
International Journal on Web Service Computing (IJWSC), Vol.3, No.3, September 2012

DOI : 10.5121/ijwsc.2012.3304 39

WEB PORTAL INTEGRATION ARCHITECTURE
APPROACHES

Dr. T. G. K. Vasista1, Dr. Mohammed A. T. AlSudairi2

Vice Rector Office of Business Development,
King Saud University, Saudi Arabia

1gtatapudi@ksu.edu.sa
2mas@ksu.edu.sa

ABSTRACT

Enterprise Modelling with Web portal integration architecture requires investment of advanced architec-
tural thinking into definition of services before any development of services or service consumers can be-
gin. Service Oriented Architecture (SOA) is gradually replacing monolithic architecture as the premier de-
sign principle for new business applications with its inherently systematic nature and capability. Earlier
efforts of notable styles of SOA such as CORBA and XATMI have failed to be adopted as main stream pro-
jects because of demanding design process requirement with sense-making activities and even have been
residing with the modern SOA or Web services middleware. In this paper it is aimed to incorporate sense-
making design activities with the proposed semantic web service based architecture. This paper tries to
tackle the above problem by proposing a service-oriented architecture for web data and service integra-
tion. A gen-Spec architectural pattern has been suggested and adopted in order to tackle the problem.
Firstly, it proposes a service-oriented platform independent architecture and Secondly, it presents a specif-
ic deployment of such architecture for data and service integration on the web using semantic web services
implemented with the WSMO (Web Services Modeling Ontology).

KEYWORDS

Model Driven Architecture, Platform Independent Integration Architecture, Platform Specific Integration
Architecture, SOA Architecture, Web Portal Integration Architecture Approaches.

1. INTRODUCTION

An enterprise modelling process that follows object oriented approach is a set of partially ordered
steps intended to reach the objective of building a fully integrated, dynamic, object-oriented
model of the enterprise. An abstract mechanism is proposed to enable this process [16]. Gen-Spec
is a fundamental structural relation between two entities denoting the fact that the specialized en-
tities share common features, states and structural and procedural inks with the generalizing entity
[17]. The process is usually generic because it applies to most types of enterprises. Enterprise
models are the products developed from the process and these can be used by various stake-
holders in an organisation for the purpose of providing them (a) an understanding on the enter-
prise (b) an integrated information systems design (c) a model that can address change manage-
ment (d) how a model or a framework can be made reusable [16].

Service-Oriented Architectures are particularly well suited to cope up with the needs of such an
ongoing incremental process optimization [6] as represented by Capability Maturity Model Inte-
gration (CMMI). CMMI in software engineering and organizational development is a process im-

mailto:1gtatapudi@ksu.edu
mailto:2mas@ksu.edu

International Journal on Web Service Computing (IJWSC), Vol.3, No.2, September 2012

40

provement approach that provides organizations with the essential elements for effective process
improvement [15] with the characteristics of the maturity levels as given in Table 1.1

Table 1.1 Characteristics of CMMI Levels [15]

Maturity
Level No.

Maturity level
Title

Maturity Level
Description

Level 1 Initial Processes unpredictable, poorly
controlled and reactive.

Level 2 Managed Process characterized for projects
and is often reactive

Level 3 Defined Process characterized for the
organisation and is proactive

Level 4 Quantitatively Managed Process Measured and Controlled
Level 5 Optimizing Focus on Process Improvement

