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Historical
perspective

Why now?



Papers on “neural networks & music”: milestones
# 

pa
pe

rs

MLP from symbolic data for automatic music composition  (Lewis, 1988)

RNN from symbolic data for automatic music composition  (Todd, 1988)

MLP learns from spectrograms to classify pop/classical (Matityaho & Furst, 1995)

LSTM from symbolic data for automatic music composition (Eck & Schmidhuber, 2002)
                                                

CNN learns from spectrograms for music audio classification  (Lee et al., 2009)

End-to-end learning for music audio classification  (Dieleman & Schrauwen, 2014)

End-to-end learning for automatic music composition  (van den Oord et al., 2016)



Papers on “neural networks & music”: input data
# 

pa
pe

rs

symbolic data

spectrogram data

raw-audio data
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Waveform-based music processing with deep learning

Classification

       by Jongpil Lee, PhD candidate at KAIST in Daejeon, South Korea. 

Source Separation

       by Jordi Pons, researcher at Dolby Laboratories in Barcelona.

Generation

       by Sander Dieleman, research scientist at DeepMind in London, UK.



Music
Classification

Learning specific properties of music
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Music classification

audio

lyrics
midi

Mood

Tempo
Instrument

Genre

Album

Melody

Artist

Context

Semantic 
labels

Large music catalog

Retrieval / recommendation

Collaborative filtering

Tag-based music retrieval

Auto-tagging

Celma, Oscar, 2010 "Music recommendation", Music recommendation and discovery, Springer.

Cold-start problem



Music audio

Multi timbre (texture) polyphonic Mostly single speakerMulti source polyphonic

Image

Scene Speech (object)Music (artwork)

Audio

A structured sound sourceStructure of sound sources

Dynamic control (mixing)

Unstructured sound sources



Semantic labels

Grosche et al., 2012 "Audio content-based music retrieval", Dagstuhl Follow-Ups.

Semantic labels are highly diverse and have different levels of abstraction

signal-level semantic-level

gl
ob

al
lo

ca
l

Casey et al., 2008 "Content-based music information retrieval: Current directions and future challenges", Proceedings of the IEEE.



Problem definition

music audio

music
classification

model

semantic labels
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From feature engineering to end-to-end learning
Feature engineering
(MFCC + Classifier)

Absolute

STFT

Linear-to-Mel

Magnitude Compression

Discrete Cosine Transform

Mean and Variance

Classifier

Absolute

STFT

Linear-to-Mel

Magnitude Compression

Affine Transform

Nonlinearity

Pooling

Classifier

x 1

Low-level feature learning
(Unsupervised feature learning + Classifier)

Affine Transform

Nonlinearity

Pooling

Affine Transform

Nonlinearity

Pooling

Absolute

STFT

Linear-to-Mel

Magnitude Compression

Affine Transform

Nonlinearity

Pooling

Classifier

x N 

Convolutional neural networks
(Supervised feature learning)

Affine Transform

Nonlinearity

Pooling

Classifier

Affine Transform

Nonlinearity

Pooling

...
End-to-end learning

(No time-frequency representation)

Nam et al., 2018. "Deep learning for audio-based music classification and tagging", IEEE Signal Processing Magazine.

Humphrey et al., 2013. "Feature learning and deep architectures: new directions for music informatics", Journal of Intelligent Information Systems.
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Front-end

Back-end

Engineered feature based model

- MFCC, Chroma, Bag of low-level-features

- Mel-spectrogram

- Scattering transform

Choi et al., 2016. "Automatic tagging using deep convolutional neural networks", ISMIR.

Purwins et al., 2019. "Deep Learning for Audio Signal Processing", IEEE Journal of Selected Topics in Signal Processing.

- RNNs

- Attention

- 1D CNNs

- 2D CNNs

Pons et al., 2018. "End-to-end learning for music audio tagging at scale", ISMIR.



Fixed parameters in preprocessing stage

Window, hop sizes
Phase
Frequency scale, filter bandwidth
Dynamic range 



Scattering transform

Song et al., 2018. "Music auto-tagging using deep Recurrent Neural Networks", Neurocomputing.

Andén et al., 2011. "Multiscale Scattering for Audio Classification", ISMIR.
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Frame-level waveform based model

Dieleman and Schrauwen, 2014. "End-to-end learning for music audio”, ICASSP.

