
IMPLEMENTATION ARTICLE

Related to other papers in this 
special issue

29 (p285); 8 (p78)

Addressing FAIR principles F1, F2, F3, F4, A1, A1.1, A1.2, A2, I1, I2, I3, R1, R1.1, R1.2, R1.3

FAIR Computational Workflows

Carole Goble1†, Sarah Cohen-Boulakia2, Stian Soiland-Reyes1,4, Daniel Garijo3,  
Yolanda Gil3, Michael R. Crusoe4, Kristian Peters5 & Daniel Schober5

1Department of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

2Laboratoire de Recherche en Informatique, CNRS, Université Paris-Saclay, Batiment 650, Université Paris-Sud, 91405 ORSAY Cedex, France

3Information Sciences Institute, University of Southern California, Marina Del Rey CA 90292, USA

4Common Workflow Language project, Software Freedom Conservancy, Inc. 137 Montague St STE 380, NY 11201-3548, USA

5Leibniz Institute of Plant Biochemistry (IPB Halle), Department of Biochemistry of Plant Interactions, Weinberg 3, 06120 Halle (Saale), Germany

Keywords: Computational workflow; Reproducibility; Software; FAIR data; Provenance

Citation: C. Goble, S. Cohen-Boulakia, S. Soiland-Reyes, D. Garijo, Y. Gil, M.R. Crusoe, K. Peters & D. Schober. FAIR computational 

workflows. Data Intelligence 2(2020), 108–121. doi: 10.1162/dint_a_00033

ABSTRACT

Computational workflows describe the complex multi-step methods that are used for data collection, data 
preparation, analytics, predictive modelling, and simulation that lead to new data products. They can 
inherently contribute to the FAIR data principles: by processing data according to established metadata; by 
creating metadata themselves during the processing of data; and by tracking and recording data provenance. 
These properties aid data quality assessment and contribute to secondary data usage. Moreover, workflows 
are digital objects in their own right. This paper argues that FAIR principles for workflows need to address 
their specific nature in terms of their composition of executable software steps, their provenance, and their 
development.

† Corresponding author: Carole Goble (E-mail: carole.goble@manchester.ac.uk, ORCID: 0000-0003-1219-2137).

http://dx.doi.org/10.1162/dint_a_00051
http://dx.doi.org/10.1162/dint_a_00030
https://w3id.org/fair/principles/terms/F1
https://w3id.org/fair/principles/terms/F2
https://w3id.org/fair/principles/terms/F3
https://w3id.org/fair/principles/terms/F4
https://w3id.org/fair/principles/terms/A1
https://w3id.org/fair/principles/terms/A1.1
https://w3id.org/fair/principles/terms/A1.2
https://w3id.org/fair/principles/terms/A2
https://w3id.org/fair/principles/terms/I1
https://w3id.org/fair/principles/terms/I2
https://w3id.org/fair/principles/terms/I3
https://w3id.org/fair/principles/terms/R1
https://w3id.org/fair/principles/terms/R1.1
https://w3id.org/fair/principles/terms/R1.2
https://w3id.org/fair/principles/terms/R1.3


Data Intelligence 109

FAIR Computational Workflows

1. INTRODUCTION

In data intensive science, e-infrastructures and software tool-chains are heavily used to help scientists 
manage, analyze, and share increasing volumes of complex data [1]. Data processing tasks like data 
cleansing, normalisation and knowledge extraction need to be automated stepwise in order to foster 
performance, standardisation and re-usability. Increasingly complex data computations and parameter-
driven simulations need reliable e-infrastructures and consistent reporting to enable systematic comparisons 
of alternative setups [2, 3]. As a response to these needs, the practice of performing computational processes 
using workflows has taken hold in different domains such as the life sciences [4, 5, 6], biodiversity [7], 
astronomy [8], geosciences [9], and social sciences [10]. Workflows also support the adoption of novel 
computational approaches, notably machine learning methods [11], due to the ease with which single 
components in a processing pipeline can be exchanged or updated.

Generally speaking, a workflow is a precise description of a procedure – a multi-step process to coordinate 
multiple tasks and their data dependencies. In computational workflows each task represents the execution 
of a computational process, such as: running a code, the invocation of a service, the calling of a command 
line tool, access to a database, submission of a job to a compute cloud, or the execution of data processing 
script or workflow. Figure 1 gives an example of a real workflow for variant detection in genomics, 
represented using the Common Workflow Language open standard [12].

Computational workflows promise support for automation that scale across computational infrastructures 
and large datasets while shielding users from underlying execution complexities such as inter-resource 
incompatibilities and software dependencies. From an execution perspective, workflows are a means to 
handle the work of accessing an ecosystem of software and platforms, managing data, securing access, and 
handling heterogeneities. From a reuse and reproducibility perspective, the automated methods can be 
packaged and ported across computational platforms, easing how we can create and execute workflows 
in different environments and across the diverse expertise levels of users. From a reporting perspective, they 
are a means to specify and document the experiment design and report the methodology: accurately 
recording the data inputs, parameter configurations and history of their runs and the provenance of their 
output data products [13]. The provenance of a result (i.e., why and how a given result has been obtained 
by an analysis) enables the comprehension, comparison and verification of multiple results, and hence 
facilitates the exchange, standardisation, trust and reusability of those results.

