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ABSTRACT Adapting to recent trends in mobile communications towards 5G, infrastructure owners are
gradually modifying their systems for supporting the network programmability paradigm and for partici-
pating in the slice market (i.e., dynamic leasing of virtual network slices to service providers). Two-fold
are the advantages offered by this upgrade: i) enabling next generation services, and ii) allowing new profit
opportunities. Many efforts exist already in the field of admission control, resource allocation and pricing
for virtualized networks. Most of the 5G-related research efforts focus in technological enhancements
for making existing solutions compliant to the strict requirements of next generation networks. On the
other hand, the profit opportunities associated to the slice market also need to be reconsidered in order to
assess the feasibility of this new business model. Nonetheless, when economic aspects are studied in the
literature, technical constraints are generally oversimplified. For this reason, in this work, we propose an
admission control mechanism for network slicing that respects 5G timeliness while maximizing network
infrastructure providers’ revenue, reducing expenditures and providing a fair slice provision to competing
service providers. To this aim, we design an admission policy of reduced complexity based on bid selection,
we study the optimal strategy in different circumstances (i.e., pool size of available resources, service
providers’ strategy and traffic load), analyze the performance metrics and compare the proposal against
reference approaches. Finally, we explore the case where infrastructure providers lease network slices either
on-demand or on a periodic time basis and provide a performance comparison between the two approaches.
Our analysis shows that the proposed approach outperforms existing solutions, especially in the case of
infrastructures with large pool of resources and under intense traffic conditions.

INDEX TERMS Communication networks, 5G mobile communication, network slicing, infrastructure as
a service, traffic control, admission control, queuing analysis, Markov processes, pricing, profitability.

I. INTRODUCTION

IN the last decades we have assisted to the frequent
emergence of new use cases for wireless networks pro-

posed by industrial actors and governmental bodies. Conse-
quently, network infrastructure owners have been motivated
to explore new architectures and technologies for upgrad-
ing their networks and support new services, while seeking
economic incentives for amortizing the associated costs. 5G,
the next generation of mobile networks, is still far from
its maturity in terms of deployment, however, requirements
have been proposed by standardization bodies [1]–[3], and
new technologies are being fine-tuned by the research com-
munity, while the resulting architectures and mechanisms
are being integrated in 3rd Generation Partnership Project
(3GPP) specifications [4]–[7]. In particular, network func-

tion virtualization (NFV) and software defined networking
(SDN) have been proposed as the keystones for scalable
and programmable networks with Quality of Service (QoS)
support [6]–[8]. Besides, they are considered as the enablers
of the network slicing paradigm, according to which, QoS-
tailored portions of the network resources are dynamically
isolated into customized virtual networks, namely network
slices, that coexist within the same infrastructure. Therefore,
an alternative business model has been introduced [3], [4],
[9], named slice market, between infrastructure providers
(InPs), that is, access, transport and cloud infrastructure own-
ers, and service providers (SPs), which include mobile virtual
network operators (MVNOs), over-the-top (OTT) players
(e.g., streaming providers), and vertical industries (e.g., e-
health, surveillance, automotive). More precisely, slices can
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be leased by InPs to SPs (also known as slice tenants) through
fine-scale service level agreements (SLAs) that substitute
current long-term sharing agreements.

The concept of slice market is expected to introduce a
strong competition between different InPs and SPs, thus
oxygenating the typically closed and monolithic ecosystem
of telecommunication services and introducing the precon-
ditions for fast innovation. Indeed, independently from the
ownership of network resources, any SP could possibly enter
the market of wireless services, while InPs could better man-
age and monetize the utilization of their resources. Therefore,
from an economic point of view, the enablers of a healthy
slice market for 5G are: i) the monetary incentives to InPs
for building the next generation network, and ii) the fairness
in the service of competing SPs. On the other hand, from
a purely technical point of view, the requirements for 5G
are: i) the slice isolation [8], ii) heterogeneous End-to-End
(E2E) QoS guarantees for 5G use cases [1]–[6], and, iii) a
prompt slice provision, suitable for short-lived services such
as emergency services or surveillance [1], [2].

Excluding architectural and technological aspects that
have been extensively studied in the literature, the prompt-
ness in the slice provision is mainly regulated by two factors,
that is, the communication protocol adopted between SPs and
InPs, and the mechanisms used at the InPs’ side for admission
control, resource allocation and pricing. In this context, two
macro categories of slice provision approaches exist in the
literature, the on-demand and periodic slicing where, respec-
tively, slice allocation is enforced upon each slice request
arrival (e.g., policy-based approaches) or periodically (e.g.,
auction-based approaches). In on-demand slicing, the typical
communication flow for the slice provision process consists
in the uncoordinated slice request submission by SPs, fol-
lowed by the broadcasting of the admitted tenants by InPs.
On the other hand, in periodic slicing, an intrinsic latency is
systematically added by the time window used for collecting
slice requests.

Within this categorization, two strategies are mainly used
in the literature for resource pricing. In on-demand slicing,
prices are typically set by InPs for a given bundle of re-
sources. On the other hand, in periodic slicing, prices are
determined in relation to the resource availability as well
as InPs’ and SPs’ strategies. Besides, a bidding model is
generally adopted where the minimum and maximum bid
represent, respectively, the reserve price (i.e., the minimum
price accepted by the InPs), and the SPs’ budget (i.e., the
maximum affordable price). Many contributions exist in
the literature for admission control, resource allocation and
billing mechanisms in virtualized wireless networks [10],
however, as detailed in the next section, most of the existing
approaches do not meet neither the economic conditions for
a healthy slice market, nor the 5G requirements.

In this work, we propose a timely admission control mech-
anism for network slicing that maximizes InPs’ revenues,
reduces operational expenditures and guarantees slice iso-
lation, QoS and fairness towards SPs. In this context, InPs

have the joint objective of maximizing the tenants’ admission
rate while prioritizing the most rewarding slice requests.
Therefore, from a technological point of view, InPs have the
incentive to perform the slice allocation process as fast as
possible once triggered by the arrival of a slice request, since
every request represents a potential source of revenue. On the
other hand, from a strategical point of view, the InPs have the
incentive to prioritize those slice requests with higher bids
and characterized by a high ratio among arrival and service
rates.

In order to maximize the slice provision promptness and
reduce the computational cost of the allocation process, we
propose a policy-based approach, named Above Threshold
(AT) policy, that maximizes InPs’ revenues by admitting slice
requests with associated bids greater or equal than a given
threshold tariff. In this regard, we consider two kinds of
policies differing in the admission strategy with respect to
the resource utilization, named State Dependent (SD) and
State Independent (SI) policies, respectively. In particular,
the former guarantees a maximum revenue for every number
of instantiated slices, that is, it depends on the available
resources, while the second maximizes revenues only in
the long term and, therefore, requires lower computational
expenses.

In conclusion, the main contributions of this work are
the proposal of an AT admission control mechanism (both
SD and SI) for network slicing in 5G together with its
benchmarking with reference strategies when different re-
source pool sizes, traffic loads, and slicing frequencies are
considered. Besides, to the best of our knowledge, this is the
first effort in comparing on-demand and periodic slicing with
respect to fairness towards SPs, resource utilization, InP’s
profit, and timeliness. In particular, we compare AT policies
with the Always Admit (AA) policy in the on-demand case,
and with the First-Come-First-Served (FCFS) and Best Bid
(BB) policies in the periodic case. Results illustrate that
the proposed SI solution is capable of outperforming the
evaluated reference mechanisms in terms of revenue rates to
the InPs, mostly in case of intense traffic conditions, while
reducing the resource utilization in exchange for a negligible
loss in terms of admission rate. Besides, it requires the
lowest computational expenses and guarantees the promptest
admission control, especially when complex infrastructures
are examined.