10ms10ms



Multi-scale approaches

Zhu et al., 2016. "Learning multiscale features directly from waveforms", Interspeech.

1ms,5ms,10ms



Ravanelli and Bengio, 2018. "Speaker recognition from raw waveform with sincnet", IEEE Spoken Language Technology Workshop (SLT).

SincNet



Ravanelli and Bengio, 2018. "Speaker recognition from raw waveform with sincnet", IEEE Spoken Language Technology Workshop (SLT).

SincNet



Ravanelli and Bengio, 2018. "Speaker recognition from raw waveform with sincnet", IEEE Spoken Language Technology Workshop (SLT).

SincNet



HarmonicCNN

Won et al., 2019. "Automatic music tagging with harmonic CNN", ISMIR LBD.

2D CNNs

Harmonic embedding 

features are stacked at 

channel dimension



HarmonicCNN

Won et al., 2019. "Automatic music tagging with harmonic CNN", ISMIR LBD.

Feature engineering
(MFCC + Classifier)

Absolute

STFT

Linear-to-Mel

Magnitude Compression

Discrete Cosine Transform

Mean and Variance

Classifier

Harmonics stack

SincNet

2D CNN

Classifier
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Lee et al., 2017. "Sample-level deep convolutional neural networks for music auto-tagging using raw waveforms", SMC.

Connect 1D CNN model to sample-level model
by reducing the sizes of window/filter and hop/stride , and, accordingly, increasing the number of convolutional blocks.

10ms10ms 5ms5ms



Lee et al., 2017. "Sample-level deep convolutional neural networks for music auto-tagging using raw waveforms", SMC.

Connect 1D CNN model to sample-level model
by reducing the sizes of window/filter and hop/stride , and, accordingly, increasing the number of convolutional blocks.



Connect 1D CNN model to sample-level model

Kim et al., 2019. "Comparison and Analysis of SampleCNN Architectures for Audio Classification", IEEE Journal of Selected Topics in Signal Processing.



Sample-level waveform based model

Lee et al., 2017. "Sample-level deep convolutional neural networks for music auto-tagging using raw waveforms", SMC.



More building blocks

Kim et al., 2018. "Sample-level CNN architectures for music auto-tagging using raw waveforms", ICASSP.

Basic Res SE
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Pons et al., 2018. "End-to-end learning for music audio tagging at scale”, ISMIR.
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Learned filter visualization
First convolutional layer filter of frame-level waveform model

Dieleman and Schrauwen, 2014. "End-to-end learning for music audio”, ICASSP.

Ardila et al., 2016. "Audio deepdream: Optimizing raw audio with convolutional networks", ISMIR LBD.



Learned filter visualization
Activation Maximization

Image borrowed from “https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html”

Erhan et al., 2009. "Visualizing higher-layer features of a deep network", University of Montreal.

1. Generate random waveform 

2. Feed-forward to the target filter 

3. Obtain the gradient of the input layer (waveform)

4. Update waveform

5. Repeat

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


Learned filter visualization

Lee et al., 2017. "Sample-level deep convolutional neural networks for music auto-tagging using raw waveforms", SMC.



Learned filter visualization

Kim et al., 2019. "Comparison and Analysis of SampleCNN Architectures for Audio Classification", IEEE Journal of Selected Topics in Signal Processing.



Absolute

STFT

Linear-to-Mel

Magnitude Compression

Learned filter visualization



Extended Architecture

Basic SE

Hu et al., 2018. "Squeeze-and-excitation networks", CVPR.



Excitation Analysis

Kim et al., 2019. "Comparison and Analysis of SampleCNN Architectures for Audio Classification", IEEE Journal of Selected Topics in Signal Processing.

Averaged excitation value of the 

first SE block by class.

(x-axis: channel index)

Averaged relative loudness by class.



Excitation Analysis
Colored : Excitation value
Black : Averaged channel magnitude

x-axis : loudness (root mean square)



Absolute

STFT

Linear-to-Mel

Magnitude Compression

Excitation Analysis
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Summary

- Music classification 

- Audio classification models

Absolute

STFT

Linear-to-Mel

Magnitude Compression

- Waveform based model analysis



References



Music
Source Separation

Time to explore end-to-end learning



Why end-to-end music source separation?

music mix source 
separation

vocals



Why end-to-end music source separation?

music mix source 
separation

vocals

II) When using the phase of the mixture at synthesis time,are we 
introducing artifacts that are limiting our model’s performance?

