
1

A Hybrid Shared-Memory Parallel Max-Tree
Algorithm for Extreme Dynamic-Range Images

Ugo Moschini, Arnold Meijster, and Michael H.F. Wilkinson, Senior Member, IEEE

Abstract—Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical
way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms
exist to build trees and compute attributes for images of any bit depth. However, we show that the current parallel algorithms perform
poorly already with integers at bit depths higher than 16 bits per pixel. We propose a parallel method combining the two worlds of
flooding and merging max-tree algorithms. First, a pilot max-tree of a quantized version of the image is built in parallel using a flooding
method. Later, this structure is used in a parallel leaf-to-root approach to compute efficiently the final max-tree and to drive the merging
of the sub-trees computed by the threads. We present an analysis of the performance both on simulated and actual 2D images and 3D
volumes. Execution times are about 20× better than the fastest sequential algorithm and speed-up goes up to 30− 40 on 64 threads.

Index Terms—Connected filters, hierarchical image representation, parallel algorithms.

F

1 INTRODUCTION

Max-trees [1], or component trees, are versatile and
efficient data structures that represent the connected compo-
nents at every threshold level of an image in a hierarchical
fashion, through parent relationships between nodes. Leaf
nodes represent the image maxima. The connected compo-
nents organised in such trees can be filtered with different
strategies [1], [2] and they can model different types of con-
nectivity [3]. For these reasons, they are powerful tools for
image information mining and visualization tasks. Recent
applications are in the field of astronomy [4], [5], [6], [7],
[8] and remote sensing [9], [10], [11], to identify structures
such as galaxies or building footprints from satellites. Fig. 1
shows an example of the segmentation of astronomical
objects using a filter based on the noise statistics in the
image [8]. Many current applications rely on high dynamic-
range or floating point imagery, due to either the increasing
sensitivity and technological improvements of the instru-
ments or simply to the type of measurement observed,
e.g. radio emissions and CT scans. Astronomical or remote
sensing images routinely show high dynamic range integers
or floating point values. In the rest of the paper, we refer
to images or volumes up to 64-bit integers or single or
double precision floating point values per element as XDR
(extreme dynamic range). In Section 5, we show that there
is no state-of-the-art parallel algorithm suitable for building
max-trees of XDR images. Existing parallel algorithms rely
on partitioning the image and building sub-trees of each
partition that are then merged in the final max-tree. We
will show that merging sub-trees of XDR images is costly
and makes the parallel building phases of no use. In this
paper, we provide a parallel algorithm which deals well
with XDR images. It opens up the possibility of creating
max-trees representing the whole image up to 40 times faster
on 64 processors. It is not necessary to divide an image in

• The authors are with the Johann Bernoulli Institute, University of Gronin-
gen, P.O. Box 407, 9700 AK Groningen, The Netherlands.
E-mail {u.moschini,a.meijster,m.h.f.wilkinson}@rug.nl

(a)

(b)

Fig. 1: (a) image containing stars and two large interacting
galaxies; (b) output of connected filtering: identified objects
and nested structures are coded in different colours.

smaller sections or lower its dynamic range. If the image is
split, structures can be broken up and artifacts are expected.
Finding the optimal way to quantize a priori the intensities
is often not trivial. For example, CT scans and optical or
radio astronomical images show objects close to the level
of noise (e.g., the filament in Fig. 1): a complete and exact
max-tree permits an accurate computation of measures [8],
[12], [13] to identify accurately interesting structures and it
can then be pruned at a later stage without losing important
information. Furthermore, scale-invariant, shape filters used
in e.g. vessel enhancement [14], or tree-based shape-space
filtering [15] require complete max-trees.

2

0

16384

32768

49152

65536

x
(a)

0

1

2

3

4

x
(b)

C0
3

?
C0

2

@@R

C1
2

��	
C0

1

?
C0

0

(c)

Fig. 2: (a) represents a 16-bit integer 1D image. (b) is a quantized image after mapping the original intensities onto 4
intensities. (c) illustrates the max-tree structure of connected components of the quantized image shown in (b).

Several sequential max-tree algorithms suitable for XDR
images exist. They can be divided in two classes. Root-to-
leaf flooding methods start from the root node, which is a
pixel with the lowest intensity, and perform a depth-first
traversal of the connected components at higher intensities
[1], [16]. Leaf-to-root merging methods start from the image
maxima [17] or work on sorted pixels that are merged into
nodes of a tree using Tarjan’s union find algorithm [18], [19].
The parallel solution proposed in this work combines the
most efficient root-to-leaf flooding and leaf-to-root merging
algorithms to derive a two-stage, parallel algorithm suit-
able for XDR imagery. To tackle the problem of the costly
merging phase, the idea is to create initially a pilot max-
tree of a quantized version of the input image. The pixel
intensities are quantized over a low number of values, equal
to the number of threads of the parallel program. Using
a low number of quantization levels, the existing parallel
algorithm based on hierarchical queues [20] performs well
in building the pilot max-tree. This tree is used as a support
data structure during a parallel refinement stage that yields
the final max-tree of the input image. Without the support of
the pilot tree, the high cost of merging the sub-trees together
would still be present. The term “refinement” comes from
the fact that the whole process of building the final max-tree
can be seen as a refining operation on the pilot max-tree.
In this last phase, the quantization is used to partition the
pixels according to their intensities, rather than spatially.

2 THE MAX-TREE STRUCTURE

The image domain can be fully partitioned into connected
components. Connected components are sets of path-wise
connected pixels of maximal extent, having the same in-
tensity value. When filtering an image, components can be
preserved or removed according to a threshold value on a
given attribute [2]. For example, regions with area smaller
than a certain value or with a certain shape [21], [22] are
deleted from the image. Efficient filtering is implemented
by organising connected components in a tree structure, on
which filtering reduces to pruning nodes in the tree and
assigning new intensities. Several rules state how the nodes
in the tree are removed and new intensities are assigned [1],
[21]. Given an image f , a peak component P i

h is defined
as the set of all the pixels of a connected component of the
thresholded image Th(f), where Th(f) = {p | f(p) ≥ h}.

Of course, there can be many connected components at each
level h. These components are indexed by i. Connected
components can be organized in a max-tree structure, where
each peak component P i

h in the image corresponds to a node
Ci

h. For example, Fig. 2c shows the max-tree structure of the
1-D image in Fig. 2b. The arrows denote a parent relation
between the nested components.