In the remaining of the paper, we first present the related
works (Section II) and system model (Section III). Then
we introduce the mathematical framework for studying the
performance of on-demand slicing when both SD and SI
policies are employed (Section IV). The system analysis
concludes with considerations on the optimal policies and
on the complexity of the evaluated solutions. Afterwards, we
introduce the system setup and the results of the performance
comparison between on-demand and periodic slicing, when
different policies are employed (Section V). Finally, we
present the conclusions of this work (Section VI).
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FIGURE 1. System model for slice provision when one InP leases resources to multiple SPs competing for providing service to their UEs. Colors identify
the portion of resources used (e.g., channel capacity C) and the UEs served by different slice tenants. Rejected slice requests are marked with a red cross.

II. RELATED WORK
Many contributions exist in the literature for admission con-
trol, resource allocation and billing mechanisms in virtual-
ized wireless networks [10], however, rarely both the eco-
nomic conditions for a healthy slice market and 5G require-
ments are met. Consequently, the discussion remains open
in the scientific community with respect to automated mech-
anisms for slice provision and pricing in 5G. In particular,
[9] and [11] propose on-demand solutions to the admission
control problem that maximize the InPs’ profit by means of
Semi-Markov Decision Processes and optimization theory,
respectively. Moreover, [9] introduces the concepts of inelas-
tic and elastic services, that will be used in the following,
and which are associated to SLAs characterized by constant
or average QoS requirements, respectively. However, both
contributions lack in the review of other performance metrics
relevant for 5G, for instance, fairness towards competing SPs.

On the other hand, among the proposed periodic ap-
proaches, [12], [13] employ auction theory for the study
of the single/heterogeneous resource allocation problem, re-
spectively, nevertheless, neither of the works puts a focus
on network isolation, QoS support or fairness. Besides, al-
though InPs are the entities entitled to build next generation
networks, many contributions only take into account the
economic return for SPs. For instance, this is the case of the
spectrum leasing optimization framework presented in [14],
the Fisher market slice allocation approach with strategic
tenants in [15], the auction-based approach in [13] and, in
general, the VCG-based auctions [16]. Finally, only limited
efforts have been produced in the study of pricing schemes
suitable for 5G, for instance, [17], [18] propose auction-
based solutions for heterogeneous resource slicing with a per-
access pricing scheme. However, in [17] the authors highlight
the need for a pricing scheme based on slices’ lifetime in
order to account for the real resource occupation, and to
reduce the risk of exaggerated slice requests and unused
resources.

In conclusion, research efforts focusing in on-demand and
periodic slicing tend to study complementary aspects related
to the 5G slice market, therefore, we consider interesting
a direct comparison between the two strategies through the

same analytical framework. In this context, [19] extends the
on-demand approach in [9] for the study of InPs’ profits to the
periodic case with heterogeneous resources. However, static
InP strategies are adopted with no hint on the optimal ad-
mission strategy, nor on the fairness towards competing SPs.
Reference [11] partly completes the contribution in [19] by
proposing a genetic-based algorithm for online computation
of the admission policy that maximizes InP’s profit.

In this work, we propose a timely admission control
mechanism for network slicing that takes into account the
economic conditions for a healthy slice market and addresses
the requirements of next-generation networks by maximiz-
ing InPs’ revenues, reducing operational expenditures, and
guaranteeing fairness towards SPs, slice isolation and QoS.
In particular, we adopt the promptness offered by on-demand
approaches for the admission of new slices, combined with
pricing features typical of periodic slicing, where tariffs are
set depending on the resource availability, the InPs’ strategy
and SPs’ behavior. Indeed, we assume that SPs may have
a different perception of the market and, therefore, make
different bids for the same kind of slice. However, as SPs’
strategies have been abundantly studied in the literature and
our focus remains on InPs’ perspective, we assume that SPs
are irrational entities that follow a random bidding model.
Moreover, we assume that tenants pay for the slices they use
only if the associated SLA is met during their permanence
in the network, therefore, InPs can reallocate resources only
after voluntary tenants’ departures.

In order to maximize the slice provision promptness and
the InPs’ revenue while reducing the computational cost
associated to the admission decision, we propose the AT
policy-based approach that admits slice requests with associ-
ated tariff-bids greater or equal than a given threshold. Such
an approach is capable of maximizing tenants’ admission
rate while prioritizing the most rewarding slice requests
and, at the same time, it minimizes the admission delay
as policies can be enforced instantaneously upon each slice
request arrival. In this regard, we compare the performance
of both SD and SI admission strategies, which use admission
thresholds that can adapt to the current resource utilization, or
remain static, respectively. In this study, we model only SLAs
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associated to inelastic services as they are the strictest class of
SLAs. Either way, an extension of this study to include elastic
services can be achieved by following the modeling approach
in [9]. Finally, we provide a benchmark of the proposed
admission control mechanism for network slicing in 5G by
comparing on-demand and periodic slicing performance (i.e.,
fairness towards SPs, resource utilization, InP’s profit, and
timeliness) with that of reference strategies (i.e., AA in the
on-demand case, and FCFS and BB in the periodic case)
when different resource pool sizes, traffic loads, and slicing
frequencies are considered.

III. SYSTEM MODEL
In this section, we introduce the system model adopted for the
analysis and, to this aim, we refer to Fig. 1. In the considered
scenario, multiple user equipments (UEs) coexist within the
coverage area of a given base station (BS), which belongs to
a given InP. The BS represents the access point towards other
network resources, such as backhaul, IP networks and cloud
infrastructures. UEs can access multiple services at a time,
each provided by a different SP, for instance, a given UE can
surf the Internet while streaming a song in background. In
Fig. 1, the different colors identify different SPs, as well as
the portion of InP’s resources accessed and the UEs served by
different slice tenants. Within this context, different service
instances of the same UE are represented as different logical
UEs.

Resources are sliced independently at different BS loca-
tions and SPs are allowed to actively request network slices
on a continuous time scale, while InPs monitor the resource
availability and decide whether to admit them, either in real-
time (i.e., on-demand slicing) or on a discrete time-scale (i.e.,
periodic slicing). Whenever InPs welcome a new SP, named
slice tenant, a SLA is stipulated defining the terms for the
customization and pricing of the requested slice. In other
words, each SLA defines both the QoS to be guaranteed and
the tariff βs in monetary units per second (e.g., [euros/s]) to
be paid by tenant SPs during its permanence in the system.
Finally, no distinction is provided in the system model for
the labeling of different UEs or SPs, therefore, in Fig. 1,
a specific tenant can be licensee of multiple network slices
simultaneously, especially when SPs opt for serving different
UEs by means of separate slices.

In order to specify a clear model for the SLAs, we first
introduce the concept of service (or slice) class that we define
as c = {rc, λc, µc}. In this context, rc = (r0, · · · , rρ−1)
represents the requirements vector, that is, the set of require-
ments ri on the ρ resources accessible from the considered
service area, while λc and µc are the average arrival and
service rates of slice requests for the specific service class c,
respectively. In particular, Tc = 1/µc is the average holding
(or service) time for a specific class c, that is, the average time
interval during which resources are retained by SPs providing
such service. In other words, it holds Tc = E[Tc|s], where
Tc|s is the holding time of a specific tenant SPs. Besides,
we assume that InPs support a finite number ν of service

classes describing the services in the slice market. Finally,
if nc is the number of slices instantiated for class c at a given
time instant t, then n represents the total number of network
slices instantiated in the network, that is, n =

∑ν
c=1 nc.