I) Are we missing crucial information when discarding the phase?



Why filtering spectrograms with masks?

spectrogram
(model input)

time-freq mask
(model output)

estimated
source

III) Filtering spectrograms does not allow recovering masked (perceptually hidden sound) signals

Figure from: Jansson et al., 2017. "Singing voice separation with deep U-Net convolutional networks" in ISMIR.



music mix source 
separation

vocals

II) When using the phase of the mixture at synthesis time,are we 
introducing artifacts that are limiting our model’s performance?

I) Are we missing crucial information when discarding the phase?

III) Filtering spectrograms does not allow recovering masked signals



music mix

deep 
learning

vocals

End-to-end music source separation



Other (active) research directions:
Use the complex STFT as i/o interface?

Kameoka et al., 2009. “ComplexNMF: A new sparse representation for acoustic signals” in ICASSP.

Dubey et al., 2017. “Does phase matter for monaural source separation?” in arXiv. 

Le Roux et al., 2019. “Phasebook and friends: Leveraging discrete representations for source separation”
in IEEE Journal of Selected Topics in Signal Processing.

Tan et al., 2019. “Complex Spectral Mapping with a CRNN for Monaural Speech Enhancement” in ICASSP.

Liu et al., 2019. “Supervised Speech Enhancement with Real Spectrum Approximation” in ICASSP.



Virtanen and Klapuri, 2000. “Separation of harmonic sound sources using sinusoidal modeling,” in ICASSP.

Chandna et al., 2019. “A vocoder based method for singing voice extraction” in ICASSP.

Other (active) research directions:
Alternative models at synthesis time?



music mix

deep 
learning

vocals

End-to-end music source separation



Historical perspective: unsupervised & linear models

deep 
learning

independence
between sources

non-negative
sources

linear models

ICA NMF



Linear model example

linear approximation

bases

activations

Unsupervised factorization of the mixture 
into bases (w) and activations (h)
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linear models

unsupervised

ICA NMF

supervised

Historical perspective: waveform-based models?



waveform-based ICA

bases

activations

Problem 1: phase sensitive basis
Problem 2: simplicity of the linear model

 Figure from: Blumensath and Davies, 2004. “Unsupervised learning of sparse and shift-invariant decompositions of polyphonic music,” in ICASSP.
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Historical perspective: waveform-based models?

deep 
learning

independence
between sources

non-negative
sources

non-linear
model

linear models

unsupervised

ICA NMF

supervised

NMF cannot be used with waveforms
due to its non-negative constraint!

(waveforms range from -1 to 1)



deep 
learning

independence
between sources

non-negative
sources

non-linear
model

linear models

unsupervised

ICA NMF

supervised

Historical perspective: waveform-based models?



A widely-used set of tools:

filtering spectrograms

linear models

unsupervised learning

audio domain knowledge

 



..maybe we could try another toolset?

filtering → synthesis?

linear models → non-linear models?

unsupervised learning → supervised learning?

audio domain knowledge → data driven? 

 



Stoller et al., 2018.  “Wave-u-net: A multi-scale neural network for end-to-end audio source separation” in arXiv.

Grais et al., 2018. “Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders” in EUSIPCO.

Lluis, et al., 2018. “End-to-end music source separation: is it possible in the waveform domain?” in arXiv.

Slizovskaia et al., 2018. “End-to-end Sound Source Separation Conditioned on Instrument Labels” in arXiv.

Cohen-Hadria et al., 2019. “Improving singing voice separation using Deep U-Net and Wave-U-Net with data augmentation” in arXiv.

Kaspersen, 2019. “HydraNet: A Network For Singing Voice Separation”. Master Thesis.

Akhmetov et al., 2019. “Time Domain Source Separation with Spectral Penalties”. Technical Report.

Défossez et al., 2019. “Demucs: Deep Extractor for Music Sources with extra unlabeled data remixed” in arXiv.

Narayanaswamy et al., 2019. “Audio Source Separation via Multi-Scale Learning with Dilated Dense U-Nets” in arXiv.