3 STATE OF THE ART SEQUENTIAL ALGORITHMS
FOR XDR IMAGES

We can divide the max-tree building algorithms into two
categories: root-to-leaf flooding and leaf-to-root merging. Fol-
lowing the latter approach, Najman and Couprie [19] de-
scribed an algorithm to build a max-tree using Tarjan’s
union-find [18] method. Berger et al. [5] published a more
memory efficient version which we will refer to as the
“Berger algorithm” in the following. The sequential Berger
algorithm is suitable for finely quantized or even floating
point images, i.e. XDR images. Both Tarjan’s and Berger
algorithms will be explained in more details in Section 4.

Root-to-leaf algorithms follow the idea presented in the
paper from Salembier et al. [1]. A depth-first construction
for the tree is used, starting from the pixel with lowest
intensity. The main drawback of this approach is faced
precisely with XDR images, and is due to the fact that it
uses hierarchical queues to handle the pixel values during
the flooding. It scales linearly with the number of grey
levels and with floating point values the worst-case time
complexity is O(N2) [20], with N the number of pixels.
Memory complexity is O(N + G), with G the number of
intensities, possibly equals to N in XDR images. Wilkin-
son [16] presented a new sequential algorithm that is based
on a priority queue and a stack, based on a combination of
the algorithms in [1] and [23]. It cancels the costly effect of
updating the hierarchical queues when dealing with XDR
images. The memory usage is simply linear in the data
size. Therefore, the size of the data structures does not
scale proportionally to the range of the possible intensity
values. A similar problem was addressed with the leaf-
to-root algorithm in [17] that uses a priority queue that
is intrinsically O(N2 logN) [24]. Both the approaches by
Berger et al. and by Wilkinson deal well with XDR images
in the sequential case, with the former faster than the latter,
but with a larger memory footprint.

3

4 TWO IMPORTANT MAX-TREE ALGORITHMS

As mentioned in the Introduction, our new parallel algo-
rithm is based on a two-step process involving building the
pilot max-tree of a quantized version of the input image and
a refinement phase that builds the final tree of the original
image. We will describe our hybrid algorithm in Section 6,
but for now it is important to point out that the two steps are
based on two existing algorithms. The first step is based on
the parallel method in [20] (see Section 4.3), while the second
step, that forms the core of our novel parallel solution, is
based on the sequential Berger algorithm (see Section 4.2). A
good knowledge of these two algorithms is essential to fully
understand how we modified and combined them together
to our end. Both algorithms are based on the Tarjan’s union-
find algorithm [18] introduced in the following section.

4.1 The Tarjan’s union-find algorithm

The union-find algorithm by Tarjan [18] was designed to
keep track of disjoint sets. Image connected components do
not overlap, and therefore examples of disjoint subsets of the
image domain. Each set is described by a tree, rooted in an
arbitrary element of the set chosen to be the representative
for that set. Each root points to itself, while the other
elements point to their parent. To determine if two elements
belong to the same set, it is sufficient to check if they share
the same root. The shorter the root path, the more efficient
this becomes. Tarjan proposed an efficient algorithm to
maintain a collection of disjoint sets. Its complexity is quasi-
linear [18]. His method uses three operations on the set
elements p, q, namely MakeSet(p), FindRoot(p), Union(p,q).
Makeset(p) makes the p element a singleton set; FindRoot(p)
returns the root of the tree containing p; Union(p,q) imple-
ments the merging of the two sets containing elements p
and q. A union-find algorithm used for the computation of
attribute openings and closings was proposed in [24] where
it was suggested it could possibly be suitable for parallel
implementation. Pixels are processed in grayscale order, so
peak components could be processed simultaneously. Peak
components are created and then merged, their attributes
being updated. Najman et al. [19] later adapted the union-
find approach to build max-trees.

In the rest of the paper, any rooted tree will be rep-
resented as an array of node structures. Each structure
contains a parent pointer parent and the area attribute value
in area. Other attributes can be computed as explained in [2],
but we used area for simplicity. This representation involves
one node structure per image pixel. The execution of the
union-find method will set the parent pointers accordingly
to the connected components (disjoint sets). Actually, only
the nodes which have a parent node at a lower intensity
are necessary to represent the whole tree and hold the
correct attribute values. These nodes are called level roots [20]
(known also as canonical elements in [19]).

4.2 The sequential Berger algorithm.

The sequential Berger algorithm [5] uses the Tarjan’s method
and structures to build the max-tree. Parent pointers in the
tree are correctly updated via the union-find algorithm. For
a fast computation of the parent pointers, root nodes of

Algorithm 1 Pseudo-code of the Berger algorithm. The
output is the max-tree of image f , in the node array.

1: procedure RUNBERGER(Image f)
2: S ← SORTPIXELSDECREASING(f);
3: for all pixel p ∈ S do
4: node[p].parent← p; zpar[p]← p;
5: for all pixel q neighbours of p with zpar[q] 6= −1 do
6: r ← FINDROOT(q);
7: if r 6= p then
8: zpar[r]← p; node[r].parent← p;
9: node[p].Area← node[p].Area+node[r].Area;

10: end if
11: end for
12: end for
13: end procedure
14: procedure FINDROOT(Pixel p)
15: if zpar[p] 6= p then
16: zpar[p]← FINDROOT(zpar[p]);
17: end if
18: return zpar[p];
19: end procedure
20: procedure INIT(Image f)
21: for all pixel p ∈ f do
22: zpar[p]← −1;
23: node[p].parent← −1;
24: node[p].Area← 1;
25: end for
26: RunBerger(f);
27: end procedure

Algorithm 2 Concurrent construction of the max-tree for
thread th on K threads.