The rise in the use of workflows has been accompanied by a range of diverse systems by which they can 
be implemented. At one end of the spectrum reside ad-hoc scripts (shell code, Python, Java, etc.) and 
interactive notebooks which provide an intuitive interface to quickly interact with the analysis results (e.g., 
Jupyter, RStudio, Zeppelin). At the other end are Workflow Management Systems (WfMS) that provide 

 http://commonwl.org/.
 https://jupyter.org/.
 https://www.rstudio.com/.
 https://zeppelin.apache.org/.



110 Data Intelligence

FAIR Computational Workflows

Figure 1.  A workflow for detecting variants in genome sequences. The workflow is specified in the Common 
Workflow Language, displayed using the CWL Viewer. Any CWL compliant WfMS execution engine should be able 
to execute this standardized workflow description and obtain the same results independent of their underlying 
infrastructure, for instance using Toil executed on SLURM, or REANA on Kubernetes.

 https://w3id.org/cwl/view/git/5a67e91727c8eb44afff27f9e4774eafef579c58/detect_variants/detect_variants.cwl.
 http://toil.ucsc-cgl.org/.
 https://reana.readthedocs.io/.



Data Intelligence 111

FAIR Computational Workflows

a feature-rich infrastructure for the definition, set-up, execution and monitoring of a workflow. Some WfMS 
are aimed at general applications (e.g. KNIME [11]) whilst others have been adopted by specific communities 
with specialised features and component collections (e.g. Nipype for neuro-bioimaging [14]). Different 
aspects of FAIR principles will apply across this range of implementation choices.

WfMS can roughly be divided into two types, namely coarse-grained, with a prime focus on chaining 
locally hosted or distributed tools (e.g. Galaxy [15], KNIME [11], Taverna11 [16]) and fine-grained focusing 
on optimising computational resources over Distributed Computing Infrastructures (DCI) or High Performance 
Computing (HPC) for applications (e.g. Pegasus12 [17], SnakeMake13 [18], Nextflow14 [19], Dispel4Py15 [20]) 
and cloud-based container orchestration (Kubernetes16). Many WfMS mix the two kinds [21]. All WfMS aim 
to handle common cross-cutting concerns on behalf of the workflow execution. Concerns include: resource 
scalability (optimisation, concurrency and parallelisation), secure execution (of tools in their environment, 
monitoring and fault handling), tracking (process logging and data provenance tracking) and data handling 
(secure access, movement, reference management). WfMS vary in how their users interact with them, for 
example by ABIs/APIs, scripting or command lines, or a GUI using “drag, drop and linking”. WfMS may 
execute over HPC or geographically distributed clusters, cloud environments across systems, or even from 
desktops. They consequently vary in their mechanisms to prepare their components to become executable 
steps and must manage portability and dependencies on the infrastructure used to run them. 

Computational workflows are composed of modular building blocks that have been prepared with 
standardised interfaces to be linked together and run by a computational engine. Thus, the key characteristic 
is the separation of the workflow specification from its execution. Capturing the control flow order between 
components explicitly exposes the dataflow and data dependencies between the inputs and outputs of the 
processing steps. This explicit separation is fundamental to supporting workflow comprehension, design 
modularity, workflow comparisons and alternative execution strategies. Scripting environments tend to 
interleave data and computational processes, although systems such as YesWorkflow [22] provide the means 
to annotate existing scripts with special comments that reveal their hidden computational modules and 
dataflows. Interactive notebooks make the distinction when organized appropriately by defining their 
dataflow in the form of interactive computational cells; i.e., input and output variables are explicit in each 
cell, data dependencies are explicit on each cell, and the steps are executed in order. Notebooks can also 
be used as “meta workflows” when steps run a script or a WfMS. 

 https://www.knime.com/.
 https://nipype.readthedocs.io/.
 https://galaxyproject.org/.
11 https://taverna.incubator.apache.org/.
12 https://pegasus.isi.edu/.
13 https://snakemake.readthedocs.io/en/stable/.
14 https://www.nextflow.io/.
15 https://pypi.org/project/dispel4py/.
16 https://kubernetes.io/.



112 Data Intelligence

FAIR Computational Workflows

We propose that FAIR Principles apply to workflows, and WfMSs, in two major areas:

·  FAIR data: Properly designed workflows contribute to FAIR data principles, since they provide the 
metadata and provenance necessary to describe their data products and they describe the involved 
data in a formalized, completely traceable way.

·  FAIR criteria for workflows as digital objects: Workflows are research products in their own right, 
encapsulating methodological know-how that is to be found and published, accessed and cited, 
exchanged and combined with others, and reused as well as adapted. 

These two aspects are explored in the rest of the article. References to FAIR principles [23] are given in 
brackets.

2. FAIR DATA FOR AND FROM WORKFLOWS

Computational workflows are enablers of automated data processing. For automation to be most effective 
the data the workflows act on should be FAIR: unique resolution of identifiers, explicit data organisations, 
structures and semantics, machine-readable licenses and access permissions, high data quality and so on. 
FAIR data would enable a WfMS to automatically make informed choices from the phase of the workflow 
design (e.g., by suggesting tools fitting data features when several alternative tools could be considered for 
a given data analysis step) to the phase of workflow execution (e.g., by validating the data against a step’s 
expected type). A WfMS needs to be able to access precise information on data origin, the way of accessing 
it, and a set of associated metadata, which is ideally described by established vocabularies and computer-
interpretable semantics. 