When making architectural decisions, one must carefully analyze the advantages and disadvan-
tages of the level of coupling [2, 3]. Generally speaking, OLTP (online transaction processing)
style applications, as they are found throughout large enterprises, do not normally require a high
degree of loose coupling, as these applications are tightly coupled by their nature. ERP systems
are usually found suitable for such kind of single large monolithic representation and handling
[6]. But the recent trend in Globalization is increasing the scale and complexity of the modern en-
terprises by forcing the enterprise to be represented as a global network consisting of multiple
units and functions [12, 13]. So when business processes are highly distributed, the different sub-
processes and transactions are generally more independent of each other or more loosely coupled.
Loose coupling though increases the flexibility, increases the complexity. The enterprise software
architecture is the architect’s most important tool at hand to confront the changes to and expan-
sion of functionality that increase system complexity and reduce efficiency [11]. Thus in enter-
prise software, the architect takes on the roles as an outside influencer and controller. It is his re-
sponsibility to oversee individual software projects from the strategic point of view of the overall
organisation, as well as from the tactical, goal-oriented viewpoint of the individual project. He
has to balance different requirements while attempting to create an enduring order within the en-
terprise software landscape. By technique of refactoring the current solutions, architects con-
stantly strive to reduce complexity and thereby the agility of the system (See Figure 1.1) [6].

Fig 1.1 Software architects use refactoring to fight the constant increase in system complexity [6]

Different tools support architectural design and test case generation. Users of these tools want
them to work together to fully support the user’s design and development process. Thus tool inte-
gration is intended to produce complete environments that support the CMMI model based soft-

International Journal on Web Service Computing (IJWSC), Vol.3, No.2, September 2012

41

ware development life cycle of maturity levels. There are five types of tool integration issues that
must be addressed. These can be termed platform integration, presentation integration, data inte-
gration, control integration and process integration [14].

Service-Oriented Computing (SOC) arises as a new paradigm for distributing applications which
envisions services as fundamental elements for developing applications [9].

So X-as-a-Service kind of pattern is what SOA is suggesting in terms of cloud computing termi-
nology by adopting the basic principle SOA’s loose coupling technique where the above five
types of tool integration issues can be represented as SOA based services. Where X-as-a-Service
can be replaced with Platform-as-a-Service (PlaaS), Presentation-as-a-Service (PraaS1), Data-as-
a-Service (DaaaS), Control-as-a-Service (CoaaS) and Process-as-a-Service (Praas2) in cloud
computing terminology that are available independently as loosely coupled services.

As design and development of SOA applications are inherently systematic [7], this is of particular
importance for enterprises, when given their need to become more agile in order to react as
quickly as possible to changing business environments and offer new services to customers, sup-
pliers and partners that make a difference with respect to competition. SOAs can help to signifi-
cantly reduce complexity at all levels. SOAs achieve their simplicity by following features: De-
composition-SOAs decompose large systems into application frontends and services; Appropriate
granularity-The granularity of services is well suited to gain a high-level understanding of the en-
tire system; Loose coupling by SOA architectural patterns can be Decoupled using technology-
SOAs can be well understood without in-depth knowledge of technology; Reuse-SOAs result in
the high level reuse of existing components; Documentation – SOA based services are well
documented due to service contract to provide comprehensive understanding [6].

2. PLATFORM INDEPENDENT INTEGRATION ARCHITECTURE

In order to get a web portal integration architecture that can be used in different domains, it is im-
portant first to design a platform-independent architecture [1]. The key to successful integration
and interoperability lies in the intelligent use and management of metadata across all applications,
tools and databases. Metadata management and integration can be accomplished through the use
of the OMG’s core MDA standards such as CWM, UML, MOF and XMI [10], where:

CWM stands for Common Warehouse Meta-model – It is a meta-model of the data model
representing both the business and technical metadata that is most often found in the data
warehousing and business analysis domains. CWMs are intended to be highly generic, ex-
ternal representations of shared metadata [10]. It requires the use of generalization and ab-
straction technique to translate the product-specifics to generics through standard exten-
sion mechanism making it compatible to CWM format [10].

UML stands for Unified Modelling Language – It is used for expressing in the Unified
Modelling Language, which is an OMG standard language for modelling discrete systems
by Rumbaugh. UML is the notational basis for the definition of CWM. Visual UML mod-
els are capable of automatic translation to other visual or non-visual formal languages to
facilitate the support for interchange of CWM models in various platform and tool inde-
pendent formats (e.g., XML) as well as the construction of tool-specific metadata from
CWM models (e.g. translation of a CWM relational model into SQLDDL statements that
actually build the schema) [10].