1: procedure PARALLELHIERARCHIALQALGORITHM(Thread
th, Image partition P)

2: m← argmin(P); . pixel in P with minimum intensity
3: Add m to the Queue at level P (m);
4: isV isited[m]← true;
5: levelroot[P (m)]← m;
6: FLOOD(P (m), P, 0); . see Alg. 3
7: i← 1; q ← th;
8: while (th + i < K) ∧ (q%2 = 0) do
9: Wait to glue with right-hand neighbour;

10: for all Edges (u,v) b/w partition Pth and Pth+i do
11: CONNECT(th, i, (u, v)); . see Alg. 4
12: end for
13: i← 2 · i; q ← q/2;
14: end while
15: if th 6= 0 then
16: Notify left-hand neighbour;
17: Wait for Thread 0;
18: end if
19: end procedure

every disjoint set must be accessed efficiently (path com-
pression). The FINDROOT procedure at lines 14-19 in Alg. 1
is now also used to implement path compression: the root
node of a set is efficiently found by letting each element in
the set point directly to it. Since path compression cannot
be applied on the parent pointers directly because it would
destroy the hierarchy of the nodes, an auxiliary data struc-
ture is used: the array zpar with length equal to the num-
ber of elements (pixels) in some image f . Therefore, path
compression is applied onto the zpar structure, that contains
the root nodes of disjoint sets while they are computed. As
Alg. 1 shows, function INIT(f) initialises the data structures

4

zpar and node. The area attribute is set to 1 for all the pixels
(singleton sets). Then, the Berger algorithm is run: pixels are
sorted and retrieved from S in decreasing order. Function
RUNBERGER(f) ultimately returns the tree with the correct
parent pointers of the tree. When a pixel p is retrieved
from the sorted array, it is marked as processed by setting
zpar[p] = p (line 4 in Alg. 1). Following the way the union-
find algorithm works, the already processed neighbours of
p are checked and the set made of just p is merged with the
neighbouring existing sets, updating the area attribute, to
form a new connected component rooted in it. That is the
core of the union-find procedure. On floating point images,
the building algorithm by Najman and Couprie mentioned
in Section 3 is said to have better performance [5] than the
Berger one thanks to a technique called union-by-rank [18].
Union-by-rank avoids creating degenerate trees in flat zones
by keeping as small as possible the depth of the trees.
This problem arises because the last processed pixel always
becomes the new root. A detailed explanation is in [18]. If
the Najman and Couprie algorithm is modified by disabling
union-by-rank, then the Berger algorithm becomes not only
more memory efficient, but also faster. We will show that
our two-step parallel solution does not use union-by-rank,
thus making the Berger algorithm the best choice.

4.3 The parallel hierarchical queue algorithm

The algorithm reported in this section is a parallelization
of the sequential algorithm in [1]. A thorough description
is found in the work by Wilkinson et al. [20]. It follows a
root-to-leaf approach and it is based on a hierarchical FIFO
queue. The queue Queue has a number of entries equal to
number of levels (intensities) in the image. It is initialised
with the lowest intensity pixel in the image at line 3 in Alg. 2
and the recursive root-to-leaf flooding starts from there. The
flooding process populates the queue. The parallelization of
a queue-based algorithm is never trivial, but it is possible to
partition the image f into sections P , build trees of every
section and then merge them together. In the sequential
algorithm [1], pixels were given arbitrary labels to signal
that they belong to a certain component. That makes it
hard to implement the merging, because pixels need to be
relabelled. The algorithm in [1] was adapted to use the same
tree structures as in the Tarjan’s method and to be consistent
with the union-find approach by letting each element of a
component point directly to the first pixel found. This allows
a union-find type merging of the nodes in the merging
phase. Alg. 2 shows how the max-tree of a partition P of f
assigned to each thread is built and how the data structures
are initialised. Array isVisited keeps track of the visited pix-
els, while array levelroot is used to hold the latest level root at
the currently flooded intensity level. Through the recursive
approach, the hierarchy is built branch by branch, keeping
track of the level roots of the currently explored branch.
The flooding procedure is illustrated in Alg. 3. We know
that each connected component is characterised by a unique
element (level root): the set of nodes that an element belongs
to is rooted in such unique element. Path compression is
implemented by making the elements point directly to the
level root (see line 11 in Alg. 3). The Union routine that
sets the root of one of the trees to the root of the other one

Algorithm 3 FLOOD procedure implements the root-to-leaf
flooding approach based on a priority queue. The procedure
uses thisarea as reference parameter as in C. The output is
the max-tree of the image partition P in the node array.

1: procedure FLOOD(Level lev, Partition P , Attribute
thisarea)

2: area← thisarea;
3: while Queue at level lev is not empty do
4: Extract pixel p from the Queue at level lev;
5: area← area + 1;
6: for all neighbours q of p with q ∈ P do
7: if isV isited[q] = false then
8: isV isited[q]← true;
9: if levelroot[f(q)] = not set then

10: levelroot[f(q)]← q;
11: else
12: node[q].parent← levelroot[f(q)];
13: end if
14: Add q to the Queue at level f(q);
15: if f(q) > lev then
16: childarea← 0; fq ← f(q);
17: while fq > lev do
18: fq ←FLOOD(f(q), P, childarea);
19: end while
20: area← area + childarea;
21: end if
22: end if
23: end for
24: end while
25: m← lev − 1;
26: while m ≥ 0 ∧ levelroot[m] = not set do
27: m← m− 1;
28: end while
29: if m ≥ 0 then
30: node[levelroot[lev]].parent← levelroot[m];
31: end if
32: node[levelroot[lev]].Area← area;
33: levelroot[lev]← not set; thisarea← area;
34: return m;
35: end procedure

is implemented in the flooding procedure by adjusting the
parent pointers. Our pilot max-tree construction described in
Section 6.1 is based on a modified version of the FLOOD. It
will be shown that the only difference lies in the definition
of level root and the way the array levelroot is handled.

Once the trees of the partitions have been built, the issue
is how to merge them together. All the trees are stored in the
node array: each root node of the partition trees has a parent
pointer equal to −1. Thread 0 eventually computes the final
merging that yields a correct max-tree of f . Lines 7-15 of
Alg. 2 refer to this process. The crucial step is the procedure
CONNECT invoked at line 11 of Alg. 2 and reported in
Alg. 4 for each pair of neighbouring nodes u,v between two
adjacent partitions. Their parent pointers are followed down
in the tree until they meet in a node or in the root node. If u
and v belong to a component that was split in two partitions,
one of the two level roots is chosen as the new representative
and pointers and area value are updated in the chosen level
root, with area and areatemp variables ensuring a correct
accumulation of the attribute value in the hierarchy. The
updating is propagated down till the root of the tree or until
the same level root is reached (see the while loop at line 8
of Alg. 4). The implementation of this phase is not trivial. It

5

Algorithm 4 Code of the CONNECT procedure. Symbol ⊥ is
defined as the root node of every sub-tree and f(⊥) = −∞.