Research domains such as the life sciences have developed open ontologies, vocabularies and services 
for data interoperability (I1, I2, I3) and identifier resolution (F1, A1). Efforts such as the Breeding API (BrAPI)17 
standardise the interface for exchanging data between applications and the EDAM ontology18 [24] precisely 
specify the input and output of tools executed in a workflow (see FAIRsharing.org [25] for examples). 
Formalised and fine grained annotation of data is still considered costly to produce. Consequently, a 
significant amount of workflow processing still deals with metadata wrangling, format transformations and 
identifier mapping [26].

Workflows are in turn key contributors to FAIR data compliance. In a world of expanding and diversifying 
processing tools and computational operating environments, they encode standardised data practices and 
capture formal computer-interpretable provenance data. The workflow specification itself can be thought 
of as a recipe to produce a data product that exposes the extent of the effort made to make the data FAIR 
and it is formal enough to be validated against emerging FAIR indicators [27]. Determining whether the 
data produced by a workflow is FAIR is not straightforward and requires concrete criteria, which should be 
provided by both the FAIR indicators and the workflow specification. 

17 https://brapi.docs.apiary.io/.
18 http://edamontology.org/.

https://w3id.org/fair/principles/terms/I1
https://w3id.org/fair/principles/terms/I2
https://w3id.org/fair/principles/terms/I3
https://w3id.org/fair/principles/terms/F1
https://w3id.org/fair/principles/terms/A1


Data Intelligence 113

FAIR Computational Workflows

The combination of FAIR data and FAIR tools within a supportive FAIR e-infrastructure would significantly 
aid the operation and quality assurance of workflows. Machine processable metadata describe the inputs, 
outputs and performance of tools and the underlying resources for running workflows and managing results. 
Examples include annotations on tools and libraries (e.g. Bio.tools19, Bioconductor, CRAN, PyPI) and on 
software containers (e.g. Biocontainers20). Standardised specifications on handling data formats and 
executables, automated handling of tool dependencies, versioning and other explicit metadata on 
computational resource-needs would aid harmonisation of successive software tools execution and efficient 
job scheduling and data movement throughout different FAIR e-infrastructures.

For data generation a standardised workflow specification and automated execution contributes to 
transparency, reproducibility, analytic validity, quality assurance and the attribution and comparison of 
results. Well-designed workflow management systems can automate the production of metadata descriptions 
of data products (F2, I2, I3, R1.3) and the deposition of data in searchable resources (F4). Identifiers, 
licensing and access present interesting challenges in workflow execution:

·  Identifiers (F1, F3, A1): concerns include the propagation of identifiers through the workflow, tracking 
data attribution [28] and the minting of identifiers for large numbers of intermediate results. Minids 
[29] are proposed as light-weight identifiers to unambiguous name, identify and reference research 
data products. Identifiers can then optimise data exchange by reference and reduce unnecessary or 
insecure data movements. Workflows need to move data references through their engines and not 
the data itself.

·  Licensing (R1.1): As workflows often access and combine data from different sources, data licenses 
need to be respected, honoured and propagated, as do licenses on the software used by the workflow 
tasks. Combining licenses is particularly tricky and can impact on the ability to license the workflow 
itself or its data products, often neglected or delayed because of this challenge. 

·  Data access (A1.1, A1.2): Single sign-on for workflow constituents requires harmonised Authentication 
and Authorization Infrastructure (AAI) propagation through the different tasks, which may be hosted 
by different service providers using different systems.

Workflows intrinsically provide precise documentation of how the data has been generated (R1.2). The 
details of every executed process together with comprehensive information about the execution environment 
used to derive a specific data product is retrospective provenance, either observed by the WfMS or disclosed 
to it by the computational task itself. A great deal of work has focused on provenance tracking of 
computational  workflows  [30],  leading  to  standardisation  efforts  such  as  the  W3C  PROV  model  and 
ontology [31] (I1, I2). Challenges remain: provenance standards have yet to be fully embraced by WfMS, 
there are still shortages of provenance processing tools. Automated provenance collection can be too fine-
grained and too detailed to be of service to researchers [32], indicating a need for ontological abstractions. 
So, the computational steps are themselves unFAIR. Although open source tools allow us to inspect 
procedures, many codes are proprietary software or opaque boxes (especially those only available as  

19 http://bio.tools/.
20 https://biocontainers.pro/.

https://w3id.org/fair/principles/terms/F2
https://w3id.org/fair/principles/terms/I2
https://w3id.org/fair/principles/terms/I3
https://w3id.org/fair/principles/terms/R1.3
https://w3id.org/fair/principles/terms/F4
https://w3id.org/fair/principles/terms/F1
https://w3id.org/fair/principles/terms/F3
https://w3id.org/fair/principles/terms/A1
https://w3id.org/fair/principles/terms/R1.1
https://w3id.org/fair/principles/terms/A1.1
https://w3id.org/fair/principles/terms/A1.2
https://w3id.org/fair/principles/terms/R1.2
https://w3id.org/fair/principles/terms/I1
https://w3id.org/fair/principles/terms/I2


114 Data Intelligence

FAIR Computational Workflows

run-time binaries or representing deep learning algorithms) that do not disclose the link between their inputs 
and outputs, breaking the provenance lineage of data. Steps in coarse-grained workflows are often wrapped 
applications with buried sub-workflows and manual (not tracked) steps within. Data resources and tools 
do not always report basic metadata such as their version or licence in a standardised, machine interpretable 
way. Bioschemas21 aims to get such metadata marked-up in resources in a lightweight way. A greater 
problem is unFAIR service provision, whereby the components change their interfaces without notice, 
breaking the workflows that use them. Given their data focus, the FAIR principles are chiefly focused on 
the availability of metadata rather than the quality of service of the databases, tools and the e-infrastructures 
in which data can exist. 