Fixed a specific service class c, the SLA for a given tenant
SPs is defined as the tuple {c, βs}, where βsTc|s is the price
paid to the InPs if the resource requirements are guaranteed
during the whole holding time. As introduced in Section I,
we examine only the strictest kind of SLAs, that is, those
associated to inelastic services [9], characterized by constant
requirements during the whole holding time. Besides, we
assume that the tariff-bid βs of a generic SPs can vary within
the interval [βcm, β

c
M ], that changes for different slice classes

c as they are characterized by different associated resources
and perceived value. In particular, the extremes of the bid
interval represent, respectively, the minimum tariff accepted
by the InP (i.e., the reserve tariff βcm) and the maximum tariff
that SPs can afford to pay for the considered slice class (i.e.,
the tariff budget βcM ). In this context, we model one resource
type, that is, the channel capacity C of the access link to the
BS, measured in [bit/s], and we leave for future studies the
extension to the case of multiple InPs with heterogeneous
resources and service classes.

Hence, the definition of service class can be projected
into a single resource dimension, by substituting the require-
ments vector with the scalar rc, that represents the aggregate
nominal rate asked by tenants for the service of UEs in the
considered coverage area. Finally, in the rest of the paper,
we admit only one service class, that is, all SPs ask the
InPs for the same requirement on the aggregate nominal rate,
thus, the notation can be simplified by removing subscript
c, while SLAs of different tenants are fully described by the
corresponding bids βs.

In this case, the maximum number of slices that can
be allocated simultaneously is N = bC/rc, and it holds
0 ≤ n ≤ N . In the following, we assume that the slice
request arrivals can be modeled as a Poisson stochastic
process with average rate λ, and the tenants’ departure as a
general stochastic process with average rate µ. With regards
to the pricing model, we describe different SPs’ behaviors
by adopting a bidding model where βs is a random variable
following a general distribution fβ over the sample space
[βm, βM ].

The proposed system model is valid for both on-demand
and periodic slicing, that is, when n is updated at each new
admission and departure, or regularly every Tslicing seconds.
Thus, in Fig. 2, we depict an instance of the slice request, ten-
ants’ departure and bidding processes for both approaches.
Besides, we highlight the possibility for the InP to reject slice
requests depending on the resource availability, the received
bids, and the adopted admission policy. Moreover, in the
periodic case, slice requests received during a given slicing
interval can be admitted at the beginning of the next interval
only, when SLAs are enforced. In particular, tenants pay for
slices only when they utilize resources, therefore, InPs get
no revenue in the time interval between tenants’ departure

4 VOLUME X, 2019



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939935, IEEE Access

M. Vincenzi et al.: Maximizing infrastructure providers’ revenue through network slicing in 5G

SP
1

SP
2

SP
2

SP
2

SP
2

On-demand slicing

Periodic slicing

β1

SP
1

λ

β2

λ μμ

β3

λ

t
n 2 1 0

T2
T1

10

{β1, β2} {β3}

Tslicing

β1

λ

β2

λ μμ

β3

λ

t
n 0 2 2 1

T2
T1

(a)

SP
1

SP
2

SP
2

SP
2

SP
2

On-demand slicing

Periodic slicing

β1

SP
1

λ

β2

λ μμ

β3

λ

t
n 2 1 0

T2
T1

10

{β1, β2} {β3}

Tslicing

β1

λ

β2

λ μμ

β3

λ

t
n 0 2 2 1

T2
T1

(b)

FIGURE 2. Instance of the slice request, tenants’ departure and bidding processes in: a) on-demand and b) periodic slicing, when only one service class is
supported and N = 2. Different colors identify requests and departures of different SPs, moreover, rejected requests are marked by a red cross.

and following slicing interval. We remind that, as we model
the problem in function of the aggregate resource demand
from the InP perspective only, multiple slice instances can
correspond to the same tenant, as represented in Fig. 2.

IV. SYSTEM ANALYSIS FOR ON-DEMAND SLICING
In this section, we present the mathematical analysis for on-
demand slice provision mechanisms when different policies
are adopted. Regardless of the policy, the infrastructure can
be represented as a cloud server farm with capacity to in-
stantiate N equal virtual servers (i.e., the network slices)
that share a common pool of jobs to be executed (i.e., the
service requests of a given class). New jobs are characterized
by an average arrival and service rate equal to λ and µ,
respectively, and the number n of jobs executed is updated
upon every new job’s arrival and completion. Besides, we
assume that each virtual server can handle one job at a time,
in order to model the slice isolation requirement and the QoS
guarantee. Therefore, thanks to the memoryless assumption
on arrivals and departures, we can model the system as a
M/G/k/k queue1. Even in cases where these assumptions
do not apply (e.g., non-Markovian behavior of SPs), discrete-
time Markov chains could be applied. However, the needed
transformations lie outside the scope of this work.

The mathematical framework offered by continuous-time
Markov chain (CTMC) can be used for the mathematical
analysis of the considered problem. In particular, we can
refer to Fig. 3, where each state corresponds to a different
tuple (n,Pn), whose elements describe the number of instan-
tiated slices and the admission policy adopted at that state,
respectively. Besides, the generic transition from state n to
n+ coincides either with the admission or departure of a
slice tenant, and is associated with the tuple (qnn+ , rnn+)
representing the transition rate conditioned to the initial state
and the associated reward, respectively.

The state policy Pn represents any possible bid-based
criterion for admitting or rejecting incoming slice requests

1It shall be noticed that, in the case of periodic slicing, the system can be
modeled as a MX/G/k/k queue, since we could consider that the slice
requests received within a given slicing interval arrive in batches at the
beginning of the next interval.

at state n:

Pn =

{
Admit, if β ∈ Dn ⊂ [βm, βM ]

Reject, otherwise
(1)

where Dn is the admitted bid interval at state n. Conse-
quently, the probability for a new slice request to be admitted
at state n can be defined as pn(fβ ,Pn) = p{β∈Dn} =∫
Dn fβ(β) dβ. State policies Pn can be arbitrarily chosen by

the InP when resources are available in the system, that is, for
states 0 ≤ n ≤ N − 1. On the other hand, when the system
faces resource shortage (i.e., n = N ), the only applicable
policy is the rejection of any slice request, that is, DN = ∅
and, thus, pN = 0. Finally, the tuple (qnn+ , rnn+) associated
to a transition at state n can be written as (λpn, β) in case of
admission, and as (nµ, 0) in case of departure. In conclusion,
for the generic transition nn+ it holds:

qnn+ =


λpn, if 0 ≤ n ≤ N − 1, n+ = n+ 1

nµ, if 1 ≤ n ≤ N,n+ = n− 1

0, otherwise
(2)

rnn+ =

{
β, if 0 ≤ n ≤ N − 1, n+ = n+ 1

0, otherwise
(3)

As introduced in Section I, we assume that the InP can
adopt either SD or SI policies, which differ in the capa-
bility of adapting the admission strategy to the number of
slices isolated in the system. In particular, different or equal
policies Pn are enforced at different states n, respectively.
Hence, InP’s strategy is represented with the policy vector
P = (P0, · · · , PN−1) in the SD case, while it can be fully
described by the generic state policy P when SI approaches
are adopted (i.e., P = P).