1: procedure CONNECT(Thread th, Edge (u, v))
2: area← 0; areatemp← 0;
3: x← GETLEVELROOTOF(u);
4: y ← GETLEVELROOTOF(v);
5: if f(x) < f(y) then
6: Swap(x,y);
7: end if
8: while x 6= y ∧ x 6=⊥ do
9: z ← GETLEVELROOTOF(node[x].parent);

10: if f(z) >= f(y) ∧ z 6=⊥ then
11: node[x].Area← node[x].Area + area;
12: x← z;
13: else
14: areatemp← node[x].Area + area;
15: area← node[x].Area;
16: node[x].Area← areatemp;
17: node[x].parent← y; x← y; y ← z;
18: end if
19: end while
20: if y =⊥ then
21: while x 6=⊥ do
22: node[x].Area← node[x].Area + area;
23: x← GETLEVELROOTOF(node[x].parent);
24: end while
25: end if
26: end procedure

shows similarities with the merge sort algorithm. We refer
to the work in [20] for a detailed explanation and proof of
correctness. For our purposes, however, it is important to
stress the fact that while working nicely on images with
low quantization (8, 12 or 16 bits per pixel), this merging
approach turns out to be impracticable in case of XDR
images. The exact merging points are checked parsing the
trees from the leaf nodes till the root node, in the worst case,
for every edge. Therefore, the complexity of a CONNECT
operation grows exponentially with the bit depth, as shown
in the following Section 5. Thus, we propose a different
approach to implement the merging of sub-trees in our two-
step parallel algorithm.

5 ISSUES WITH POSSIBLE PARALLEL ALGORITHMS
FOR XDR IMAGES

While looking for a parallel version of the state-of-the-art
sequential algorithms presented in Section 3 that can deal
with very high-dynamic range images, we made a first
attempt implementing straight away a parallel version of
the method by Wilkinson [16], based on priority queues that
uses the same merging method as the hierarchical queue
algorithm of Section 4.3. That is, the merging phase for
XDR images becomes very costly and makes the parallel
algorithm of no use when dealing with floating point or
32-bit integer images. Even though the sequential Berger
algorithm could be used to build the max-trees of the image
partitions, this would not solve the problem because it lies
in the merging phase, which is independent of how the sub-
trees are built. Fig. 3 shows indeed that higher bit depths
cause a huge drop in performance already on two threads,
at a bit depth of about 16 - 20 bits per pixel. Also in [25],
the exponential complexity of merging the sub-trees as the

8 12 16 20 24 28 32
0

0.5

1

1.5

2

2.5

M
e

g
a

p
ix

e
ls

 p
e

r
s
e

c
o

n
d

Bit depth

10 Mpx image: 1-thread
10 Mpx image: 2-threads
1 Gpx image: 1-thread
1 Gpx image: 2-threads

(a)

8 12 16 20 24 28 32
0

0.5

1

1.5

2

2.5

S
p

e
e

d
−

u
p

Bit depth

10 Mpx image: 2-threads
1 Gpx image: 2-threads

(b)

Fig. 3: (a) shows the performance of the parallel algo-
rithm based on priority queues on images with randomly
generated floating point values. The two-threaded version
performs better than the single-threaded only up to 16-20
bits per pixel. With higher bit depths, the cost of merging
cancels any benefit. (b) Speed-up is close to its optimal value
up to about 16 bits per pixels, then it drops dramatically.

number of bits increases was shown for several building
algorithms and it was stated that parallel algorithms are
unsuitable for data at high bit depths.

The algorithm by Berger et al. [5] does not lend itself
in a natural way to be parallelized, due to the way an
image should be partitioned: the pixels are in fact sorted
by intensity and retrieved in descending order during the
leaf-to-root process. That leads to a partitioning criterion
based on pixel intensity rather than pixel position. A spa-
tial partition would in principle be possible with a trivial
implementation: the preservation of the ordering could be
achieved by maintaining a semaphore for each pixel, as
remarked in [20]. Unfortunately, that would make the
approach impracticable because of the high overhead due
to the many synchronizations and locking sections needed.
Another solution could be to assign a thread to every max-
imum in the image. Again, the ordering could be preserved

6

0
T0 T1 T2 T3

x

(a)
0

T0

T1

T2

T3

x

(b)

Fig. 4: Given a 1-D image, an example of spatial partition
of the pixels is given in (a). In (b), the image is partitioned
according to ranges of intensities.

h0 h1 h2 ... hK

S0 S1 SK−1
...

Fig. 5: Pixels are sorted according to their intensity, from low
to high. A partition Si is made of the pixels with intensity
values within hi and hi+1.

by putting a barrier synchronization method on every in-
tensity level change: this way, the leaf-to-root process would
proceed in parallel, intensity by intensity. Mutual exclusion
structures would be needed on every pixel that shows a
level change with respect to its neighbouring pixels, leading
in the worst case to having a barrier for every pixel and
therefore no parallelism at all. Due to the high number of
mutexes, it does not look like a feasible algorithm. Therefore,
those possibilities were not explored any further.

6 THE PARALLEL HYBRID ALGORITHM

To tackle the merging problem, we start first by computing
a quantized version f̄ of the input image f . A tree called
pilot max-tree can be built in parallel using any existing
algorithm due to the low number of quantized values. The
merging phase is not an issue here. We chose the algorithm
illustrated in Section 4.3, because we found it faster than
other methods on such low-quantized values. The image is
divided into spatial partitions as in Fig. 4a, one for each
thread. The next step is a parallel refinement stage that
yields the final max-tree, with the correct attributes. This
process can be seen as a “refinement” operation that shapes
the tree of the quantized image into the max-tree of the
original image. The pilot max-tree allows for correct attribute
computation and merging of the sub-trees. Each thread of
the refinement stage uses the sequential Berger algorithm of
Section 4.2 on the pixels of its partition and takes advantage
from the pilot max-tree to compute correctly the attributes
and merge with the other sub-trees that are being built
by the threads. In this parallel approach, a trivial spatial
partition is not suitable, because leaf-to-root algorithms like
the Berger algorithm work on pixels that have been ordered
by intensity. The image must be partitioned into spatially
irregular partitions as in Fig. 4b, so that each partition
contains only the pixels in a given range of intensities and
each thread can start the execution from the local maxima
present in a given range. As Fig. 5 shows, S0, ..., SK−1