3. FAIR CRITERIA FOR WORKFLOWS AS DIGITAL OBJECTS

The initial FAIR criteria have been envisioned for data. As workflows are digital objects in their own 
right, it is natural to draw an analogy with data and to try to apply the FAIR Principles to them. The majority 
of workflows are not yet registered in specialised repositories or are stored in software repositories 
indistinguishable from other software. Conventions for naming workflows still have to be devised (F1). 
Workflows vary in the quality of their documentation, as happens with software, described using proprietary 
or native programming languages. 

Researchers have been actively exploring ways for workflows to be FAIR. Workflow registries and 
repositories typically cater for specific WfMSs, such as KNIMEHub22 for KNIME and nf-core23 for Nextflow 
Life Science pipelines, to support findability and accessibility (F4), with description and metadata associated 
with deposited workflows (F2) and in some cases persistent, unique identifiers (F1). Access is typically baked 
into the workflow systems (A1), for example only Galaxy workflows are available in dedicated Galaxy 
installations such as Workflow4Metabolomics24. Others such as WINGS25 provide means to export workflows 
augmented with semantic representations as Linked Data [33]. Workflow findability in repositories has been 
studied [34] alongside workflow similarity [35] where workflows are compared based on their metadata 
and structure. For workflows to be accessible in the same way as data, they need to be archived and cited 
just as data is archived and cited using citation metadata [36]. In the schema.org mark-up used by citation 
infrastructures such as Datacite, terms indicate data that is derived from other data. Ideally there should 
also be terms indicating the software or service used to perform a transformation, harmonised with workflow 
provenance.

myExperiment26 [37] is an attempt at a WfMS agnostic repository, pioneering approaches for workflow 
finding, sharing and publishing with licenses. It credits authors when workflow designs were reused or 

21 http://bioschemas.org/.
22 https://hub.knime.com/.
23 https://nf-co.re/.
24 https://workflow4metabolomics.org/.
25 http://www.wings-workflows.org/.
26 http://myexperiment.org/.

https://w3id.org/fair/principles/terms/F1
https://w3id.org/fair/principles/terms/F4
https://w3id.org/fair/principles/terms/F2
https://w3id.org/fair/principles/terms/F1
https://w3id.org/fair/principles/terms/A1


Data Intelligence 115

FAIR Computational Workflows

repurposed, and packages workflows into collections and with other digital objects such as associated data 
files and publications. The work laid the foundations for workflow based Research Objects27 [38] that allows 
for bundling of all the artefacts associated with an investigation or piece of research into one whole that 
can also be cited. Figure 1 workflow’s description files and links to executable containers and data files 
can be downloaded in a Research Object zip-based bundle along with citation metadata and assigned a 
DOI on deposit. The European Open Science Cloud for Life Sciences28 has started work to build a workflow 
registry (F4) using the CWL standards with Research Objects federated (I3) with registries for tools (bio.
tools) and containers (Biocontainers).

Several attempts have been made to standardise workflow descriptions in order to aid discoverability 
(F1) and enable interoperability (I1). The Interoperable Workflow Intermediate Representation [39] was 
proposed as a common bridge for translating fine-grain workflows between different languages, independent 
of the underlying distributed computing infrastructure [40]. The Workflow Description Language29 and the 
Common Workflow Language [12] are recent community efforts to describe workflows. The CWL open 
standards are used to describe workflows and command-line tool interfaces in a way that makes them 
portable and scalable across a variety of software and hardware environments and runnable by other CWL-
compliant engines. This last point is critical. As descriptions of processes workflows inherit properties of 
FAIR data, but as executable processes they inherit properties of software. Workflows as processes challenge 
the FAIR principles by their structure, forms, versioning, executability, and reuse. 

Structure. Workflows are often inherently composite. Their components can be workflows in a nested, 
fractal way, i.e., (interdependent or sets of) sub-workflows that can be executed as part of complex workflows 
(see Fig.1). The distinction between a workflow and its component steps is blurred [41]. FAIR principles 
can thus be applied simultaneously on multiple levels. To render composite workflows and sub-workflows 
findable relies also on the findability of the involved tools and data types as researchers often use these as 
search attributes. FAIR properties on the components – metadata, licensing, author credit, access 
authorization and so on – propagate to the workflow level and may be incompatible. Fundamentally, how 
we identify, cite and credit composite, multi-authored objects is an open question [42].

Forms. When we speak of a FAIR workflow what do we mean? A workflow can be a CWL specification 
with test or exemplar data; an implementation of that design in a WfMS; an instantiation of that 
implementation ready to be run with input data and parameters set and computational services spun up; 
a run result with intermediate and final data products and provenance logs [33]. Workflow-centric Research 
Objects attempt to create a metadata framework to capture and aggregate each form, but each may have 
different FAIR criteria.

