and evolutiohary implications of thermo-
droregulation

Dupouéz, Olivier Lourdais3”,
jine Meylan'5, Jean Clobert?,
Le Galliard®

nk.

""t‘ \1‘

.",Funct]“dnal

!

';i.

7‘-_-‘1‘ " 4 1So:rbonne Lﬂwefsﬁe& UPMC Univ Paris'06, e 'environnement (IEES), Paris, France

8 PO e TR ,ZOE;:E- 1R 5321, C , Universite Toulouse 111Paut Sabatier, 2'foute du CNRS, 09200 Moulis, France
Tt ks T . v e ’ J s.en Boisy, 79360 Beauvoir sur Niort, France
be 9 s - )ntpellier 3, Montpellier, France.

e Molitor, 75016 Paris, France
re de recherche en écologie
ft-Pierre-les-Nemours, France.
Tempe, AZ 85287-4501, USA

6Ecole normale supérieure, PSL Res

o N expérimentale et prédicti
-y " X

~ 2

e

.



From physiology and behaviour to ecological patterns
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Seebacher and Franklin. 2012. Determining environmental causes of biological effects: the need for a mechanistic physiological dimension
in conservation biology. Philosophical Transactions of the Royal Society B: Biological Sciences




Thermal biology in metazoans (animals)

Ectothermic species

“Broad range” of body temperatures
varying around a thermal preference

Behavioural regulation relying on
environmental temperatures

Some evaporative cooling and
metabolic heat production

Endothermic species

“Tightly regulated” body temperatures
within a safe zone

Metabolic heat production
Evaporative cooling
Some behavioural regulation




Climate warming and the need for thermoregulation
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Deutsch, Tewksbury et al. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 2008, 105 (18) 6668-6672; DOI: 10.1073/pnas.0709472105




Ecosystem-level consequences of thermal biology

Pisaster
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Net effect on the prey population driven by the
predator thermal biology

Kordas, R. L., Harley, C. D. G. & O'Connor, M. . (2011) Community ecology in a warming world: The influence of temperature on interspecific interactions in
marine systems. Journal of Experimental Marine Biology and Ecology, 400, 218-226.



Water balance regulation in animals: a neglected component

Water Gain Water Loss
Regulation of the water balance
— (hydroregulation) in animals involves
V - Insensible .
Water Loss Inputs from food and free standing
0.9 L/day . .
» water = foraging behaviour and
habitat selection
0.3 L/day
Glucose + 02 —» CO2 + H20 +ATP » 1.5 L/day ) )
Metabolic water production= basal
» Bl Lidky and activity metabolism, especially
lipid metabolism

Intake Metabo]ic Output .
St - EGCEC - BOSERYNN -0 Water loss through the skin, lungs and
urine or feces = evaporative water

loss, respiration and ventilation,
osmoregulation

From Regulation of Water Balance”, section 7.3 from the book An Introduction to Nutrition (v. 1.0)



https://2012books.lardbucket.org/books/an-introduction-to-nutrition/index.html

Example of hydroregulation mechanism: skin water loss
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Water loss: lower standard water
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Water balance: plasma osmolality
similar in habitats with or without
access to free standing water
(homeostatic state)

Dupoué, A., Rutschmann, A, Le Galliard, J.-F., Miles, D. B., Clobert, J., DeNardo, D., Brusch, G. A. and S. Meylan. 2017. Water availability and environmental
temperature correlate with geographic variation in water balance in common lizards. Oecologia 185(4):561-571



Trophic interactions and top-down effects of water imbalance
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Dry natural forest (left): strong water flux from leaves to predators through grazers
and a top-down control of primary production by top predators

Free standing water addition (centre): strong direct water flux to top predators,
loss of top-down control of herbivores by spiders due to change in trophic cascade
and effects on habitat selection by grazers

Moist leaves addition (left): strong water flux from leaves to spiders through
grazers but no top-down trophic cascade

McCluney KE, Sabo JL. Animal water balance drives top-down effects in a riparian forest-implications
for terrestrial trophic cascades. Proc Biol Sci. 2016;283(1836):20160881.



Interplays between thermoregulation and hydroregulation

* Previous studies of water and temperature regulation in animals
have emphasized independent processes

 Contra, we believe that mechanisms of thermo- and
hydroregulation must also be viewed as interactive processes in
wild terrestrial animals because

1.

Environmental patterns of water availability, rainfall and
temperatures are often correlated

Water is a limiting factor for many terrestrial species and biophysical
mechanisms involve both water (e.g., VPD) and temperature

Biophysical mechanisms of hydro- and thermoregulation are tightly
coupled

Behavioural hydroregulation and thermoregulation overlap
substantially



The thermo-hydroregulation concept
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Water is a limiting factor for terrestrial animals

Mechanistic niche model of the Australian gliding possum

limiting factor
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Broad scale distribution largely determined by limited rainfall during the
year and secondarily by energy and thermal biology

McCluney KE, Sabo JL. Animal water balance drives top-down effects in a riparian forest-implications for terrestrial trophic cascades. Proc Biol Sci.
2016;283(1836):20160881.



Thermal physiology interacts with hydroregulation

Thermoregulation and Evaporative cooling in
EWL in ectotherms endotherms

1 body temperature 1 evaporative water losses

1 dehydration 1 dehydration
| water balance | water balance

Examples in reptiles, amphibians or Examples in desert ungulates or
numerous insects bird species




3. Physiological trade-offs between water and temperature

regulation

Thermal consequences of gestation in viviparous reptiles

» selects for more thermoregulation effort due to strong benefits
of higher and more accurate maternal thermoregulation

* l|eads to facultative endothermy in some snakes (pythons)
* viviparity is an adaptive response to “cold climate” conditions

Water balance during gestation in viviparous reptiles
* concurrent need for water especially at the end of gestation

e stronger evaporative water loss during gestation due to physical
burden of reproduction and thermoregulation effort

e environmental water availability might set a constraint on the
evolution of viviparity in cold climate

Thermo-hydroregulation crucial to our understanding of the
evolution of viviparity



3. Physiological trade-offs, acclimation and energy budget
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4. Behavioural thermoregulation trades off with

hydroregulation

Refuge use in lizards Activity in desert
ungulates

$§°1 Dy Q

; micro-ha S 20 - ’ |
° s 2 T

: ) c 2 15 - hot dry

§ ) g 10 A warmwet |

é o ke T E °’-E< 5 i

£° Wet R © d

§ o | micro-habitat ] e O
# 720 25 ;0 35 ' ' ' l '

Temperature in refuge [°C) 0:00 6:00 12:00 18:00
Warming increases refuge use Mid-day conditions induce a loss of
disproportionately for moist activity especially during dry days

microhabitats



Interactive effects on performance variation
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Interactive effects on performance: case study
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Preest M. R., & Pough F. H. (1989). Interaction of temperature and hydration on locomotion of toads. Functional Ecology, 3, 693—699.



Conclusions

 Animal thermal and water biology both play a key role in ecological
responses to climate change and ecosystem responses to changing climate

* Thermal and water biology are functionally integrated and physiological or
behavioural traits have evolved in terrestrial animals to cope with both
thermal and water needs, especially through trade-offs between some
functional traits

* The thermo-hydroregulation concept will help refine our mechanistic
understanding of global change effects on terrestrial animals including
numerous keystone species with top-down effects on ecosystem functioning

 Future studies will require bivariate analyses of water imbalance and
thermal stress and joint experiments on water availability and thermal stress
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