form K partitions. S0 is defined as the set of all the pixel
locations with intensities in the interval [h0, h1), S1 contains
the pixels with values in the interval [h1, h2) and so on,
where h0 < h1 < h2 and h0 is the lowest intensity in the
image. The set of the intensity values in Si is indicated with
Hi, representing the interval [hi, hi+1). Let K be the number
of threads of the parallel refinement stage. The total number
of partitions that is created must be equal to K, so that
every thread handles all the pixels within a given range of
intensities. The intensity ranges Hi are chosen so that about
the same number of pixels is present within each partition. It
is not always possible to achieve a perfect load balance, since
it is constrained by the fact that there cannot be any overlap
among the intensity ranges in two different sets Hi. Since
the refinement stage of our parallel solution is based on the
Berger algorithm, pixel coordinates will need to be sorted
by their intensity value in the original image. A parallel
stable radix sort [26] was used. It relies on the parallelization
of the inner counting sort algorithm [27] used iteratively
within the radix sort. Radix sort was originally developed
for integers: we adapted it to support floating point values
following the methods in [28] and [29], also mentioned in
other works [30], [31]. We are going to explain more in detail
the pilot max-tree and the refinement stage. We highlight
that without the support of the pilot tree, the fact of having
intensity-based partitions is not enough per se to avoid
the high cost of merging the sub-trees of each Si. When
two regions that belong to a given partition are separated
by a peak with maximum higher than the partition they
belong to, it would be necessary to go down through all the
intensity levels to check at which point the regions should be
merged together. The pilot max-tree structure was designed
exactly to reduce the cost of such operations.

6.1 The pilot max-tree

The pilot max-tree is simply the max-tree of the quantized
image f̄ . We chose the root-to-leaf approach by [20], illus-
trated in Section 4.3, to build it. The nodes of the pilot max-
tree are stored in the array node qu, whose length is equal
to the number of pixels. Due to the low number of intensity
levels in f̄ , the merging phase does not represent a problem
and the algorithm of Section 4.3 is perfectly suitable. We
underline that the quantized image does not show new peak
components that are not present in the original image. In
fact, according to our definition of quantization, the actual
hierarchy of components in the original image now belong-
ing to a partition Si is simply flattened on the ancestor
component with lowest intensity in Si. The same ancestor
component is then present in the original image as well
as in the quantized image. The flattening can be observed
comparing Fig. 2a and Fig. 2b. Exploiting the fact that there
are no new peak components, a relation is enforced between
the level root nodes (introduced in Section 4.1) of the pilot tree
and those of the final refined tree: the former are a subset
of the latter. We will see how the merging phase of the sub-
trees and their attributes relies on such nodes. To ensure
this correspondence, the only change made on the max-
tree implementation in [20] is a stricter definition of level
root of a connected component. The level root node where
the attributes (area, in our case) are accumulated is not any

7

Algorithm 5 FLOOD PILOT builds the pilot max-tree.

1: procedure FLOOD PILOT(Level lev, Partition P , Attribute
thisarea)

2: area← thisarea;
3: while Queue at level lev is not empty do
4: Extract pixel p from the Queue at level lev;
5: area← area + 1;
6: for all neighbours q of p with q ∈ P do
7: if isV isited[q] = false then
8: isV isited[q]← true;
9: if levelroot[g(q)] = not set then

10: levelroot[g(q)]← q;
11: else
12: KEEPLOWESTLEVELROOT(q);
13: end if
14: Add q to the Queue at level f̄(q);
15: if f̄(q) > lev then
16: childarea← 0; fq ← f̄(q);
17: while fq > lev do
18: fq ← FLOOD PILOT (f̄(q), P, childarea);
19: end while
20: area← area + childarea;
21: end if
22: end if
23: end for
24: end while
25: m← lev − 1;
26: while m ≥ 0 ∧ levelroot[m] = not set do
27: m← m− 1;
28: end while
29: if m ≥ 0 then
30: node qu[levelroot[lev]].parent← levelroot[m];
31: end if
32: node qu[levelroot[lev]].Area← area;
33: levelroot[lev]← not set; thisarea← area;
34: return m;
35: end procedure

Algorithm 6 Implements the stricter definition of level root.

1: procedure KEEPLOWESTLEVELROOT(Pixel q)
2: cond1← f(q) < f(levelroot[f̄(q)]);
3: cond2← f(q) = f(levelroot[f̄(q)])∧q < levelroot[f̄(q)];
4: if cond1 ∨ cond2 then . set the new lowest level root
5: node qu[levelroot[f̄(q)]].parent← q;
6: levelroot[f̄(q)]← q;
7: end if
8: node qu[q].parent← levelroot[f̄(q)];
9: end procedure

more an arbitrary pixel of the component but it is chosen to
correspond to the pixel with lowest coordinate among the
pixels belonging to the component. Function FLOOD PILOT
in Alg. 5 is the same as in Alg. 3 except for the call to
function KEEPLOWESTLEVELROOT, detailed in Alg. 6, that
implements the new definition of level root. At the end,
the array node qu contains the pilot max-tree. The loop with
the recursive call to FLOOD PILOT at line 17 in Alg. 5 stops
when a local maximum has been reached. We make explicit
here that, in the refinement stage, the last processed pixel of
every connected component in the original image f will be
the one with the lowest image coordinate. Since a stable sort
was chosen, the pixels with equal value in every original
component are sorted so that the pixel with the lowest
coordinate appears after all the others with equal intensity.

The stricter definition of level root, the quantization step
and the stable sort grant that the level roots of the pilot max-
tree are a subset of the level roots of the refined tree. We note
that union-by-rank that makes the algorithm by Najman and
Couprie faster [5] than the Berger one cannot be used in our
solution: the correspondence among the level roots in the
pilot and in the final max-tree would not be guaranteed any
more. Union-by-rank could possibly be tweaked, but at the
cost of checking for every processed pixel a correspondence
to a level root and, anyway, not always returning a balanced
set, due to this restriction.