27 http://researchobject.org/.
28 http://www.eosc-life.eu/.
29 https://software.broadinstitute.org/wdl/.

https://w3id.org/fair/principles/terms/F4
https://w3id.org/fair/principles/terms/I3
https://w3id.org/fair/principles/terms/F1
https://w3id.org/fair/principles/terms/I1


116 Data Intelligence

FAIR Computational Workflows

Versioning. Like software, workflows are living artefacts to be maintained, updated, and eventually 
deprecated. The code components, the WfMS itself and the underlying computational infrastructures they 
run on evolve and change. The evolution of a workflow is a form of provenance (R1.2) that tracks any 
alteration of an existing workflow, resulting in another version that may produce the same or different results 
[43]. Moreover, to make methodological variants, workflows can be recycled and repurposed: cloned, 
forked, merged and dramatically changed. Workflow repositories such as nf-core23 embrace this software 
nature, building on top of collaborative development environments such as github that natively support 
versioning as well as testing and validation. Thus, FAIR principles have to address versioning and “fixivity”; 
that is, the need to snapshot a workflow and its dependencies to fix its reproducible state and associate a 
persistent identifier.

Executability. Workflows are executable objects. To be interoperable and reusable they need to be 
portable, encapsulating all their runtime dependencies. Lightweight container-based virtualisation solutions 
to distribute software (e.g. Docker30, Singularity31) and platform independent software packaging and 
distribution (e.g. Conda32) revolutionise workflow reusability. Nevertheless, workflows and the software tools 
they use are time limited objects whose active lifespan is dependent on that of their components and WfMS 
as much as on their scientific relevance. Consequently CWL addresses both explicit support for containerised 
execution and the lifting of workflow descriptions from the WfMS or application it is embedded in so that 
it may be runnable in other CWL-compliant engines, even when no longer executable in its native form. 
In workflow e-infrastructures (e.g. in local workstations or cloud environments), resource limitations need 
to be defined by the workflow. The stability of the execution environment needs to be covered by the 
infrastructure and its components. Security and access control issues are crucial as workflow systems often 
execute codes in shared distributed resources.

Reuse. Reusing workflows turns out to mean different things depending on the purpose of the reuse. 
Workflow redo/re-run re-executes the exact same workflow, data, parameter settings and tools with the aim 
to re-create identical results for testing the robustness of the process. Workflow replication allows minor 
changes, usually in the workflow environment and/or parameter settings, but the results are expected to be 
the same. Workflow reproduction aims to retain the same analysis but with variations to the means (steps) 
or data to test the robustness of the results. Workflow reuse may use all or part of the original workflow 
with new data, with a possible different aim in workflow repurposing/recycling [33, 44]. Regardless of 
intent, the workflow user must be confident that the expected results are generated. R1 is fostered by robust 
software practices [45, 46, 47] that entail:

·  Proper testing of the computational workflow and its modules as well as the software tools that are 
invoked during workflow runtime;

·   Validation of interoperability claims that tests workflow replication on different platforms; 

30 https://www.docker.com/.
31 https://sylabs.io/singularity/.
32 https://conda.io/.

https://w3id.org/fair/principles/terms/R1.2
https://w3id.org/fair/principles/terms/R1


Data Intelligence 117

FAIR Computational Workflows

·   Validation of parameters to preclude workflow failure and faulty or unsafe results. The formulation of 
parameters must therefore be FAIR and must include documentation and explanation of their purpose 
and range definitions (testing of parameter ranges). The BioCompute Object specification [48] 
emphasises detailed representation and validation of parameters for regulatory approval of reusable 
computational pipelines for precision medicine. 

These thoughts lead to two conclusions. First that treating FAIR workflows as data artefacts only goes so 
far. Their characteristics as software artefacts means that they should also be subject to appropriate FAIR 
principles for software, incorporating best practices for software maintainability, maturity and computation 
reproducibility [49]. Second, that the individual parts, forms, versions and execution environments of a 
workflow need to be FAIR by themselves, leading to complex interdependencies which need to be covered 
by additional FAIR metrics aligned to their nature. Generally a compromise has to be found between the 
amount of work users have to invest in annotating their workflow and the amount of metadata needed for 
verification by FAIR indicators. Automatic annotation strategies and annotation tool support will be crucial 
to ease the burden of workflow developers.

4. CONCLUSIONS

Computational workflows capture complex multi-step methods that require FAIR practices in order to be 
properly published, findable, accessed, cited, reused, and combined with others. FAIR principles for data, 
and for software, are generally applicable, but need to be extended in order to address the processual 
nature of workflows. Consequently new FAIR indicators will also need to be developed. A framework for 
FAIR workflows will enhance reproducibility, quality and transparency of the data generated, but also of 
the processing path that lead to the data results. When used to document the provenance of new data 
products, workflows become a powerful component for FAIR data practices and provide new capabilities 
such as better findability, ideally based on the intrinsic methods used to generate data. The FAIRification 
of workflows along all these lines will pave the way for trustable data with the added value of being ready 
for secondary data reuse and exploitation by third parties.