MOF stands for Meta Object Facility- It is an OMG standard defining a common, abstract
language for the specification of meta-models. MOF is an example of meta-meta-model or

International Journal on Web Service Computing (IJWSC), Vol.3, No.2, September 2012

42

model of the meta-model (also called as ontology). The MOF’s support for the model life
cycle semantics means that MOF implementation provides an effective metadata authoring
and publishing tool, when combined with support for visual modelling. For example a
fully MOF-compliant repository must provide a significant number of metadata services
that as: persistence, versioning and directory services [10].

XMI stands for XML Metadata Interchange (XMI) - It is an OMG standard that maps the
MOF to the W3C’s eXtensible Markup Language (XML). XMI defines how XML tags are
used to represent serialized MOF-compliant models in XML. MOF based meta-models are
translated to XML Document Type Definitions (DTDs) and models are translated into
XML documents that are consistent with their DTDs. XMI based interchange is so impor-
tant in distributed and heterogeneous environments as the communication of content is
both self-described and inherently asynchronous [10].

Object Management Group’s Model-Drive Architecture (MDA) is an approach to system-specific
and interoperability based on the use of formal models. In MDA, platform-independent models
are initially expressed in a platform-independent modelling language such as UML. The platform
independent model is subsequently translated into a platform specific model by mapping plat-
form-independent models into some implementation language (e.g. Java) or platform using for-
mal rules. The core standards of MDA such as CWM, UML, MOF and XMI form the basis for
building coherent schemes for authoring, publishing and managing models within a model-driven
architecture [10].

Fig. 2.1 Example of a Realization of Model-Driven Architecture [10]

Metadata is critical to all aspects of interoperability within heterogeneous environment. In fact In-
teroperability is achieved by means of metadata [10], which is being used to provide system se-
mantic definitions and capabilities facilitated in the form of standard APIs. Any MDA based sys-
tem must have the ability to store, manage and publish both application and system-level
metadata including descriptions of the environment itself.

The platform-independent architecture [1] (See Figure 2.2) aims to offer service-based platform
independent architecture for web portal integration.

Fig. 2.2 External view of WSMX Architecture [1]

International Journal on Web Service Computing (IJWSC), Vol.3, No.2, September 2012

43

Web Service Execution Environment (WSMX) is a reference implementation for Web Service
Modelling Ontology (WSMO) [1]. Its goal is to provide both a test bed for SMO and to demon-
strate the viability of using WSMO as a means to achieve dynamic inter-operation of Semantic
Web Services (SWS). The first version of WSMX provides the architecture needed for a middle-
ware-based platform for integration, and as such it is concerned with dynamic discovery, media-
tion, selection and invocation and an implementation of these components.

2.1. Description of the Functional Usage of WSMX

Web Service Markup Language (WSML) descriptions of Web Services, ontologies, mediators
and goals are sent to Web Service Execution Environment (WSMX) through Web Service Model-
ling Ontology (WSMO) editor for compilation. A back-end application creates a service require-
ment in a known source format and sends this to the WSMX adapter. The adapter takes the ser-
vice requirement and translates it into a WSML message consisting of a goal that describes what a
WSMX should execute. The goal is then sent to WSMX for execution. Before WSMX can exe-
cute the goal, WSML descriptions of the WS offering, the capability of matching the service re-
quirement of the ontologies these WS use, and the source format ontology must have been created
using User Interface (WSMO editor) are compiled to WSMX. When WSMX receives the WSML
message with specific goal, it discovers the WS that best matches that goal, mediates the service
requirement data following mapping rules between the source format ontology and the ontology
of the discovered WS and finally invokes it, providing the data to it in the concepts and formats it
expects [1].

Whereas metadata acts as control abstraction layer [5], the remaining g four generic and impor-
tant layers from service based system integration perspective are Interaction, Process, Function
and Data as against inclusion of Platform-as-a-Service for platform specific integration architec-
ture (See Figure 2.1.1.).