ALL THE PUBLICATIONS IN CHRONOLOGICAL ORDER AS OF OCTOBER 2019

End-to-end music source separation: 9 publications



End-to-end music source separation: architectures



Introduction: the “generative” Wavenet

Causal
Softmax-output

distribution
modeling p(x) 

Van den Oord et al., 2016. “Wavenet: a generative model for audio” in arXiv.



A “regression” Wavenet for music source separation

Non-causal

Lluis, et al., 2019. “End-to-end music source separation: is it possible in the waveform domain?” in Interspeech.

Regression output 
p(y|x)  discriminative 

post-processing!



Fully convolutional & deterministic

Lluis, et al., 2019. “End-to-end music source separation: is it possible in the waveform domain?” in Interspeech.



Fully convolutional & deterministic

Real time inference! 

1601 samples input → denoising time: ≈ 0.56 sec per second of music on GPU!

Lluis, et al., 2019. “End-to-end music source separation: is it possible in the waveform domain?” in Interspeech.



End-to-end music source separation: architectures



Autoencoders

mixture

estimated sources



Grais et al., 2018. “Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders” in EUSIPCO.

mixture

estimated sources

Multi-resolution CNN: efficient way 
to represent 3 periods!

Multi-resolution & Convolutional autoencoder 

Multi-resolution CNN = Inception CNN
(different filter shapes in
 the same CNN layer)



Grais et al., 2018. “Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders” in EUSIPCO.

CNN
length=1025

CNN
length=512

CNN
256

CNN
5

CNN
length=50

concatenate

output

input

multi-resolution layer
x2

transposed-CNN
multi-resolution layer

x2

multi-resolution layer

mixture

estimated sources

Multi-resolution & Convolutional autoencoder 



End-to-end music source separation: architectures



Wave-U-net

Stoller et al., 2018.  “Wave-u-net: A multi-scale neural network for end-to-end audio source separation” in arXiv.



Wave-u-net extensions
● Multiplicative conditioning using instrument labels at the bottleneck.

Slizovskaia et al., 2019. “End-to-end Sound Source Separation Conditioned on Instrument Labels” in ICASSP.

● Data augmentation: ≈ 1 dB SDR improvement.

Cohen-Hadria et al., 2019. “Improving singing voice separation using Deep U-Net and Wave-U-Net with data augmentation” in arXiv.



Data augmentation strategies

It is used to artificially expand the size of a training dataset by creating modified versions of it.

● Random swapping left/right channel for each source

● Random scaling sources

● Random mixing of sources from different songs

● Pitch-shifting

● Time-stretching

Uhlich et al, 2017. “Improving music source separation based on deep neural networks through data augmentation and network blending” in ICASSP.

Cohen-Hadria et al., 2019. “Improving singing voice separation using Deep U-Net and Wave-U-Net with data augmentation” in arXiv.



Wave-u-net extensions

● Add BiLSTMs at the bottleneck: ≈ 1 dB SDR improvement.

Kaspersen, 2019. “HydraNet: A Network For Singing Voice Separation”. Master Thesis.

● Loss function in the spectral domain.

Akhmetov et al., 2019. “Time Domain Source Separation with Spectral Penalties”. Technical Report.

● Use dilated convolutions and dense CNNs.

Narayanaswamy et al., 2019. “Audio Source Separation via Multi-Scale Learning with Dilated Dense U-Nets” in arXiv.

● Achieve comparable results to a spectrogram-based model: Demucs. 
w/ BiLSTMs at the bottleneck, data augmentation, and some additional architectural changes: ≈ 1.6 dB SDR improvement.

Défossez et al., 2019. “Demucs: Deep Extractor for Music Sources with extra unlabeled data remixed” in arXiv.

● Multiplicative conditioning using instrument labels at the bottleneck.

Slizovskaia et al., 2019. “End-to-end Sound Source Separation Conditioned on Instrument Labels” in ICASSP.

● Data augmentation: ≈ 1 dB SDR improvement.

Cohen-Hadria et al., 2019. “Improving singing voice separation using Deep U-Net and Wave-U-Net with data augmentation” in arXiv.