AUTHOR CONTRIBUTIONS

C. Goble (carole.goble@manchester.ac.uk, corresponding author) and D. Schober (Daniel.Schober@ipb-
halle.de) initiated the effort and conceived the paper. C. Goble co-ordinated and led the writing, and edited 
the manuscript. C. Goble, S. Cohen-Boulakia (cohen@lri.fr), S. Soiland-Reyes (soiland-reyes@manchester.
ac.uk), D. Garijo (dgarijo@isi.edu), Y. Gil (gil@isi.edu), M.R. Crusoe (michael.crusoe@gmail.com), K. Peters 
(Kristian.Peters@ipb-halle.de), D. Schober all contributed to the concepts, arguments, and written text. All 
reviewed the text. D. Schober and M.R. Crusoe contributed examples. 

mailto:michael.crusoe%40gmail.com?subject=


118 Data Intelligence

FAIR Computational Workflows

ACKNOWLEDGEMENTS 

Carole Goble acknowledges funding by BioExcel2 (H2020 823830), IBISBA1.0 (H2020 730976) and 
EOSCLife (H2020 824087). Daniel Schober’s work was financed by Phenomenal (H2020 654241) at the 
initiation-phase of this effort, current work in kind contribution. Kristian Peters is funded by the German 
Network for Bioinformatics Infrastructure (de.NBI) and acknowledges BMBF funding under grant number 
031L0107. Stian Soiland-Reyes is funded by BioExcel2 (H2020 823830). Daniel Garijo, Yolanda Gil, 
gratefully acknowledge support from DARPA award W911NF-18-1-0027, NIH award 1R01AG059874-01, 
and NSF award ICER-1740683.

REFERENCES 

[1] M. Atkinson, S. Gesing, J. Montagnat & I. Taylor. Scientific workflows: Past, present and future, Future  
Generation Computer Systems 75(2017), 216–227. doi: 10.1016/j.future.2017.05.041.

[2]  E. Deelman, T. Peterka, I. Altintas, C.D. Carothers, K.K. van Dam, K. Moreland, … & J. Vetter. The future of 
scientific workflows. The International Journal of High Performance Computing Applications 32(1)(2017), 
159–175. doi: 10.1177/1094342017704893.

[3] K. Peters, J. Bradbury, S. Bergmann, M. Capuccini, M. Cascante, P. de Atauri, … & C. Steinbeck.  
PhenoMeNal: Processing and analysis of metabolomics data in the cloud. GigaScience 8(2)(2019). doi: 
10.1093/gigascience/giy149.

[4] S. Cohen-Boulakia, K. Belhajjame, O. Collin, J. Chopard, C. Froidevaux, A. Gaignard, … & C. Blanche. 
Workflows for computational reproducibility in the life sciences: Status, challenges and opportunities. Future 
Generation Computer Systems 75(2017), 284–298. doi: 10.1016/j.future.2017.01.012.

[5] D. Garijo, O. Corcho, Y. Gil, M.N. Braskie, D. Hibar, X. Hua, N. Jahanshad, P. Thompson & A.W. Toga. Work-
flow reuse in practice: A study of neuroimaging pipeline users. In: Proceedings of the IEEE Conference on 
e-Science, Guarujua, Brazil, 2014. doi: 10.1109/eScience.2014.33. 

[6] A. Shade & T.K. Teal. Computing workflows for biologists: A roadmap. PLOS Biology 13(11)(2015). doi: 
10.1371/journal.pbio.1002303. 

[7]  C. Mathew, A.  Güntsch, M.  Obst,  S. Vicario,  R.  Haines, A. Williams, Y.  de  Jong  &  C.  Goble. A  semi- 
automated workflow for biodiversity data retrieval, cleaning, and quality control. Biodiversity Data Journal 
2(2014), e4221. doi: 10.3897/BDJ.2.e4221.

[8]  W.  Freudling, M.  Romaniello,  D.M.  Bramich,  P.  Ballester, V.  Forchi,  C.  E.  García-Dabló,  S. Moehler  &  
M. J. Neeser, Automated data reduction workflows for astronomy: The ESO Reflex environment, Journal 
Astronomy and Astrophysics 559(2013). doi: 10.1051/0004-6361/201322494.

[9] C. Duffy, Yo. Gil, E. Deelman, S. Marru, M. Pierce, I. Demir & G. Wiener. Designing a road map for  
geoscience workflows. Eos93(24)(2012), 225–226. doi: 10.1029/2012EO240002.

[10] K.J. Turner & P.S. Lambert. Workflows for quantitative data analysis in the social sciences. International Jour-
nal on Software Tools for Technology Transfer 17(3)(2015), 321–338. doi: 10.1007/s10009-014-0315-4.

[11] M.R. Berthold, N. Cebron, F. Dill, T.R. Gabriel, T. Kötter, T. Meinl, P. Ohl, C. Sieb, K. Thiel & B. Wiswedel. 
KNIME: The Konstanz Information Miner. In Data Analysis, Machine Learning and Applications. Studies  
in Classification, Data Analysis, and Knowledge Organization. Berlin: Springer. doi: 10.1051/0004-
6361/201322494.

[12] P. Amstutz, M.R. Crusoe, N. Tijanić. (editors) B. Chapman, J. Chilton, M. Heuer, A. Kartashov, Da. Leehr, H. 
Ménager, M. Nedeljkovich, M. Scales, S. Soiland-Reyes & L. Stojanovic. Common workflow language, v1.0. 



Data Intelligence 119

FAIR Computational Workflows

Specification. Common Workflow Language working group (2016). Available at: https://w3id.org/cwl/v1.0/. 
doi: 10.6084/m9.figshare.3115156.v2.