Fig. 2.1.1 Remaining Four Layers of Platform Independent Service
Classification and Reference Schema [8]

3. INTEGRATING MULTI-AGENT SYSTEMS (MAS) AND SEMANTIC WEB

SERVICES (SWS)

The general idea of the approach to integrate MAS and SWS is given in Figures 3.1 & 3.2. For
both Multi-Agent Systems (MAS) as well as Semantic Web Services (SWS), model transforma-
tions to the platform specific levels were provided by applying principles of model-driven devel-
opment [4].

International Journal on Web Service Computing (IJWSC), Vol.3, No.2, September 2012

44

Fig. 3.1 Approach to Integration [4]

Fig. 3.2 Model-Driven Semantic Web Service Match Making [4]

This integration is based on a platform independent meta-model for agents and a platform inde-
pendent meta-model for semantic web services.

For Semantic Web Services, a model-driven semantic web services matchmaker agent is designed
(See Figure 3.2) that discovers semantic services independent of selected description formats
(OWL-S), (WSML) and (SAWSDL). The model-driven semantic service matchmaker (MDSM)
performs an automatic service retrieval applying existing matchmakers (i.e. OWL-MX and
WSMO-MX) for different formats and returns the most similar matches to the user [4].

4. PLATFORM-SPECIFIC INTEGRATION ARCHITECTURE

WSMO and OWL-S can be used as the specific platform to deploy the platform-independent ser-
vice oriented architecture.

This section shows the specific deployment of the platform-independent architecture to a platform
specific one using WSMO in the form of Table 4.1 that presents the transformation needed to de-
ploy the platform independent architecture in the selected platform specific technology.

International Journal on Web Service Computing (IJWSC), Vol.3, No.2, September 2012

45

Table 4.1 Correspondence between platform-independent and platform specific architectures [1]

For Multi-Agent Systems, model transformations from the platform independent to the platform
specific meta-models for JACK and JADE are defined as shown in the figure 3.1 [4].

It is interesting to note that there is another potential layer of service abstraction called Structure-
as-a-Service (StaaS) that could be included by providing a subclass hierarchy of nested service
categories, which serve as component types that can be applied to services. This structural per-
spective is complemented by the service connectivity. This structural perspective acts as reference
architecture constraints from organisational and connectivity perspective on platform oriented
runtime services (for e. g., See Figure 4.1).

International Journal on Web Service Computing (IJWSC), Vol.3, No.2, September 2012

46

Fig 4.1 Structural Perspective as a reference architecture constraint–organisational and connectivity per-
spective on platform oriented runtime services [8]

5. CONCLUSION

Since the advent of the Internet, several works have gone a long way towards resolving the web
integration problem. Our effort in this regard is to propose two kinds of architecture based solu-
tions: (1) Platform Independent architecture based on service oriented paradigm for web portal in-
tegration and (2) Platform specific architecture. It is interesting to note that the following abstrac-
tion levels-as-a-service kind of pattern has been observed to be part of the cloud computing
paradigm. They are: Structure-as-a-Service, Process-as-a-Service, Control-as-a-Service, Presenta-
tion-as-a-Service, Data-as-a-Service for Platform Independent Architecture Solutions and Plat-
form-as-a-Service get added or included for platform-specific architecture.

REFERENCES

[1] Acuna, C. J., Marcos, E., Gomez, J.M. and Bussler, C. (2005). Toward Web Portals Integration
through Semantic Web Services. Proceedings of the International Conference on Next Generation
Web Services Practices (NWeSP’05), IEEE Computer Society.

[2] Erl, T. (2004). Service-Oriented Architecture: A Field Guide to Integrated XML and Web Services.
Prentice Hall, NJ, USA, ISBN: 0131428985, Digital ACM Citation No. =983556.

[3] Erl, T. (2005). Service-Oriented Architecture: concepts, technology and design, Prentice. Hall.
[4] Hahn et al. (2008). Integration of Multi-agent Systems and Semantic Web Services on a Platform In-

dependent Level. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology, IEEE Computer Society.