Wave-u-net extensions: Demucs
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Wave-u-net extensions: Demucs



Wave-u-net extensions: Wave-U-net vs. Demucs

Wave-U-net: building blocks

Demucs: building blocks

ENCODER



Wave-u-net extensions: Wave-U-net vs. Demucs

Wave-U-net: building blocks

Demucs: building blocks

DECODER



Deconvolutions and high-frequency artifacts

Odena et al., 2016. "Deconvolution and Checkerboard Artifacts" in Distill.

Checkerboard artifacts in images
High-frequency buzz in audio

time

fre
qu

en
cy

1k Hz

2k Hz

4k Hz
3k Hz

0 Hz



Comparison: a perceptual study
Lluis, et al., 2019. “End-to-end music source separation: is it possible in the waveform domain?” in Interspeech.

Waveform-based
(Wave-U-net)

Waveform-based
(Wavenet)

Mixture Spectrogram-based
(DeepConvSep)



Evaluation metrics: SDR, SIR, SAR

“overall performance”

“interference from other 
sources”

“algorithmic
artifacts”

http://craffel.github.io/mir_eval/ https://github.com/sigsep/sigsep-mus-eval/

Vincent et al., 2006. “Performance measurement in blind audio source separation” in IEEE TASLP.

http://craffel.github.io/mir_eval/
https://github.com/sigsep/sigsep-mus-eval/


Comparison: a perceptual study
Lluis, et al., 2019. “End-to-end music source separation: is it possible in the waveform domain?” in Interspeech.

Waveform-based
(Wave-U-net)

Waveform-based
(Wavenet)

Mixture Spectrogram-based
(DeepConvSep)

(t-test: p-value=0.049, 15 participants)



Additional references



S. Dubnov, 2002. “Extracting sound objects by independent subspace analysis” in AES Conference.

 Blumensath and Davies, 2004. “Unsupervised learning of sparse and shift-invariant decompositions of polyphonic music,” in ICASSP.

Jang and Lee, 2003. “A maximum likelihood approach to single-channel source separation” in Journal of Machine Learning Research.



Music
Generation

Expressive music modeling



Overview

Why audio? Why raw audio?

Generative models

Likelihood-based models of raw audio

Adversarial models of raw audio

Summary



Why audio? Why raw audio?



Why audio?

Music generation is typically studied in the symbolic domain







Why audio?

Many instruments have complex action spaces
Rich palette of sounds and timbral variations

Guitar
● pick vs. finger
● picking position
● frets
● harmonics
● ...



Why raw audio?

Magnitude spectrogram



Why raw audio?

Phase spectrogram



Why raw audio?
Phase is often unimportant in discriminative settings,
but is very important perceptually!

original phase random phase



Why raw audio?
Phase is hard to model:

● it is an angle, so it wraps around
● it becomes random as the magnitude tends to 0
● absolute phase is less meaningful, but relative phase differences matter



What is “raw audio” anyway?



Discretising audio

uniform 
quantisation

μ-law 
quantisation

● Time
● Amplitude



Generative models



Generative models

Given a dataset of examples X drawn from p(X):

a generative model estimates p(X)



Generative models

Given a dataset of examples X drawn from p(X):

a generative model estimates p(X)

Explicit: given x ∈ X, model can infer p(x)

Implicit: model can produce new samples x ~ p(X)



Generative models

Brock et al., 2019. “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR.



Likelihood-based models

Likelihood-based models parameterise p(X) directly

Objective function: maximise ∑x ∈ X log p(x) 



Autoregressive models

Autoregressive models factorise p(X)
into simpler (scalar) distributions

x = (x1, x2, x3, ..., xn)

p(x) = ∏i p(xi|x<i) chain rule of probability

We can use the same model p(xi|x<i) for all i!



Flow-based models

Flow-based models transform p(X) to a simple
(factorised) distribution with an invertible mapping

p(x) = p(z) · |det J|-1 change of variables theorem
J = d(g(z))/dz x = g(z)

Important constraints:
g(z) must be invertible det J must be tractable

Dinh et al., 2014. “NICE: Non-linear Independent Components Estimation”, arXiv.
Dinh et al., 2016. “Density estimation using Real NVP”, arXiv.