A. STATE-DEPENDENT POLICIES
In CTMC, the stationary probability πn associated to the
generic state n of the system can be calculated through the
following balance equations, when SD policies are enforced:
• 0 : π0λp0 = π1µ
• 1 : π1(λp1 + µ) = π0λp0 + π22µ
• n : πn(λpn + nµ) = πn−1λpn−1 + πn+1(n+ 1)µ
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FIGURE 3. Markov chain for on-demand slicing systems, where a different number of instantiated slices n and policy Pn is associated to each state, while
transitions are jointly represented by a transition rate qnn+ and a reward rnn+ .

• N :
∑N
n=0 πn = 1

leading to:

π0

(λ
µ
, fβ , N,P

)
=

1

1 +
∑N
i=1(λµ )i/i!

∏i−1
l=0 pl

πn≥1

(λ
µ
, fβ , N,P

)
=

(λµ )n/n!
∏n−1
j=0 pj

1 +
∑N
i=1(λµ )i/i!

∏i−1
l=0 pl

(4)

Intuitively, in a low-load regime (i.e., when λ
µ → 0), the

system most likely operates in states corresponding to low
values of n (i.e., π0 → 1), independently from the bidding
distribution fβ , the maximum number of slices N , and the
InP’s strategy P . The same result is obtained under high-load
regime (i.e., λµ >> N ), and when a very conservative admis-
sion strategy is adopted by the InP (i.e., βm is increased so
that most of the bid distribution lies outsideDn). Conversely,
when a more permissive policy is used in high-load regime,
the system behavior can be reversed (i.e., πN ≈ 1).

Following, we obtain the analytical expression for the
performance metrics used to measure the efficiency of such
slice provision system. The admission probability can be
expressed as:

Padmit

(λ
µ
, fβ , N,P

)
=
N−1∑
n=0

πnpn (5)

and represents the probability for a new slice request to be
admitted independently from the number of slices already
instantiated in the system. According to (4) and (5), Padmit
totally depends on the admission probability at state n = 0
in low-load regime (i.e., Padmit → p0, when λ

µ → 0).
Therefore, according to (1) and to pn’s definition, the InP can
improve the system’s fairness (i.e., the general satisfaction of
competing SPs) by widening the admission interval D0. In
particular, the maximum admission probability in low-load
regime can be reached when the state policy P0 admits every
request (i.e., p0 = 1) or, in other words, when the admission
interval D0 includes the entire support of fβ .

The average resource utilization U in the system is defined
as the ratio between the average and the maximum number
of slices instantiated in the system:

U
(λ
µ
, fβ , N,P

)
= E[n]/N =

( N∑
n=0

n · πn
)
/N (6)

Subsequently, we introduce the expected tariff E[β|β ∈
Dn] paid by those slice tenants that are admitted at state n
according to state policy Pn:

E[β|β ∈ Dn] =

∫ ∞
−∞

β p{β|β∈Dn} dβ

=
1

pn

∫
Dn

β f(β) dβ

(7)

where p{β|β∈Dn} = (fβ(β) · 1|β∈Dn)/pn.
The average revenue rate Rβ in [euros/s] for an InP

applying a specific policy vector P can be calculated by
averaging, over all the states, the admission rate λpn in
[admissions/s], times the expected price paid by admitted
tenants over the average holding time, that is, E[β|β ∈
Dn]/µ in [euros/admission]:

Rβ

(λ
µ
, fβ , N,P

)
=
λ

µ

N−1∑
n=0

πnpnE[β|β ∈ Dn] (8)

B. STATE-INDEPENDENT POLICIES
The analytical expressions for stationary probabilities and
performance metrics of a SI system can be obtained as a
particular case of the SD case. In particular, by definition of
SI policy, it holds Pn = P , Dn = D and pn = p for every
state 0 ≤ n ≤ N−1. Therefore, we can rewrite the stationary
probabilities in (4) as:

πn

(λ
µ
, fβ , N,P

)
=

(λµp)
n/n!∑N

i=0(λµp)
i/i!

, n ≥ 0 (9)

Similarly, the system admission probability in (5) can be
rewritten as:

Padmit

(λ
µ
, fβ , N,P

)
= (1− πN )p (10)

Finally, the definitions of U and E[β|β ∈ D] remain
unchanged, while the expression for the average revenue rate
in (8) can be simplified as below and expressed as an explicit
function of Padmit:

Rβ

(λ
µ
, fβ , N,P

)
=
λ

µ
PadmitE[β|β ∈ D] (11)

A particular SI admission strategy is the AA policy intro-
duced in Section I that admits every slice request regardless
of the associated bid (i.e., D = [βm, βM ] and p = 1), such
that, according to (7), E[β|β ∈ D] = E[β].
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C. OPTIMAL POLICY AND COMPLEXITY
In Section I, we motivated the maximization of the average
revenue rate as the main InP’s objective, therefore, we seek
the solution Popt of the following maximization problem:

Popt

(λ
µ
, fβ , N

)
= arg max

P
Rβ

(λ
µ
, fβ , N,P

)
Pn : Dn ⊂ [βm, βM ], n ∈ N < N

(12)

The problem highlights the dependency of the optimal policy
on λ/µ, fβ and N , therefore, the InP has to compute Popt

offline for values of λ/µ and fβ that are representative of
SPs’ behavior in its network in order to adopt convenient
strategies accordingly2.

In order to define the search space for the optimal policy,
we remind that, according to (1), the admission interval
of a generic state policy Pn can be any subset of the bid
interval. Hence, the admission interval can be generically
represented as the composition of multiple disjoint admission
intervals3. However, in order to reduce the complexity of
the problem described in (12), we propose the adoption of
AT policies where an admission threshold β̇n is set at state
n, such that Dn = [β̇n, βM ] and β̇n ≥ βm. Accordingly,
the system policy P can be fully described by the threshold
vector β̇ = (β̇0, · · · , β̇N−1) in the SD case and by
the scalar β̇ in the SI case, respectively. Thus, the search
space for the optimal policy is reduced, and the problem in
(12) can be transformed into an N-dimensional or mono-
dimensional continuous optimization problem for SD and
SI policies, respectively. On the other hand, a reduction in
the achieved revenue rate is expected when compared to
the optimal policy. However, as we demonstrate in the next
section, the relative loss remains constrained with respect to
different load regimes. Please refer to Appendix A for the
performance metrics’ expressions adapted for AT policies,
and note that AA policies can be considered as a particular
case of SI AT policies with threshold β̇ = βm.

In order to further improve the tractability while con-
serving accuracy, we convert the problem into a combinato-
rial optimization problem by discretizing the sample space
[βm, βM ] into a finite number h of intervals. Hence, the
thresholds that can be used for the state policies’ definition
are:

β̇n = βm + j
(βM − βm)

h
, j ∈ N < h (13)

and the choice of a suitable value of h guarantees results’
accuracy while keeping computational costs at acceptable
levels, as it is demonstrated in the following section. Please
find in Appendix A the combinatorial version of the problem
presented in (12) adapted for AT policies, whose solution will
be referred to as optimal AT policy in the following.

2The InP can estimate the SPs’ traffic patterns using network tracing,
and employ traffic forecasting mechanisms [20]–[22] together with machine
learning tools for adapting the strategy on-the-fly.