[13]  V. Cuevas-Vicenttín, S. Dey, S. Köhler, S. Riddle & B. Ludäscher. Scientific workflows and provenance: Intro-
duction and research opportunities. Datenbank Spektrum 12(3)(2012), 193–203. doi: 10.1007/s13222-012-
0100-z. 

[14] K. Gorgolewski, C.D. Burns, C. Madison, D. Clark, Y.O. Halchenko, M.L.Waskom & S.S. Ghosh. Nipype:  
A flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in  
Neuroinformatics 5(13)(2011). doi: 10.3389/fninf.2011.00013. 

[15] E. Afgan, D. Baker, B. Batut, M. van den Beek, D. Bouvier, M. Čech, … & D. Blankenberg. The Galaxy  
platform for accessible, reproducible and collaborative biomedical analyses: 2018 update, Nucleic Acids 
Research, 46(W1)(2018), W537–W54. doi: 10.1093/nar/gky379.

[16] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, … C. Goble. The Taverna workflow 
suite: Designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic 
Acids Research 41(W1)(2013), W557–W561. doi: 10.1093/nar/gkt328.

[17]  E. Deelman, K. Vahi,  J. Gideon, M. Rynge,  S. Callaghan,  P. Maechling,… & K.W. Pegasus. A Workflow  
Management System for Science Automation, Future Gener. Comput. Syst 46(C) (2015) 17–35. doi: 10.1016/ 
j.future.2014.10.008.

[18] J. Köster & S. Rahmann. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28(19)
(2012), 2520–2522. doi: 10.1093/bioinformatics/bts480.

[19] P. Di Tommaso, M. Chatzou, E.W. Floden, P.P Barja, E Palumbo & C. Notredame. Nextflow enables reproduc-
ible computational workflows. Nature Biotechnology 35(4)(2017), 1546–1696. doi: 10.1038/nbt.3820.

[20] R. Filguiera, A. Krause, M. Atkinson & I. Klampanos. A Moreno dispel4py: A Python framework for data-
intensive scientific computing. The International Journal of High Performance Computing Applications 31(4)
(2017), 316–334. doi: 10.1177/1094342016649766.

[21] P. Moreno, L. Pireddu, P. Roger, N. Goonasekera, E. Afgan, M. van den Beek, … & S. Neumann. Galaxy-
Kubernetes integration: Scaling bioinformatics workflows in the cloud. doi: 10.1101/488643.

[22]  T. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Belhajjame, K. Bocinsky, … & B. Ludäscher. YesWorkflow: 
A user-oriented, language-independent tool for recovering workflow information from scripts. International 
Journal of Digital Curation 10(1)(2015). doi: 10.2218/ijdc.v10i1.370.

[23] M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, … & B. Mons. The FAIR 
guiding principles for scientific data management and stewardship. Scientific Data 3(2016), Article No. 
160018. doi: 10.1038/sdata.2016.18.

[24]  J. Ison, M. Kalaš, I. Jonassen, D. Bolser, M. Uludag, H. McWilliam, J. Malone, R. Lopez, S. Pettifer & P. Rice. 
EDAM: An ontology of bioinformatics operations, types of data and identifiers, topics and formats. Bioinfor-
matics 29(10)(2013), 1325–1332. doi: 10.1093/bioinformatics/btt113.

[25] S-A. Sansone, P. McQuilton, P. Rocca-Serra, A. Gonzalez-Beltran, M. Izzo, A.L. Lister & M. Thurston. The 
FAIRsharing Community FAIRsharing as a community approach to standards, repositories and policies. 
Nature Biotechnology 37(2019), 358–367. doi: 10.1038/s41587-019-0080-8.

[26] D. Garijo, P. Alper, K. Belhajjame, O. Corcho, Y. Gil & C. Goble. Common motifs in scientific workflows: An 
empirical analysis. Future Generation Computer Systems 36(2014), doi: 10.1016/j.future.2013.09.018. 

[27] M.D. Wilkinson, S-A. Sansone, E. Schultes, P. Doorn, L.O. Bonino da Silva Santos & M. Dumontier. A design 
framework and exemplar metrics for FAIRness. Scientific Data 5 (2018)180118. doi: 10.1038/sdata.2018.118. 

[28] P. Groth, H. Cousijn, T. Clark & C. Goble. FAIR data reuse – the path through data citation. Data Intelligence 
2(2020), 78–86. doi: 10.1162/dint_a_00030.

https://w3id.org/cwl/v1.0/


120 Data Intelligence

FAIR Computational Workflows

[29] K. Chard, M. D’Arcy, B. Heavner, I. Foster, C. Kesselman, R. Madduri, A. Rodriguez, S. Soiland-Reyes, C. 
Goble, K. Clark, E.W. Deutsch, I. Dinov, N Price & A. Toga. I’ll take that to go: Big data bags and minimal 
identifiers for exchange of large, complex datasets. In: IEEE International Conference on Big Data (Big Data), 
2016, pp. 319–328. doi: 10.1109/BigData.2016.7840618.

[30]  M. Herschel, R. Diestelkämper & H.B. Lahmar. A survey on provenance: What for? What form? What from? 
The VLDB Journal 26(6)(2017), 881–906. doi: 10.1007/s00778-017-0486-1.