Variational autoencoders (VAEs)

input x

latents z

reconstruction x̃

generative network
(decoder)

(encoder)
inference network

pφ(x|z)

qθ(z|x)

z ~ 𝓝(0,1)

VAE maps latents z from a simple 
distribution to x with a (non-invertible) 
generative network

The inference network approximates the 
inverse operation

p(x) cannot be computed exactly, the 
Evidence Lower BOund (ELBO) is 
maximised instead

Kingma & Welling, 2014. “Auto-Encoding Variational Bayes”, ICLR 2014.
Rezende et al., 2014. “Stochastic Backpropagation and Approximate Inference in Deep Generative Models”, ICML 2014.



Adversarial models

latents z

generated data x̃

generator G

real data x

discriminator D

real?

𝓛 = 𝔼x[log(D(x))] + 𝔼z[log(1 - D(G(z)))]

Generator minimises 𝓛 

Discriminator maximises 𝓛 

Goodfellow et al., 2014. “Generative Adversarial Nets”, NeurIPS.



More exotic flavours
● Implicit quantile networks

● Energy-based models

● Optimal transport (e.g. Wasserstein autoencoders)

● Score-based generative modelling

● ...



Conditional generative models
Conditioning is “side information” which allows for control over the model output

p(x|c) vs. p(x)



Conditional generative models
Conditioning is “side information” which allows for control over the model output

p(x|c) vs. p(x)

sparsely conditioned densely conditioned

image models class labels bounding boxes segmentation grayscale image 
(colorisation)

y = “cat”



Conditional generative models
Conditioning is “side information” which allows for control over the model output

p(x|c) vs. p(x)

sparsely conditioned densely conditioned

music audio models composer
instrument(s)
tempo
timbre
...

note density
musical form
…

score MIDI other audio signals



Mode-covering vs. mode-seeking behaviour

● Likelihood-based models are mode-covering
● Adversarial models are (typically) mode-seeking
● In more densely conditioned settings, we tend to care 

less about covering all the modes

mode-covering mode-seeking



Likelihood-based models



WaveNet

input

hidden
layer

hidden
layer

hidden
layer

output

van den Oord et al., 2016. “WaveNet: A Generative Model for Raw Audio”, arXiv.



WaveNet

input

hidden
layer

hidden
layer

hidden
layer

output

van den Oord et al., 2016. “WaveNet: A Generative Model for Raw Audio”, arXiv.



WaveNet: dilated convolutions

input

hidden
layer

hidden
layer

hidden
layer

output

dilation 20 = 1

dilation 21 = 2

dilation 22 = 4

dilation 23 = 8

van den Oord et al., 2016. “WaveNet: A Generative Model for Raw Audio”, arXiv.



WaveNet: dilated convolutions

input

hidden
layer

hidden
layer

hidden
layer

output

dilation 20 = 1

dilation 21 = 2

dilation 22 = 4

dilation 23 = 8

van den Oord et al., 2016. “WaveNet: A Generative Model for Raw Audio”, arXiv.



http://www.youtube.com/watch?v=7-mFPNbVgDw
http://www.youtube.com/watch?v=7-mFPNbVgDw
http://www.youtube.com/watch?v=vL1g79gMCHE
http://www.youtube.com/watch?v=vL1g79gMCHE
http://www.youtube.com/watch?v=PQxZV7zoYes
http://www.youtube.com/watch?v=PQxZV7zoYes
http://www.youtube.com/watch?v=aX6XebS8Hlk
http://www.youtube.com/watch?v=aX6XebS8Hlk


SampleRNN
TODO

Mehri et al., 2017. “SampleRNN: An Unconditional End-to-End Neural Audio Generation Model”, ICLR.



Parallel WaveNet, ClariNet

van den Oord et al., 2019. “Parallel WaveNet: Fast High-Fidelity Speech Synthesis”, ICML.



WaveGlow, FloWaveNet

Prenger et al., 2019. “Waveglow: A flow-based generative network for speech synthesis”, ICASSP.
Kim et al., 2019. “FloWaveNet: A generative flow for raw audio”, ICML.



WaveNet: #layers ~ log(receptive field length)

input

hidden
layer

hidden
layer

hidden
layer

output

dilation 20 = 1

dilation 21 = 2

dilation 22 = 4

dilation 23 = 8



… but memory usage ~ receptive field length

Required model depth is logarithmic in the desired receptive field length

Required memory usage during training is still linear in the desired 
receptive field length!