3i.e., Dn =
⋃

iDi
n, with Di

n = [βi
m, β

i
M ] ⊂ [βm, βM ] and Di

n ∩
Dj

n = ∅, ∀i 6= j.

We remind that, as introduced in Section I, the objective
of this work is to propose a prompt admission control mech-
anism for network slicing in 5G and to compare its perfor-
mance with that of baseline solutions. Because proposed AT
policies enable admission strategies at reduced complexity,
we adopt in this study an exhaustive search of the optimal
policy for demonstration purposes only, leaving for future ex-
tensions the search of a more computational efficient method.
Fixed the size of the pool of resources N , the complexity
of an exhaustive search for the optimal AT policy in SD
and SI systems is polynomial (i.e., O(hN )) or linear (i.e.,
O(h)), respectively, with regards to the discretization levels
h. Note that, depending on the value of h, multiple solutions
of the problem may exist, and, in those cases, we choose
the solution that maximizes Padmit; that is, the solution that
minimizes the Euclidean norm of the threshold vector (i.e.,
||β̇||2 or β̇ for SD and SI systems, respectively).

V. SYSTEM SETUP AND RESULTS EVALUATION
In this section, we present and compare the performance of
different slice provision mechanisms for both on-demand and
periodic slicing when different policies are employed. For
the system setup, we examine different pool of resources
and the extreme case where SPs follow a per-UE slicing
strategy. In the case of small cells, according to [23] up to 5
simultaneously active UEs can be served, hence, we assume a
maximum number of slices N = 6. For the traffic model, we
consider low, medium and high arrival rates λ, ranging from
0.5 to 100. On the other hand, we adopt only one service class
with exponentially distributed departures and unitary average
service rate µ. The bid interval varies within the range
[βm, βM ] = [0, 100] representing, respectively, the minimum
tariff accepted by the InP and the SPs’ budget. Finally, we
provide results for the case where SPs make uniform bids
over the admitted interval (i.e., β ∼ U [βm, βM ]).

For the solution of the combinatorial problem for AT poli-
cies associated to the problem described in (12), we employ
a number h of discretization levels for the bidding region that
ranges from a minimum of 2 (i.e., low and high bid region)
up to a maximum of h = 10, allowing a higher precision.
Besides, we develop a tool in Matlab for the performance
evaluation of the different considered mechanisms. In par-
ticular, for the case of on-demand slicing with uniformly dis-
tributed bids, AT and AA performance is evaluated according
to the expressions introduced in Appendix A. On the other
hand, for periodic slicing, a simulator generates instances of
the request arrivals, tenants’ departure and bidding processes,
and enforces AT, FCFS and BB policies accordingly for
different slicing intervals. Finally, we remind that the optimal
AT policy is computed by means of exhaustive search, and, in
the periodic case, it is obtained separately for different values
of the slicing interval Tslicing.

In the remaining of this section, first we focus in on-
demand slicing, computing the optimal AT policy and com-
paring SD and SI approaches, when AA policy is used as
a benchmark. Lastly, for the periodic case, we study the
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FIGURE 4. Assessment of the revenue loss for AT policy with respect to
an ideal Oracle, when SD systems are considered, N = 1, and h = 10.

optimal AT policy for different slicing intervals, and we
compare the performance with that of FCFS and BB policies.

A. ON-DEMAND SLICING EVALUATION
In Section IV-C, we anticipated that a reduced-complexity
solution to the problem introduced in (12) exists in the form
of AT policy with discretized thresholds, but this approach
may suffer some penalty on the revenue. Consequently, we
now study the limits of its performance by comparing the
average revenue rate of the optimal AT policy with that of an
ideal tool we named Oracle. In particular, in this context, we
consider the most flexible type of AT policy, that is, the SD
approach with maximum definition over the bid interval (i.e.,
h = 10). Oracle, on the other hand, is capable of recognizing
the most rewarding bids. Oracle is applied a posteriori (i.e.,
once the simulation is finished) and, therefore, it can apply
admission decisions based on its full knowledge of all the
events in the simulation (i.e., slice requests, tenants’ depar-
tures and bids). Hence, Oracle is only used for benchmarking
purposes as it cannot be implemented in practice.

In Fig. 4, we present the average revenue rate for both
optimal AT policy and Oracle with respect to the load regime
(i.e., λ/µ) in logarithmic scale. To this aim, we study the
most resource-limited case (i.e., N = 1), which leaves AT
policies with the least flexibility in terms of resource avail-
ability, for counterbalancing Oracle’s knowledge of future
events. We remind that InPs aim at the joint maximization
of admission rate and prioritization of highest bids and that,
according to Section IV-A, resources are exhausted (i.e.,
πN ≈ 1) in high-load regime (i.e., when λ

µ >> N ).
Consequently, when a larger pool of slice requests is received
by InPs, the latter are motivated to adopt a more selective
admission criterion by raising the bid threshold, which leads
to a revenue enhancement at the expense of the admission
probability (i.e., according to (5) it holds Padmit ≈ 0). It can
be observed from the figure that both Oracle and AT policies
can achieve a logarithmic increase with respect to λ

µ . On the

other hand, a loss in revenues is expected with respect to Or-
acle, as raising the admission threshold translates in revenue
maximization in the long term, while Oracle is capable of
selecting best bids over each realization of the slice request
process. The graph shows that the loss in revenues remains
bounded for any load regimes, and, in particular, a 14.3% loss
is experienced when few revenue opportunities are available
(i.e., λµ → 0), it increases to 19.5% when arrivals areN times
the departures (i.e., λµ ≈ N ), while it reduces for high-load
regimes (i.e., λµ >> N ). For instance, AT policies undergo
a loss in revenue of 10% when λ

µ = 100. Therefore, AT
policies offer a sub-optimal but viable solution to the generic
optimization problem represented in (12).

Before comparing the optimal strategies in SD and SI
systems, we study the influence of discretization over the
complexity of the optimization problem and the accuracy
of results. In particular, in order to study the feasibility of
adopting an exhaustive search for benchmarking analysis, we
provide the computation times associated to an exhaustive
search of the optimal AT policy in our system setup for an
infrastructure capable of hosting up to six slice tenants (i.e.,
N = 6). To this aim, we employ an Intel(R) Core(TM) i9-
7900X CPU @ 3.30GHz with 64GB of RAM, and results
reveal that when h = 4, 1.8 ms are necessary for a SI system
against the 4.5 ms for a SD system. Besides, when h = 10,
6.6 s are necessary for a SI system against the 64.5 minutes
for SD systems. Therefore, within the considered system
setup, computation times remain limited for both systems,
although SI systems are preferable when big infrastructures
are being studied, and when many combinations of λµ and fβ
have to be considered for modeling SPs’ behavior.

Comparing the performance accuracy for SD and SI sys-
tems, we represent in Fig. 5 the average revenue rate offered
by AT policies when different discretization levels h are used.
The figure proves that both systems react the same way to
discretization, except for some specific values of h showing
very small differences in revenue due to the lower degrees
of freedom of SI systems. For instance, for N = 6 and
h = 8, a 1.2% difference in revenue rate can be observed
between the two systems. Besides, a floor exists forRβ when
a minimum number of discretization levels h is used, or,
in other words, that a solution to the problem described in
(12) can be sought in the discrete domain with no significant
performance loss when a suitable accuracy is adopted. In
particular, the constraint on h is approximately independent
of the size of the resource pool (i.e., N ), however, it is more
evident in high-load regimes, as a better granularity allows
a more rewarding bid selection over a bigger pool of service
requests. For instance, according to Fig. 5, InPs may decide
to apply a minimum number of discretization levels equal
to h = 2 and h = 4 when λ/µ = 0.5 and λ/µ = 100,
respectively, in order to jointly minimize complexity and the
loss in revenue opportunities. However, in the following, we
adopt h = 10 for a better graphical detail.