[5] Hedden, H. (2010). Taxonomies and Controlled vocabularies best practices for metadata. Jour-nal of
Digital Asset Management, 6, pp.279-284.

[6] Krafzig, Banke and Slama (2005). Enterprise SOA- Service Oriented Architecture: Best Practices.
Pearson Education Inc. Publication, USA.

[7] Natis, Y.V. (2003). Service Oriented Architecture Scenario. Gartner Research. ID No.: AV-19-6751,
Gartner Inc, USA.

[8] Pahl, C., Hasselbring, W. and Voss, M. (2009). Service-Centric Integration Architecture for Enter-
prise Software Systems. Journal of Information Science and Engineering, 25, pp. 1321-1336.

International Journal on Web Service Computing (IJWSC), Vol.3, No.2, September 2012

47

[9] Papazoglou, M. P. and Georgakopoulos, D. (2003 October). Service-Oriented Computing. Com-
munications of the ACM, Vol 46, No. 10, pp. 25-28.

[10] Poole, J. D. (2001). Model-Driven Architecture: Vision, Standards and Emerging Tech-nologies. In
Workshop on Metamodeling and Adaptive Object Models, ECOOP 2001.

[11] Shiva Shankar, M. (2010). The importance of Enterprise Software Architectures. http://www.c-
sharpcorner.com/uploadfile/shivamadishet/the-importance-of-enterprise-software-architectures/ Cited
on 20-04-2012

[12] Vasista, T. G. K. (2012). Adaptive Enterprise: Design and Implementation Approaches for E-
Government Integration, International Journal of Conceptions on Computing and In-formation
Technology (IJCCIT), WAIRCO Publication, India (Accepted for Publication).

[13] Varma, V. A., Reklaitis GV, Blau, G. E., Pekny, J. F., (2007). Enterprise-wide modeling & opti-
mization—An overview of emerging research challenges and opportunities. Computers and Chem-
ical Engineering, 31, 692–711.

[14] Wasserman, A. I. (1990). Tool Integration in Software Engineering Environments. LNCS, Vol. 467,
pp. 137-149, Springer Link Publications.

[15] Wiki (2012 January). Capability Maturity Model Integration.
http://en.wikipedia.org/wiki/File:Characteristics_of_Capability_Maturity_Model.svg. Cited Jan 20,
2012.

[16] Choudhury, I., de Ceasare, S. And Florido, E. (2008) “An Object-Oriented Abstraction for Generic
Enterprise Modeling”, International Journal of Enterprise Information Systems, Vol. 4 Iss. 1, IRMA
International Publishing.

[17] Reinhartz-Berger, Iris and Dov Dori (2005), “A Reflective Metamodel of Object-Process Methodol-
ogy: The System Modeling Building Blocks,” Business Systems Analysis with Ontologies, P. Green
and M. Rosemann (Eds.), Idea Group: Hershey, PA, USA, pp. 130-173.

Authors

Dr. Al-Sudairi is currently working as an Associate Professor in College of Business Ad-
ministration for MIS Department at King Saud University at Riyadh, KSA. He obtained
Two Masters one in Economic and another in Business MIS from USA and a Doctorate on
EDI and E-Business from University of Leicester, UK. His interested areas include IT, E-
Business, E-Commerce, Information Systems Strategy and ERP. He has publications in
reputed journals and conferences

Dr. TGK Vasista is currently working as Researcher at King Saud University, Riyadh,
KSA. He obtained a Doctorate in Information Technology from St. Linus University,
West Indies, a Master’s from University of Roorkee (Now called IIT-Roorkee), India
And a Post-Graduate Diploma in E-Governance from University of Mysore, India. He
Has former experiences in the field of IT as a programmer analyst in USA and as a sen-
ior Lecturer/Asst. Professor in academ ic field in the area of Systems and IT, E-Business
and E-Governance.

http://www.c-
http://en.wikipedia.org/wiki/File:Characteristics_of_Capability_Maturity_Model.svg