⇒ We cannot scale indefinitely using dilation



Autoregressive discrete autoencoders

x   input

q = f(x)   query

q’ = VQ(q)
quantised query

encoder

local model

quantisation

modulator

y   code

… 5 207 131 18 168 …  

decoder

van den Oord et al., 2017. “Neural discrete representation learning”, NeurIPS.



Hierarchical WaveNets

… 17 95 88 145 ...

… 210 37 121 8 ...

level 1
ADA

level 2
ADA

level 3
unconditional model

16 kHz

2 kHz

250 Hz

Dieleman et al., 2018. “The challenge of realistic music generation: modelling raw audio at scale”, NeurIPS.



Wave2Midi2Wave and the MAESTRO dataset

Hawthorne et al., 2019. “Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset”, ICLR.

https://magenta.tensorflow.org/maestro-wave2midi2wave


Sparse transformers
Attention (with sparse masks) instead of 
recurrence / convolutions.

Child et al., 2019. “Generating long sequences with sparse transformers”, arXiv.

https://soundcloud.com/openai_audio/sample-set-1


Universal music translation network

Mor et al., 2019. “A Universal Music Translation Network”, ICLR.



http://dadabots.com/

Carr & Zukowski, 2018. “Generating Albums with SampleRNN to Imitate Metal, Rock, and Punk Bands”, arXiv.



Adversarial models



WaveGAN

Donahue et al., 2019. “Adversarial Audio Synthesis”, ICLR.



WaveGAN

Donahue et al., 2019. “Adversarial Audio Synthesis”, ICLR.



GANSynth

Engel et al., 2019. “GANSynth: Adversarial Neural Audio Synthesis”, ICLR.



GANSynth

Engel et al., 2019. “GANSynth: Adversarial Neural Audio Synthesis”, ICLR.



GAN-TTS

Binkowski et al., 2019. “High Fidelity Speech Synthesis with Adversarial Networks”, arXiv.



MelGAN

Kumar et al., 2019. “MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis”, arXiv.



Why the emphasis on likelihood in music modelling?
Most popular generative modelling paradigm:

GANs



Why the emphasis on likelihood in music modelling?
Most popular generative modelling paradigm:

GANs

Most popular generative modelling paradigm for music:

likelihood-based (autoregressive)



Why the emphasis on likelihood in music modelling?

● We are still figuring out the right architectural priors for 
audio discriminators
○ For images, a stack of convolutions is all you need
○ What do we need for audio? Multiresolution? Dilation?

Something phase shift invariant?

Ulyanov et al., 2018. “Deep Image Prior”, CVPR.
Pons et al., 2019. “Randomly weighted CNNs for (music) audio classification”, ICASSP. 



Why the emphasis on likelihood in music modelling?

● We are still figuring out the right architectural priors for 
audio discriminators
○ For images, a stack of convolutions is all you need
○ What do we need for audio? Multiresolution? Dilation?

Something phase shift invariant?

● The sparsely-conditioned setting is dominant
○ We care about “creativity” and capturing diversity
○ GANs are worse at this than likelihood-based models

Ulyanov et al., 2018. “Deep Image Prior”, CVPR.
Pons et al., 2019. “Randomly weighted CNNs for (music) audio classification”, ICASSP. 



Alternatives to modelling raw audio directly
● Model complex-valued spectrograms and “deal” with phase

(GANSynth)

● Model magnitude spectrograms
Use a vocoder or Griffin-Lim to invert
(Tacotron 1 & 2, MelGAN, MelNet, …)

Wang et al., 2017. “Tacotron: Towards end-to-end speech synthesis”, ISCA.
Shen et al., 2018. “Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions”, ICASSP.

Vasquez & Lewis, 2019. “MelNet: A Generative Model for Audio in the Frequency Domain”, arXiv.



Alternatives to modelling raw audio directly
● Differentiable Digital Signal Processing (anonymous authors, ICLR, in review)

Use raw audio input, but put DSP components in the model
https://openreview.net/forum?id=B1x1ma4tDr 

https://openreview.net/forum?id=B1x1ma4tDr


Summary

● Generative modelling of raw audio is feasible, even 
in the sparsely conditioned setting

● Likelihood-based models dominate, but GANs are 
making in-roads in the densely conditioned setting

● Modelling large-scale structure from raw audio is an 
unsolved problem



Thank you
Sander Dieleman, Jordi Pons, Jongpil Lee