In order to study the behavior of SD and SI systems adopt-
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FIGURE 5. Average revenue rate for SD and SI AT policies with respect
to the discretization granularity h, for different values of N , and λ/µ.

ing AT policies under different load regimes and systems
sizes, we represent in Fig. 6a and 6b the optimal policies
for both solutions, when h = 10 discretization levels are
used for all values of N and λ/µ. When comparing the
two graphs, it can be observed that, independently of the
load regime λ/µ and of the size of the resource pool N ,
similar AT policies are optimal for SD and SI systems. In
particular, in low-load regime (i.e., λ/µ = 0.5), the low
arrival rate of service requests and the small holding time
of slice tenants encourage the InPs to adopt in both systems
low admission thresholds, thus, maximizing revenues by
increasing the admission probability. On the other hand, in
high-load regime (i.e., λ/µ = 100), the system is saturated
(i.e., E[n] ≈ N ) and suffers from resource scarcity due to
the high arrival rate of slice requests and the big holding time
of slice tenants. Hence, InPs are motivated to increase the
admission threshold in order to block the less rewarding slice
requests.

In both load regimes, the higher flexibility of SD systems
enables step-like policies, where lower admission thresholds
are adopted when the system is far from saturation, while
higher ones are employed when the system is about to
exhaust its resources. Moreover, with increasing size of the
resource pool N , SD systems tend to be less selective by
relaxing the policy when far from saturation, in order to
achieve a better balance between admission probability and
revenue rate. Despite different strategies can be generally
considered optimal for SD and SI systems, it can be noted
that the difference in the admission thresholds adopted at
each state n is, at most, equal to the discretization step
(i.e., |β̇SDn − β̇SIn | ≤ (βM − βm)/h, n ∈ N < N ).
Therefore, independently from the load regime and the pool
of resources, the optimal policy for the two approaches leads
to the same system behavior, on average, that is, to the same
stationary probabilities πn, as illustrated by Fig. 6c for the
case N = 6. This aspect, in turn, translates into a close
performance matching, as demonstrated below.

After having computed the optimal admission thresholds
for on-demand AT policies, we now compare the perfor-

mance of SD and SI approaches with that of an AA pol-
icy when different load regimes and pools of resources are
considered. In particular, in Fig. 7, we study the admission
probability Padmit, the average revenue rate Rβ and the
average resource utilization U when h = 10 bid levels
are used. Firstly, it can be observed that, by enforcing the
constraint on the discretization accuracy (i.e., h ≥ 4), a
close performance match can be obtained between SD and
SI approaches not only for the average revenue rate but
also for the other performance metrics. This result holds
independently from the load regime λ/µ and the size of the
resource pool N .

In low-load regime (i.e., λ/µ = 0.5) it can be observed
that the performance metrics of different admission strategies
(i.e., AT or AA) are very close and tend to coincide when
big resource pools are considered. Indeed, due to the limited
revenue opportunities, AT strategies imitate the behavior of
the AA approach by admitting as many requests as possible
(see Fig. 6a and 6b), resulting in high admission probabilities
(Fig. 7a). However, in resource-limited systems (i.e.,N = 2),
the higher flexibility of SD approaches is capable of guar-
anteeing a slightly higher admission probability when com-
pared to SI strategies. At the same time, due to the low rate
of service requests, the average number of instantiated slices
(i.e., E[n]) remains approximately constant, independently
from the size of the pool of resources (i.e., N ). Therefore,
according to (6), the average resource utilization decreases
with respect to N (Fig. 7b), while the average revenue rate
does not vary (Fig. 7c).

In high-load regime (i.e., λ/µ = 100), the average
admission probability decreases with respect to the low-
load regime for AT policies in both SD and SI systems
(Fig. 7a). However, as results coincide with those for the
AA policy, this is not the consequence of the adoption of
higher admission thresholds in AT policies, but rather of the
limited resources with respect to the demand. Consequently,
both the admission probability and the average operational
expenditures (i.e., E[n]) increase linearly with the size of
the resource pool N , as more resources can be accessed by
competing SPs. Therefore, according to its definition in (6),
the average resource utilization U remains approximately
constant with respect to N (Fig. 7b). However, the more
restrictive admission strategy of AT policies is demonstrated
by a slightly lower utilization when compared to AA policy,
especially for SD systems due to their greater flexibility.
Likewise, because of the higher revenue opportunities, the
revenue rate is higher than the one achievable in low-load
regime and increases linearly with respect to the resource
pool size N , as represented in Fig. 7c. Besides, due to
the higher admission thresholds, AT policies are capable of
admitting the most rewarding slice requests and consistently
offer much higher revenue rates when compared to the AA
strategy (i.e., 68.6% improvement).

In conclusion, AT policies provide a great advantage in
terms of revenue rate and resource utilization while conserv-
ing the admission probability of less restrictive strategies,
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FIGURE 6. Optimal AT policy β̇opt in a) SD and b) SI systems with different N and λ/µ, and c) stationary probabilities πn in SD and SI systems with
N = 6 and different λ/µ. Besides, it is represented the interpolation of πn corresponding to the average state E[n] (i.e., πE[n]). h = 10 in all the graphs.

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

2 3 4 5 6
0

100

200

300

400

500

600

(a)

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

2 3 4 5 6
0

100

200

300

400

500

600

(b)

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

2 3 4 5 6
0

100

200

300

400

500

600

(c)

FIGURE 7. Performance of on-demand systems: a) admission probability, b) average resource utilization and c) average revenue rate. SD and SI AT policies
with h = 10 and AA policies are compared.

such as the AA policy. Besides, when sufficient accuracy is
adopted for the bid interval discretization (i.e., h ≥ 4), SI
AT policies are reduced complexity solutions of the problem
represented in (12) when compared to SD policies, at the ex-
pense of a slightly lower admission probability for resource-
limited systems.

B. ON-DEMAND AND PERIODIC SLICING COMPARISON
In the remaining of this section, we first compare the per-
formance of on-demand and periodic slicing mechanisms
when AT policy is adopted. Afterwards, the comparison is
extended to reference admission control strategies (i.e., the
AA policy in on-demand case and the FCFS and BB policies
in the periodic case). The analysis introduced in Section IV
can be extended to the periodic case by using discrete-time
Markov chains (DTMCs), where transitions among states
take place at regular time intervals. Therefore, Padmit, U ,
Rβ and the optimal AT policy β̇opt become dependent on
the slicing interval Tslicing. In this context, extending the
model introduced in Section III, n represents the number

of slices instantiated and reserved during a given slicing
interval, considering also those tenants that fulfilled their
SLA within the considered interval (i.e., tenants leaving the
system and interrupting their contribution to InPs’ revenues).
Therefore, the definition of U in (6) takes on a connotation
of average resource reservation for periodic slicing, however,
for the sake of comparability, we maintain same name and
symbol as for on-demand slicing. As shown in previous
paragraphs, both SD and SI AT strategies can be utilized
for this comparison when sufficient discretization accuracy
is guaranteed, thus, in the following, we consider only SI
policies due to the lower complexity needed for computing
the optimal policy.