6.2 The refinement stage
The correct max-tree representation of the original image
f is the output of the refinement stage. In the refinement
stage, the pilot max-tree is not modified. Hence, all threads
can safely access it without need for synchronization mech-
anisms. It can be seen indeed as a parallel version of the
algorithm proposed by Berger et al. [5]. The final max-
tree nodes (the tree structure) are stored in an array called
node ref, with length equal to the image size. Every node
corresponds to a pixel, as in the pilot max-tree, with the
same structure as before (parent pointer, the area attribute
value) with the addition of a value to store the intensity
of the pixel after filtering. The whole algorithm is detailed
in Alg. 7. As recalled in Section 4.2, our solution uses the
same array structure named zpar in Section 4.2. The final
tree is created in parallel by K threads that work on the
original pixel values of f . The number of threads is equal
to the number of partitions S. Each thread Ti retrieves the
sorted pixels belonging to its partition Si, each one with the
same quantized intensity, in descending order. Computation
starts from pixels corresponding to the local maxima of the
partition Si. Like in the sequential Berger algorithm, for ev-
ery pixel p retrieved from the sorted array and belonging to
the partition Si, the set of its neighbour pixels is calculated.
As shown in Section 4.2, in the Berger algorithm only the al-
ready processed neighbours are considered: given that only
the pixels with intensity equal to or larger than the current
pixel’s intensity could have been retrieved (processed) from
the sorted array, only two situations are possible, described
in Section 6.2.1 and Section 6.2.2.

6.2.1 Intensity f̄(q) ∈ Hi

If the intensity f̄(q) of the neighbour pixel q belongs to the
set Hi, defined at the beginning of Section 6, managed by
thread Ti, the computation of the tree continues as in the
sequential Berger algorithm. This is detailed at lines 22-29
of the pseudocode in Alg. 7.

6.2.2 Intensity f̄(q) 6∈ Hi

As in the Berger algorithm, only the neighbours already
visited must be considered. Since pixels must be processed
in decreasing order of intensity, for a thread Ti, if f̄(q) < hi

then neighbour q is considered as not yet been visited and
the computation goes on with retrieving the next neighbour.
On the other hand, if f̄(q) ≥ hi+1 then q is considered
visited, since it has a higher intensity. In this case, the
neighbour q belongs to a partition Sj with i < j. The
sections of the tree that are being built by threads Ti and Tj

8

Algorithm 7 Pseudo-code of the refinement stage.

1: procedure REFINEMENT(Thread i, Partition Si)
2: lwb← min(Si);
3: upb← max(Si);
4: qi← quantized intensity managed by Ti;
5: for j = upb to lwb do
6: p← SortedArray[j];
7: zpar[p] = p;
8: for all neighbours q of p do
9: if f̄(q) > qi then . case of Section 6.2.2

10: desc← DESCENDROOTS(q, i);
11: if node ref [desc].parent = not set then
12: node ref [desc].parent← p;
13: node ref [p].Area ← node ref [p].Area +

node qu[desc].Area;
14: else
15: z ← FINDROOT(node ref [desc].parent);
16: if z 6= p then
17: node ref [z].parent← p;
18: zpar[z]← p;
19: node ref [p].Area ←

node ref [p].Area + node ref [z];
20: end if
21: end if
22: else if f̄(q) = qi then . case of Section 6.2.1
23: if zpar[q] 6= −1 then
24: r ← FINDROOT(q);
25: if r 6= p then
26: node ref [r].parent← p;
27: zpar[r]← p;
28: node ref [p].Area ←

node ref [p].Area + node ref [r].Area;
29: end if
30: end if
31: end if
32: end for
33: end for
34: end procedure
35:
36: procedure DESCENDROOTS(Pixel q, int i)
37: c← q;
38: while f̄(node qu[c].parent) > i do
39: c← node qu[c].parent;
40: end while
41: return c;
42: end procedure

must be now be merged. In the sequential algorithm, since
all the pixels are processed sequentially from the highest to
the lowest intensity, the pixel q was indeed visited before.
In the parallel algorithm, a tricky situation is encountered:
pixels in Si are processed concurrently with the pixels in
Sj , and not after. Moreover, another problem is faced: the
procedures of merging and updating the attributes take
place while the sub-trees of partitions Si and Sj are still
being built and the attributes of a component have not
been determined completely. To handle this situation, the
pilot max-tree is used to retrieve the attribute of the closest
descendant of the component to which p belongs in the pilot
max-tree, and to drive the merging of both sub-trees and
attributes. For example, in case of the area attribute, the area
of the closest descendant is correct and independent of the
actual hierarchy of the components at higher levels.

These steps are detailed in lines 9-21 of Alg. 7. Given
a pixel p ∈ Si and a neighbour pixel q with higher quan-

a

x

q1

p q2

Fig. 6: The same quantized image as in Fig. 2b is reported
here. Level roots of the pilot max-tree are indicated with
open circles. When a pixel p is retrieved from the sorted
array, its neighbours q1 and q2 are processed, according
to the Berger algorithm. Since f̄(q1) > f̄(p), function DE-
SCENDROOTS is called on the pilot max-tree, starting from
node node qu[q1]. Node node qu[a] is returned, because its
parent points to the partition where p belongs.

tized intensity, the function DESCENDROOTS parses the pilot
max-tree structure starting from the node node qu[q]. The
pixel desc with lowest coordinate among the pixels of the
quantized component is returned. The node node ref [desc]
corresponds to the closest descendant of the peak component
that contains p, as Fig. 6 illustrates. Index desc addresses a
level root in the pilot max-tree and therefore it must also
address a level root of the refined tree, as explained in
Section 6.1. The parent pointer of node ref [desc] is then
checked, at line 11 of Alg. 7. If it was not set, p is set as parent
and the node node qu[desc] of the pilot max-tree is used to
update the attributes consistently. If the parent pointer has
already been set, the algorithm proceeds as in the Berger
algorithm: function FINDROOT (same as in Alg. 1) is called
on node ref [desc].parent to retrieve the current parent
pointer z. If z is different from the current pixel p, its parent
is set to p and the attributes of the node ref [p] in the final
tree are merged with the attributes of node ref [z]. Fig. 7
illustrates the two cases above.

