © CL‘i:g(Zi|Z<i)

! ! f f T
WaveNet Student (0000000000000 0000| ??‘;:rzo:zgm

Linguistic features ----+ | O O O O O O

T T t T T Input noise
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van den Oord et al., 2019. “Parallel WaveNet: Fast High-Fidelity Speech Synthesis”, ICML.



WaveGlow, FloWaveNet

A
2 X X
;_______.__E____ - a b
| affine | T
| coupling layer | | affine
x12 | | Z ! xform
| invertible 1x1 :
| convolution || WN
'_____:'q _____ _I
squeeze to X, Xp
vectors
i T
b upsampled
mel-spectrogram

Prenger et al., 2019. “Waveglow: A flow-based generative network for speech synthesis”, ICASSP.
Kim et al., 2019. “FloWaveNet: A generative flow for raw audio”, ICML.



WaveNet: #layers ~ log(receptive field length)

ot O O O O O O O O O O O O O O

dilation 23 =8
hidden
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@ @
layer
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hidden
layer
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input



... but memory usage ~ receptive field length

Required model depth is logarithmic in the desired receptive field length

Required memory usage during training is still linear in the desired
receptive field length!

= We cannot scale indefinitely using dilation



Autoregressive discrete autoencoders

decoder

y code ' | ‘

... 5207 131 18 168 ...

modulator local model

quantised query

q’=VQ(q) /
guantisation L\\\\\\

q=f(x) query

encoder M‘m*MWmmmmm
WWMWW‘ x input

van den Oord et al., 2017. “Neural discrete representation learning”, NeurlPS.




Hierarchical WaveNets

level 3
unconditional model

D

t
| ..210371218 ... | 250 Hz
level 2 —
ADA .
*—| ...17 9588145 ... |— 2 kHz
level 1 —
ADA .

t—— 16 kHz

Dieleman et al., 2018. “The challenge of realistic music generation: modelling raw audio at scale”, NeurlPS.



Wave2Midi2Wave and the MAESTRO dataset  B{)))

Synthesized
audio

\SYntheS|5 conditional WaveNet / ‘

Symbolic modelling:

transformer

3

Event
prediction

Piano roll (MIDI) -_— S —

/l'ranscrption: onsets & frames

Ground truth
audio

Hawthorne et al., 2019. “Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset”, ICLR.


https://magenta.tensorflow.org/maestro-wave2midi2wave

Sparse transformers

Attention (with sparse masks) instead of
recurrence / convolutions.

<)

Output
Probabilities

(b) Sparse Transformer (strided)

(a) Transformer (c) Sparse Transformer (fixed)

f
Add & Norm
Feed
Forward
e D Add & Norm
_ .
Ll R B Multi-Head
Feed Attention
Forward D) Nx
—— |
N Add & Norm
f->| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
A ) A J)

1 J \_ —
Positional D ¢ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Child et al., 2019. “Generating long sequences with sparse transformers”, arXiv.


https://soundcloud.com/openai_audio/sample-set-1

Universal music translation network
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Mor et al., 2019. “A Universal Music Translation Network”, ICLR.



http://dadabots.com/

Neural networks

generating death metal
via livestream 24/7 to infinity

We make raw audio neural networks
that can imitate bands

Carr & Zukowski, 2018. “Generating Albums with SampleRNN to Imitate Metal, Rock, and Punk Bands”, arXiv.



Adversarial models



WaveGAN

SC09 i TIMIT TIMIT (detail)

WaveGAN Real

SpecGAN

Donahue et al., 2019. “Adversarial Audio Synthesis”, ICLR.



WaveGAN

Non GAN-activated cat WaveGAN activated cat SpecGAN activated cat

Donahue et al., 2019. “Adversarial Audio Synthesis”, ICLR.



GANSynth
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Engel et al., 2019. “GANSynth: Adversarial Neural Audio Synthesis”, ICLR.



GANSynth
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Frequency GAN
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Engel et al., 2019. “GANSynth: Adversarial Neural Audio Synthesis”, ICLR.



GAN-TTS
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Binkowski et al., 2019. “High Fidelity Speech Synthesis with Adversarial Networks”, arXiv.



MelGAN

Mel Spectogram
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Kumar et al., 2019. “MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis”, arXiv.



Why the emphasis on likelihood in music modelling?
Most popular generative modelling paradigm:

GANSs



Why the emphasis on likelihood in music modelling?
Most popular generative modelling paradigm:

GANSs

Most popular generative modelling paradigm for music:

likelihood-based (autoregressive)



Why the emphasis on likelihood in music modelling?

e We are still figuring out the right architectural priors for

audio discriminators
o Forimages, a stack of convolutions is all you need
o What do we need for audio? Multiresolution? Dilation?
Something phase shift invariant?

Ulyanov et al., 2018. “Deep Image Prior”, CVPR.
Pons et al., 2019. “Randomly weighted CNNs for (music) audio classification”, ICASSP.



Why the emphasis on likelihood in music modelling?

e We are still figuring out the right architectural priors for

audio discriminators

o Forimages, a stack of convolutions is all you need
o What do we need for audio? Multiresolution? Dilation?
Something phase shift invariant?

e The sparsely-conditioned setting is dominant

o We care about “creativity” and capturing diversity
o GANSs are worse at this than likelihood-based models

Ulyanov et al., 2018. “Deep Image Prior”, CVPR.
Pons et al., 2019. “Randomly weighted CNNs for (music) audio classification”, ICASSP.



Alternatives to modelling raw audio directly

e Model complex-valued spectrograms and “deal” with phase
(GANSynth)

e Model magnitude spectrograms
Use a vocoder or Griffin-Lim to invert
(Tacotron 1 & 2, MelGAN, MelNet, ...)

Wang et al., 2017. “Tacotron: Towards end-to-end speech synthesis”, ISCA.
Shen et al., 2018. “Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions”, ICASSP.
Vasquez & Lewis, 2019. “MelNet: A Generative Model for Audio in the Frequency Domain”, arXiv.



Alternatives to modelling raw audio directly

e Differentiable Digital Signal Processing (anonymous authors, ICLR, in review)
Use raw audio input, but put DSP components in the model
https://openreview.net/forum?id=B1x1ma4tDr

l 'v ] Harmonic
™ 0 ™ Audio

—» Encoder % ,
Target \ Bauath Synthesnzed

Audio L, 7  —aliBn0er + oy Audio
" ' Filtered / m
Noise
» Loudness — M‘M}NV

Multi-Scale Spectrogram Loss


https://openreview.net/forum?id=B1x1ma4tDr

Summary

e Generative modelling of raw audio is feasible, even
in the sparsely conditioned setting

e Likelihood-based models dominate, but GANs are
making in-roads in the densely conditioned setting

e Modelling large-scale structure from raw audio is an
unsolved problem



Thank you

Sander Dieleman, Jordi Pons, Jongpil Lee