In Section I, we highlighted that, once policies are defined,
the promptness of a specific slice admission method strictly
depends on the delay added by the communication flow
between SPs and InPs and the complexity for computing the
admission decision. In order to provide a complete compari-
son between on-demand and periodic systems, we introduce
in this context a new performance metric measuring the delay
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FIGURE 8. Performance of on-demand and periodic slicing with respect to the admission threshold β̇ when SI AT policies are adopted and: a) λ/µ = 0.5,
b) λ/µ = 100. N = 6 and h = 10 are considered in all the graphs, and, in the periodic case, performance metrics are estimated over Nslicing = 10000
slicing intervals.

added by the admission control mechanism. In particular,
we define the average waiting time τ̄ as the average time
delay from service request arrivals, up to their admission or
blockage. For on-demand slicing, it holds τ̄ = 0 because,
according to Section I, slice requests are evaluated right upon
arrival. On the other hand, in periodic slicing, τ̄ is the average
time interval between slice request arrivals and the beginning
of next slicing interval. Therefore, exploiting the properties
of Poisson processes, the instants ta corresponding to slice
requests arrivals within the k-th slicing interval are uniformly
distributed (i.e., ta ∼ U [kTslicing, (k + 1)Tslicing], with k ∈
N0). Hence, τ̄ = E[Tslicing−ta] = Tslicing/2 independently
from the adopted policy. With respect to the computation of
the admission decision, both AA and FCFS strategies intro-
duce null delay, as they only enforce the admission decision
whenever resources are available. Assuming that the optimal
admission thresholds are pre-computed for different values
of λ/µ, fβ , and N , the same holds for AT policies. Finally,
the BB admission mechanism implies the implementation of
sorting algorithms with higher computational expenses than
previous strategies, however, as better processors are made
available every year, we assume that the dominant component
of the total delay is τ̄ for all the analyzed strategies.

In order to compare how AT policies behave in on-demand
and periodic strategies, we analyze how the performance
metrics vary with respect to the admission threshold β̇ de-

fined in (13) and slicing interval Tslicing. In particular, in
Fig. 8, we provide the representation of the admission prob-
ability Padmit, the average resource utilization U , revenue
rate Rβ , and waiting time τ̄ for the whole range of admission
thresholds and slicing intervals defined in the system setup.
On the other hand, without loss of generality, only a fixed
system dimension is considered (i.e.,N = 6). Finally, Fig. 8a
and 8b illustrate the cases with low and high-load regimes
(i.e., λ/µ = 0.5 and λ/µ = 100), respectively.

With respect to the system’s fairness Padmit and the uti-
lization of resources U , it can be observed from Fig. 8 that
both are monotonically decreasing functions of β̇, for every
load regime and admission strategy (i.e., either on-demand
or periodic). Therefore, a global maximum exists for both
performance metrics over the admitted bid interval and it
coincides with the most permissive threshold (i.e., β̇ = 0),
while they tend to decrease when less permissive strategies
are enforced. Besides, periodic slicing provides same perfor-
mance as on-demand slicing when a small number of arrivals
takes place per slicing period (i.e., λTslicing = 0.5). On the
other hand, when slices are offered less frequently than the
service rate (i.e., Tslicing ≥ 1/µ), the number of SPs com-
peting within the same slicing interval increases, and a higher
optimal AT threshold is adopted. Accordingly, the admission
probability decreases, and the resource reservation deviates
from the resource utilization of the on-demand case. Note
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that for very high values of λTslicing the level of saturation is
comparable to that of on-demand slicing mechanisms in case
of high-load regimes (i.e., Padmit → 0 and U → 1).

On the other hand, Rβ manifests different behavior and
shows a global maximum depending on the load regime and
slicing strategy. When the number of competing SPs is low
(i.e., λ/µ = 0.5 in the case of on-demand slicing, joint to
Tslicing < 1/µ for the periodic slicing case), Rβ is a mono-
tonically decreasing function of β̇. As limited revenue op-
portunities exist, the unconditional admission (i.e., β̇ = 04)
outperforms any other admission criterion. However, when
the load regime increases in on-demand slicing, or when
lower slicing frequencies are adopted in periodic slicing
(i.e., Tslicing ≥ 1/µ), the competition among SPs increases
and Rβ becomes a concave function of β̇. We remind that
InPs have the joint objective of maximizing the admission
rate and the resulting revenue, hence, when slice requests
exceed the resource availability, on the one hand, revenue
opportunities increase, on the other hand, the resources tend
to be exhausted. Therefore, an optimal admission threshold
exists as a tradeoff between the maximization of the ad-
mission rate and the prioritization of the most rewarding
requests. To confirm what we just said, independently from
the load regime, the horizontal coordinate that maximizes
Rβ corresponds to a value of Padmit not too far from its
maximum. Besides, the optimal AT threshold also reduces
U with respect to its maximum, thus limiting the operational
expenditures while guaranteeing maximum revenue. Finally,
it is confirmed that the average waiting time τ̄ is null for on-
demand slicing, while it increases with respect to the slicing
interval for periodic slicing (i.e., τ̄ = Tslicing/2).

After having studied how the performance metrics vary
with respect to the adopted threshold and to the enforced
slicing interval, we analyze now the properties of the optimal
AT policy for on-demand and periodic cases. In particular,
in Fig. 9, we represent β̇opt as a function of λTslicing, while
considering different resource pool sizes (i.e., N = 2, N =
4, and N = 6), as well as low and high-load regimes (i.e.,
λ/µ = 0.5 and λ/µ = 100). First, we can observe that, for
small values of λTslicing, the optimal AT policy for periodic
slicing is well approximated by the one for on-demand slicing
for all pools of resources and load regimes. Indeed, the
high slicing frequency makes periodic slicing systems receive
fewer slice requests per slicing interval, thus approximating
the behavior of on-demand slicing. Besides, we can observe
how, for increasing number of arrivals per slicing interval
(i.e., λTslicing), the optimal AT policy for periodic slicing
becomes more selective than in the on-demand case, tending
to the maximum admitted threshold for every λ/µ and N .

In order to benchmark the optimal AT policy in both the
on-demand and periodic cases, we compare its performance
with that of reference slicing mechanisms. In particular, in
the on-demand case, we consider the AA policy that admits

4We highlight that, even though a null threshold is enforced, positive rev-
enue rates are possible, on average, as SPs’ behavior is modeled according
to a uniform random bid distribution.

all slice requests, independently from the associated bids,
whenever resources are available. Note that, in the case of
inelastic slices only, AA coincides with the admission strat-
egy proposed in [9]. On the other hand, in the periodic case,
we study the adaptation of AA to discrete time case, which
operates as a FCFS policy within a given slicing interval.
Finally, for periodic slicing we also provide comparison with
the BB policy that, within a given slicing interval, admits
requests with highest bids up to resource exhaustion. Hence,
in Fig. 10, we represent the admission probability Padmit, the
average resource utilization U , the average revenue rate Rβ ,
and the average waiting time τ̄ as a function of λTslicing.
The comparison is performed over the whole range of slicing
intervals according to the system setup, while, without loss
of generality, only a fixed system dimension is adopted (i.e.,
N = 6). Besides, low, medium and high-load regimes (i.e.,
λ/µ = 0.5, λ/µ = 10 and λ/µ = 100) are illustrated in
Fig. 10a, 10b and 10c, respectively.