6.3 Thread-safety
The first possible reason of concern stems from which de-
scendant node is returned by the DESCENDROOTS, at line
10 in Alg. 7: if two pixels are processed and have same de-
scendant as neighbour, two situations arise. If the two pixels
carry the same quantized value, they will just be processed
sequentially by the same thread, thus concurrent writing on
node ref [desc] at line 12 and 13 will not happen. If the two
pixels are being processed by two different threads, again no
race condition occurs: the two calls to the DESCENDROOTS
function will always return two different descendant nodes.
In fact, the closest descendant of two components at two dif-
ferent quantized intensity levels simply cannot be the same.
The DESCENDROOTS function itself has a read-only access
to the node qu structure. Calls to the FINDROOT function are
also thread-safe. In fact, every thread sets only the entries
of the zpar structure corresponding to the locations of the
pixels under its partition: no mutex structure is necessary on
zpar. The only mutexes required by both the pilot max-tree
building and the refinement stage are only the ones required
to flag that the threads completed their task and processed
all the pixels in their partition.

9

192

255192

128

 64

 64

 0

 0

 0

 0 0 0

 0

 0 0 0

(a)

3

43

2

 1

 1

 0

 0

 0

 0 0 0

 0

 0 0 0

(b)

q

a

 p

(c)

q

a

 p

p
1

(d)

Fig. 7: (a) original image; (b) a quantization of (a); (c) pixel
p is extracted from the sorted array and its neighbour q
that belongs to a higher partition is processed. Pixel a is
the closest descendant of p, returned by DESCENDROOTS.
If node ref [a] has no parent set yet, then the pixel p is
assigned as parent, see white dotted arrow. (d) Later, pixel
p1 will be extracted, its neighbour q processed and once
again a is returned by DESCENDROOTS. Its parent pointer
was set in step (c). Therefore, as in the Berger algorithm,
pixel p1 is accessed and p1 is set as parent of node ref [p].

7 TIME COMPLEXITY AND MEMORY USE

The time complexity of the parallel algorithm is defined by
the complexity of its three main steps: sorting the pixels,
building the pilot max-tree, and building the final refined
tree. The parallel radix sort can be decomposed into three
phases, each one executed at each iteration of the radix sort.
In the first phase, each thread in parallel implements the
counting sort on its local partition: the complexity of this
operation is O(N/K), where N is number of pixels in the
image and K the number of threads. When every thread
has completed its partial histogram, thread T0 computes the
whole image histogram by summing the local histograms
in O(K · 2r), calculates the prefixes in O(2r) and signal
them to the other threads in O(K · 2r). Value r is equal
to 16: decomposing the image data types in chunks of 16
bits has proven to result in a cache-friendly size of the
histograms that are used in the counting sort algorithms.
It also limits the number of iterations to at most four in
case of 64 bit double values. Lastly, every thread writes the
pixel positions in the sorted array in parallel in O(N/K). A
similar and more detailed analysis was presented in [27].

The complexity related to building the pilot max-tree in
parallel can be summarised as follows. On K threads, the
worst case time complexity of the building phase of each
tree for every partition of the quantized image (therefore
with G = K intensities) is O(N(C + G)/K) with C the
connectivity and N the number of pixels, which reduces to
O(NC/K+N), since G = K. Interestingly, the second term
of the addition shows no parallelism. We recall here that
this is a worst-case scenario, that is rarely seen in practice.
We refer to the description in [20], [24] for more details.

As for the merging phase, if K neighbouring partitions
have J bridging edges, the total merging has complexity
O(JG logN logK) [20]. For every merge, we need to go
down O(G) nodes, in a worst case scenario. Since the image
was quantized in K intensities, usually equal to 16, 32, 64,
the merging phase is not excessively costly.

The refinement stage shows aspects in common with the
Berger algorithm and its complexity analysis is similar to the
one in [19]. It is known from [5] that the algorithm by Berger
et al. has quasi-linear complexity, once the pixels have been
sorted, if union-by-rank [18] is applied. In our case, as
mentioned at the end of Section 6.1, the ranking technique
is disabled and the Berger algorithm has O(N logN) com-
plexity. In our parallel implementation, the only difference
with the original sequential Berger algorithm is the function
DESCENDROOTS that parses the pilot max-tree. This function
is not in the set of operations defined by the union-find al-
gorithm for which quasi-linearity was demonstrated in [18].
Its complexity is then analysed in the following. For every
neighbouring pixels with intensity larger than the intensity
of the current pixel, the node hierarchy in the pilot max-
tree is parsed from the quantized level of the neighbour
to the quantized level of the current pixel. Therefore, the
time complexity of DESCENDROOTS cannot be larger than
O(GCN/K) with C number of neighbours and K the
number of threads. Since G = K, the complexity is equal
to O(CN), linear in the number of pixels in the worst case
scenario with CN/K higher neighbouring pixels.

Memory-wise, the parallel algorithm needs two arrays to
store the original image and the quantized image, the sorted
array and the zpar array: they require together 4N memory
space, assuming that pixel values, pixel coordinates and
(area) attribute are encoded with the same number of bits.
Moreover, the pilot max-tree and the final tree require two
arrays of length N , the former with each entry containing
the parent index and the attribute value, the latter the
parent index, the attribute value and the value after filtering.
In total, they require additional 5N memory space. The
sequential Berger algorithm required 6N memory space: it
needs the array for the original image, the sorted array, the
zpar array and the tree structure as an array of length N ,
each one containing attribute value, parent index and value
after filtering. Summarising, the parallel algorithm needs
3N memory more than the Berger algorithm due to the
arrays to store the quantized image and the pilot max-tree.

8 PERFORMANCE TESTING

The proposed parallel algorithm was implemented in C
with POSIX Threads. The code is available at http://www.
cs.rug.nl/∼michael/ParMaxTree Timings were performed
on a Dell R815 Rack Server with four 16-core AMD Opteron
processors and 512 GB of RAM memory. It comes with 32
floating point units, each one shared by a pair of cores. A
measure of the performance is given in processed megapix-
els per second (Mpx/s), to normalize for image size. The
attribute computed is area or volume. Other attributes,
e.g. Hu’s moments [34], could be easily computed. The
minimum timing of a series of runs of the algorithm was
considered. Experiments with 1, 2, 4, 8, 16, 32 and 64 threads
were performed. Table 1 summarises all the images tested,

http://www.cs.rug.nl/~michael/ParMaxTree
http://www.cs.rug.nl/~michael/ParMaxTree

10

(a) (b) (c)

Fig. 8: (a) ESO image - Release No.: eso1242. Credit: ESO/VVV, Survey/D. Minniti. Acknowledgement: Ignacio Toledo, Martin
Kornmesser; (b) a sample section of the cropped PRAGUE image; (c) average of the 1080 frames of the LOFAR cube.