[31] F.Z. Khan, S. Soiland-Reyes, R.O. Sinnott, A. Lonie, C. Goble & M.R. Crusoe. Sharing interoperable workflow 
provenance: A review of best practices and their practical application in CWLProv. GigaScience (in press) 
(2019).

[32]  P. Alper, K. Belhajjame, V. Curcin & C.A. Goble. LabelFlow framework for annotating workflow provenance. 
Informatics 5(1)(2018), 11. doi: 10.3390/informatics5010011. 

[33] D. Garijo, Y. Gil & O. Corcho. Abstract, link, publish, exploit: An end to end framework, for workflow  
sharing. Future Generation Computer Systems 75(2017), 271–283. doi: 10.1016/j.future.2017.01.008.

[34] J. Starlinger, S. Cohen-Boulakia, U. Leser. (Re)Use in Public Scientific Workflow Repositories. In: A. Ailamaki 
& S. Bowers (eds) Scientific and statistical database management. SSDBM 2012. Lecture Notes in Computer 
Science, 7338(2012). doi: 10.1007/978-3-642-31235-9_24.

[35] J. Starlinger, B. Brancotte, S. Cohen-Boulakia & U. Leser. Similarity search for scientific workflows. Proceed-
ings of the VLDB Endowment 7(12)(2014), 1143–1154. doi: 10.14778/2732977.2732988. 

[36] A.M. Smith, D.S. Katz & K.E. Niemeyer. FORCE11 Software Citation Working Group. Software citation  
principles. PeerJ Computer Science 2: e86, 2016. doi: 10.7717/peerj-cs.86.

[37]  D. De Roure,  C. Goble & R.  Stevens. The  design  and  realisation  of  the myExperiment Virtual  Research  
Environment for social sharing of workflows. Future Generation Computer Systems 25(5)(2009), 561–567. 
doi: 10.1016/j.future.2008.06.010.

[38]  K. Belhajjame, J. Zhao, D. Garijo, M. Gamble, K.M. Hettne, R. Palma, E. Mina, Ó. Corcho, J.M. Gómez-
Pérez, S. Bechhofer, G. Klyne & C.A. Goble. Using a suite of ontologies for preserving workflow-centric 
research objects. Journal Web Semantics 32(2015), 16–42. doi: 10.1016/j.websem.2015.01.003.

[39] K. Plankensteiner, J. Montagnat & R. Prodan. IWIR: A language enabling portability across grid workflow 
systems. In: Workshop on Workflows in Support of Large-Scale Science, 2011, pp. 97–106. doi: 
10.1145/2110497.2110509.

[40] G. Terstyanszky, T. Kukla, T. Kiss, P. Kacsuk, A. Balasko & Z. Farkas. Enabling scientific workflow sharing 
through coarse-grained interoperability. Future Generation Computing Systems 37(2014), 46–59. doi: 
10.1016/j.future.2014.02.016. 

[41] M. Haendel, A. Su, J. McMurry, C.G. Chute,C. Mungall,B. Good, ... & T. Conlin. FAIR-TLC: Metrics to assess 
value of biomedical digital repositories: Response to RFI NOT-OD-16-133. doi: 10.5281/zenodo.203295. 

[42] D.S. Katz. Transitive credit as a means to address social and technological concerns stemming from citation 
and attribution of digital products. Journal of Open Research Software 2(1)(2014), e20. doi: 10.5334/jors.be.

[43] F. Casati, S. Ceri, B. Pernici & G. Pozzi. Workflow evolution. Data and Knowledge Engineering 24(3)(1998), 
211–238. doi: 10.1016/S0169-023X(97)00033-5. 

[44] C. Wroe, C. Goble, A. Goderis, P. Lord, S. Miles, J. Papay, P. Alper & L. Moreau. Recycling workflows and 
services through discovery and reuse. Concurrency and Computation Practice and Experience 19(2)(2006), 
doi: 10.1002/cpe.1050.

[45]  H. Artaza, N.C. Hong, M. Corpas, A. Corpuz, R. Hooft, R.C. Jiménez, ... & D. Vaughan. Top 10 metrics for 
life science software good practices [version 1; peer review: 2 approved]. F1000Research 2016, 5(ELIXIR): 
2000. doi: 10.12688/f1000research.9206.1.



Data Intelligence 121

FAIR Computational Workflows

[46] M. Taschuk & G. Wilson. Ten simple rules for making research software more robust. PLOS Computational 
Biology (2017). doi: 10.1371/journal.pcbi.1005412.

[47]  F. da Veiga Leprevost, V.C. Barbosa, E.L. Francisco, Y. Perez-Riverol & P.C. Carvalho. On best practices in the 
development of bioinformatics. Software Front Genet 5(2014), 199. doi: 10.3389/fgene.2014.00199.

[48] G. Alterovitz, D. Dean, C. Goble, M.R Crusoe, S. Soiland-Reyes, A. Bell, et al. Enabling precision medicine 
via standard communication of HTS provenance, analysis, and results. Plos Biology 16(12)(2018), e3000099. 
doi: 10.1371/journal.pbio.3000099. 

[49]  V.  Stodden,  M.  McNutt,  D.H.  Bailey,  E.  Deelman, Y.  Gil,  B.  Hanson,  M.A.  Heroux,  J.P.A.  Ioannidis  &  
M. Taufer. Enhancing reproducibility for computational methods Science 354(6317)(2016), 1240–1241.  
doi: 10.1126/science.aah6168.