First, it can be observed how, in on-demand slicing, AT
always outperforms AA in terms of offered revenues and
resource utilization at the cost of a small loss in admission
probability. Besides, AT and AA policies for on-demand
slicing act as best-case scenario for their natural extensions
to periodic slicing, that is, periodic AT and FCFS policies,
respectively. In particular, FCFS well approximates the AA
performance for low values of λTslicing, while it provides
worse performances for less frequent slicing (i.e., Tslicing ≥
1/µ).

Observing into more detail the performances of different
periodic slicing schemes, periodic AT proves to be more
selective and resource efficient than the other two policies, in
the sense that it is characterized by a slightly lower admission
probability and by the reservation of less resources for the
revenue maximization. Besides, FCFS represents the lower
bound in terms of revenue rate with respect to periodic AT
and BB policies. Indeed, for low values of λTslicing, BB
behaves like a FCFS policy, while periodic AT improves
revenues by rejecting low bids and keeping resources for
future requests with higher bids. On the other hand, when
sufficient service requests are received within a given slicing
interval, BB outperforms the unconditional admission of
FCFS and tends to the revenue rate offered by the periodic AT
policy. Finally, for slicing intervals greater than one tenth of
the service time (i.e., Tslicing ≥ 0.1/µ), periodic AT and BB
offer comparable revenue rates. The effectiveness of the most
rewarding policies (i.e., periodic AT and BB) is emphasized
when high values of λ/µ are explored, that is, when more
revenue opportunities exist. On the other hand, independently
from the adopted policy, the admission probability decreases
and the resource utilization increases inevitably due to the
limited resources with respect to the demand. With respect to
the average waiting time τ̄ , it is null for on-demand strategies
and for very frequent slicing (i.e., Tslicing ≈ 0), while
it increases linearly with Tslicing for periodic slicing (i.e.,
τ̄ = Tslicing/2), regardless of the analyzed mechanism.

In conclusion, a slicing system that employs the optimal
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FIGURE 9. Optimal threshold β̇opt for on-demand and periodic slicing when SI AT policy is used and different values of N are considered. h = 10 is
considered in all graphs and, in the periodic case, the optimal threshold is computed over Nslicing = 10000 slicing intervals.

AT admission policy (with respect to load regime, bid distri-
bution and pool of resources) outperforms all the considered
reference mechanisms, either on-demand or periodical. In-
deed, it offers the highest revenue rate and smallest resource
utilization, with a negligible loss in terms of admission rate.
Besides, on-demand slicing solutions enable null waiting
time for slice requests.

VI. CONCLUSIONS
In this work, we proposed a slice provision mechanism for
enabling the slice market envisioned for 5G. The proposed
approach consists in a policy that selects the most rewarding
bids offered by SPs (i.e., AT policy), and a reduced com-
plexity solution is provided for adapting the optimal policy
to different resource pool sizes, traffic loads and SPs be-
havior. We demonstrated that it enhances the slice provision
promptness, with QoS guarantees and fairness towards SPs,
while guaranteeing two-fold economic incentives to InPs:
revenue maximization and reduction of operational expendi-
tures. Besides, we presented a comparison of the proposal’s
performance with reference strategies, both when enforced
upon every service request (i.e., on-demand slicing) or at
regular time-intervals (i.e., periodic slicing). In particular, we
adopt always-admit policy (i.e., AA) in on-demand slicing,
and first-come-first-served (i.e., FCFS) and best bid (i.e., BB)
policies in periodic slicig.

Provided that the optimal bid threshold is chosen for the
current network conditions, the proposed AT policy in on-
demand slicing outperforms the other considered mecha-
nisms, including a best bid selection strategy for periodic
slicing. Our optimal AT policy offers the highest revenue
rates while reducing operational expenditures and offering
real-time slicing, in exchange for a negligible loss in terms
of fairness towards SPs. On the other hand, if only pe-
riodic slicing is possible, AT policy still offers the same
advantages, however, slice requests experience a waiting time
different from zero, which is independent from the adopted

strategy and it decreases with the slicing frequency. Finally,
AT approaches enable reduced complexity solutions when
compared to other strategies, such as the BB policy. The
effectiveness in terms of revenues is highlighted especially
in systems characterized by limited resources and high-load
regimes. In our future studies, we plan to include the case
with elastic services, when different service classes are ex-
amined. Besides, we consider modeling SPs as fully rational
entities that adapt their bidding strategies to their perception
of the market. Finally, computational efficient methods for
the search of optimal admission policies will be examined
and proposed for the integration in real systems.

.

APPENDIX A ON-DEMAND SLICING WITH AT POLICY
We adapt here to the case of AT policies the expressions pro-
vided in Sections IV-A and IV-B for the performance metrics
of on-demand slicing, and of the combinatorial version of the
optimization problem in (12) for such policies. In particular,
as the InP admits slice requests at state n only when the tariff-
bid is higher than threshold β̇n, the admission probability at
state n is pn(fβ , β̇n) = 1 − CDF (β̇n). It is straightforward
that pn is a monotonically decreasing function of β̇n as
dpn
dβ̇n

= −fβ(β) ≤ 0. Besides, for the most conservative
and permissive admission strategies it holds, respectively,
pn(fβ , βm) = 1 and pn(fβ , βM ) = 0.

The admission probability Padmit, the average resource
utilization U and the average revenue rate Rβ remain un-
changed. On the other hand, the expected tariff-bid for
tenants admitted at state n equals E[β|β ≥ β̇n] =
1
pn

∫ βM
β̇n

β fβ(β) dβ, that is a non-negative function of β̇n

(i.e., according to Leibniz’s integral rule dE[β|β≥β̇n]
dβ̇n

=
fβ(β)
pn

(
E[β|β ≥ β̇n]− β̇n

)
≥ β̇n fβ(β)pn

(
1
pn

∫ βM
β̇n

fβ(β) dβ−

1
)

= 0). For the most conservative and permissive admission
strategies it holds E[β|β ≥ βm] = E[β] and E[β|β ≥
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FIGURE 10. Performance metrics for network slicing with respect to λTslicing when SI AT and AA policies are adopted for on-demand approaches and AT,
FCFS and BB policies for periodic approaches. For the periodic case, the optimal threshold is calculated for each value of λTslicing , overNslicing = 50000
slicing intervals, besides results are provided for: a) λ/µ = 0.5, b) λ/µ = 10 and c) λ/µ = 100. N = 6 and h = 10 are considered in all graphs.

βM ] = βM ≥ E[β|β ≥ βm], respectively.
In the particular case of uniformly distributed bids, it holds

for AT policies pn = βM−β̇n
βM−βm , E[β|β ≥ β̇n] = βM+β̇n

2 and
for AA policy p = 1, E[β|β ≥ β̇] = E[β] = βM+βm

2 .
Finally, the average revenue rate for the three policies can be
written as:

RSDβ =
1

2

λ

µ

1

βM − βm

N−1∑
n=0

πn(β2
M − β̇2

n)

RSIβ =
1

2

λ

µ
(1− πN )

β2
M − β̇2

n

βM − βm

RAAβ =
1

2

λ

µ
(1− πN )(βM + βm)

In conclusion, we introduce the combinatorial version of
the problem described in (12) for AT policies:

β̇opt

(λ
µ
, fβ , N

)
= arg max

β̇
Rβ

(λ
µ
, fβ , N, β̇

)
β̇n = βm + j

(βM − βm)

h
, n, j ∈ N andn < N, j < h
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