A new tool to derive chemical abundances in Type-2 Active Galactic Nuclei

• RUBÉN GARCÍA-BENITO •

IAA-CSIC (Spain)

E. Pérez-Montero \oplus O.L. Dors \oplus J.M. Vílchez \oplus M.V. Cardaci \oplus G.F. Hägele

IAUS 356 · NUCLEAR ACTIVITY IN Galaxies across cosmic time

NARROW LINE REGION (NLR) IN AGNS

Villarroel et al. (2017)

- ▶ Up to ↑ redshifts
- Bright emission-lines
- Chemical abundances (O/H)
- Physical conditions of the gas

Narrow Line Region (NLR) → Photoionization

Ferland & Netzer (1983); Halpern & Steiner (1983)

IAUS 356 · Nuclear Activity in Galaxies Across Cosmic Time

Rubén García-Benito @ IAA-CSIC

NLR & ABUNDANCES IN TYPE-2 AGNS

Villarroel et al. (2017)

Te method Total abundances « photoionization models IN AGNS

Hydrodynamical effects can affect:

▶ [NII] (Pérez-Montero & Contini 2009)

IAUS 356 · Nuclear Activity in Galaxies Across Cosmic Time

RGB.IAA.ES

7-11 October 2019 Addis Ababa · Ethiopia EXCELENCIA SEVERO

OCHOA

CHEMICAL ABUNDANCES CODE FOR TYPE-2 AGNS

IAUS 356 · Nuclear Activity in Galaxies Across Cosmic Time

Rubén García-Benito @ IAA-CSIC

7-11 October 2019 Addis Ababa · Ethiopia EXCELENCIA SEVERO OCHOA

4 🜔 19

HII-CHI-MISTRY CODE FOR AGNS Pérez-Montero et al. (2019)

https://www.iaa.csic.es/~epm/HII-CHI-mistry.html

Charateristics and input data

Python (Pérez-Montero 2014)

Photoionization models (Cloudy)

Reddening-corrected

- ▶ [OII] λ3727 Å
- ▶ [Ne III] λ3868 Å
- ▶ [O III] λ4363 Å
- ▶ [O III] λ5007 Å
- ▶ [N II] λ6583 Å
- ▶ [SII] λλ6717+6731 Å

Uncertainties

RGB.IAA.ES

7-11 October 2019 Addis Ababa · Ethiopia

GRID OF MODELS

Filling factor: 0.1

Density: 500 cm⁻³ (Dors et al. 2014) [2000 cm⁻³]

SED:

- ▶ Big Blue Bump @ 1 Ryd
- Power laws:
 - Non thermal X-rays $\rightarrow \alpha_x = -1$
 - Continuum 2 keV 2500 Å $\rightarrow \alpha_{ox} = -0.8$ [-1.2]

Chemical abundances scaled to oxygen with \odot proportions (except N)

Rubén García-Benito @ IAA-CSIC

6 > 19

GRID OF MODELS Cloudy v.17.01 (Ferland et al. 2017)

Usual conditions NLRs

# models	5865	
12 + log(O/H)	6.9 ⇔ 9.1	0.1 dex
N/O	-2.0 ⇔ 0.0	0.125 dex
log U	-4.0 ⇔ -0.5	0.25 dex

IAUS 356 · Nuclear Activity in Galaxies Across Cosmic Time

RGB.IAA.ES

7-11 October 2019 Addis Ababa · Ethiopia

AGN-HCM WORKFLOW

$$\log(N/O)_{f} = \frac{\sum_{i} \log(N/O)_{i} / \chi_{i}^{2}}{\sum_{i} 1 / \chi_{i}^{2}}$$

$$N2O2 = \log\left(\frac{[NII]\lambda 6583}{[OII]\lambda 3727}\right)$$

$$\chi_{i} = \sum_{j} \frac{(O_{j} - T_{ji})^{2}}{O_{j}}$$

$$N2S2 = \log\left(\frac{[NII]\lambda 6583}{[SII]\lambda \lambda 6717 + 6731}\right)$$
No dependence on excitation

IAUS 356 · Nuclear Activity in Galaxies Across Cosmic Time

Rubén García-Benito @ IAA-CSIC

7-11 October 2019 Addis Ababa · Ethiopia

AGN-HCM WORKFLOW

AGN CONTROL SAMPLE (Dors et al. 2017)

Seyfert 1.9 & 2 galaxies $z \leq 0.1$

44 Cloudy tailored photoionization models from Dors et al. (2017) → D17

3

Reddening corrected emission-line fluxes:

[OII]	λ3727 Å	▶ [OIII]	λ5007 Å
[Ne III]	λ3868 Å	▶ [N II]	λ6583 Å
[O]	λ4363 Å	► [SII]	λλ6717+6731 Å

[O/H] ⊙	0.4 ⇔ 2
[N/O] ⊙	0.3 ⇔ 7.5

No errors in abundances

IAUS 356 · Nuclear Activity in **Galaxies Across Cosmic Time**

Rubén García-Benito @ IAA-CSIC

TESTING THE SED

0.7 dex 🖊 O/H for non-AGN SED

x-axis: AGN SED (power law) y-axis: HII region SED

IAUS 356 · Nuclear Activity in Galaxies Across Cosmic Time

RGB.IAA.ES

7-11 October 2019 Addis Ababa · Ethiopia

HCM: ALL LINES

Galaxies Across Cosmic Time

Addis Ababa · Ethiopia

HCM: USING A FEW LINES (2)

14 🔊 19

HCM: USING A FEW LINES (3)

HCM: USING A FEW LINES (4)

16 🜔 19

HCM: USING A FEW LINES (5)

x-axis: D17 → No errors! y-axis: HCM

IAUS 356 · Nuclear Activity in Galaxies Across Cosmic Time

RGB.IAA.ES

ABUNDANCES: CONSISTENCY WITH THE T_E METHOD

Rubén García-Benito @ IAA-CSIC

7-11 October 2019 Addis Ababa · Ethiopia 18 > 19

CONCLUSIONS

2019MNRAS.489.2652P

https://www.iaa.csic.es/~epm/HII-CHI-mistry.html

AGN-HCM code base on photoionization models

- Estimation (and errors!) of:
 - Total oxygen abundances
 - ► N/O
 - Ionization parameter

Few optical lines needed:

- ▶ [OII] λ3727 Å
- [Ne III] λ3868 Å
- ▶ [O III] λ4363 Å
- ▶ [O III] λ5007 Å
- ▶ [N II] λ6583 Å
- ▶ [SII] λλ6717+6731 Å

Can be apply to a large number of objects

Consistent with the \int_{e}^{E} method

Need of ICFs for NLRs if using only optical lines

IAUS 356 · Nuclear Activity in Galaxies Across Cosmic Time

RGB.IAA.ES

A new tool to derive chemical abundances in Type-2 Active Galactic Nuclei

• RUBÉN GARCÍA-BENITO •

E. Pérez-Montero \oplus O.L. Dors \oplus J.M. Vílchez \oplus M.V. Cardaci \oplus G.F. Hägele

IAUS 356 · NUCLEAR ACTIVITY IN Galaxies across cosmic time