TABLE 1: A summary of the images used for testing the performance of the algorithm.

Image Name Data type Bits per pixel Megapixels Type Image content Source

Float1 float 32 870 2D Random pixel values
Float4 float 32 3480 2D Random pixel values
Double1 double 64 870 2D Random pixel values
Double4 double 64 3480 2D Random pixel values

ESO float 32 7143 2D Luminosity from RGB channels ESO Paranal Observatory [32]
PRAGUE float 32 4032 2D Luminosity from RGB channels Jeffrey Martin / 360cities.net
LOFAR float 32 1134 3D Field of radio sources LOFAR radio telescope [33]
Aneurysm float 32 134 3D Blood vessels with aneurysm www.volvis.org

TABLE 2: Performance in Mpx/s and completion time of the sequential Berger algorithm and our parallel hybrid algorithm.

Image Name Data type Mpx/s (Berger) Mpx/s (Hybrid 64 threads) Time (Berger) Time (Hybrid 64 threads)

Float1 float 0.45 5.47 32 min 2.6 min
Float4 float 0.28 4.65 3 hours 28.1 min 12.5 min
Double1 double 0.42 4.52 34.46 min 3.21 min
Double4 double 0.26 4.09 3 hours 46.23 min 14.2 min

ESO float 0.28 5.86 7 hours 2 min 20.3 min
PRAGUE float 0.44 7.16 2 hours 32.9 min 9.39 min
LOFAR float 0.23 5.42 1 hour 21.9 min 3.49 min
Aneurysm float 0.40 6.42 5.56 min 20.92 seconds

0 10 20 30 40 50 60
0

1

2

3

4

5

6

M
e

g
a

p
ix

e
ls

 p
e

r
s
e

c
o

n
d

Number of threads

Float1
Float4
Double1
Double4

(a)

0 10 20 30 40 50 60
0

5

10

15

20

25

S
p

e
e

d
−

u
p

Number of threads

Float1
Float4
Double1
Double4

(b)

Fig. 9: Performance measurements: processed Mpx per second (a) and speed-up (b) for Float1, Float4, Double1 and Double4.
The pixels carry randomly generated floating points with single (square marker) and double (circle marker) precision.

11

with their resolution and data type. Table 2 reports the
performance and wall-clock times for all the images tested.

8.1 Performance tests on simulated images

Figure 9 shows the results for the images in the first four
rows of Table 1. These images have a resolution of about
1 Gigapixel (Gpx) and 4Gpx and they are referred to as
Float1, Float4, Double1 and Double4, according to their
data types and sizes. Bit depths of 32 and 64 bits per pixel
correspond to float and double types, respectively. They
contain randomly generated pixel values with a uniform
distribution. On the images with double values, Double1
and Double4, our parallel solution obtains a throughput of
4.52 Mpx/s and 4.09 Mpx/s on 64 threads, respectively. On
the Double4 image, the wall-clock time needed to build the
component tree drops from 5 hours and a half to 14 minutes,
going from one to 64 threads. The sequential Berger algo-
rithm is the fastest sequential algorithm for XDR images.
It yields a throughput of 0.42 Mpx/s and 0.26 Mpx/s on
Double1 and Double4 images, respectively. Wall-clock times
are 34 minutes for the Double1 image and about 4 hours for
the Double4 image. A similar behaviour can be observed
for the other two images with float values, Float1 and
Float4. Other tests were performed on satellite imagery,
changing the values from 8-bit integers into float values
and filling lower order decimals so to roughly preserve
the image structures, but with the same intensity rarely
repeated twice. They showed indeed comparable perfor-
mance, perhaps even slightly better due to the smoother
features that are rarely found in random-valued images: the
number of calls to the DESCENDROOTS is lower. For the
four simulated images mentioned above, the influence of the
pixel data type is observed only in the sorting phase: when
dealing with double values, the radix sort has to perform
two iterations more than in the float case. The other three
steps, the creation of the quantized image, the pilot max-tree
construction and the refinement stage are independent of
the pixel data type and they take the same time.

As shown in Fig. 9b, the speed-up is close to optimal
up to 8 threads, it keeps on being at a good level up to 16
threads and then it starts to decrease. Looking at the speed-
up of the four phases separately in Fig. 10, we see that the
creation of the quantized image, the building of the pilot
max-tree and the refinement stage scale better than the sort-
ing phase. In the sorting phase, every iteration of the radix
sort needs a barrier synchronization methods that degrade
the parallelism. The speed-up values got in the parallel
sorting algorithm confirm the values obtained in an other
work [35] that describes a very similar implementation.
Moreover, the speed-up of the phase where the quantized
image is created is not as high as expected: probably the
huge number of memory accesses in a short time fills the
memory bandwidth of the machine, thus preventing the
performance of this “embarrassingly parallel” section of the
code from scaling properly. It is worth to point out that on
64 threads the speed-up values of the section related to the
pilot max-tree vary greatly from 25 to 50 between Fig. 10a
and Fig. 10b. We observed that for image sizes around 4Gpx
or more, the time spent on building the pilot max-tree on
a single thread is about 4 times longer than on 2 threads,

rather than 2 times as expected. It could be due to cash
trashing or latency issues as the processor accesses farther
memory banks. Function KEEPLOWESTLEVELROOT is not
the reason: the same performance are observed also in the
max-tree algorithm in [20], where this function is not called.

8.1.1 Considerations on completion time and speed-up
For the Double4 image on 64 threads, the fractions of time
spent by each phase with respect to a complete execution of
the algorithm are: sorting the pixels, 25%; creating the quan-
tized image, 1%; creating the pilot max-tree, 6%; refinement
stage, 68%. For the Float4 image on 64 threads, results are:
sorting the pixels, 15%; creating the quantized image, 1%;
creating the pilot max-tree, 6%; refinement stage, 78%. The
plot in Fig. 11 shows the impact of each phase on the total
completion time of the algorithm for several images. The
refinement stage takes on average ten times more than the
time needed to build the pilot max-tree. The impact of the
function KEEPLOWESTLEVELROOT was also tested. Overall,
it affects the completion time of less than 1%.

In an earlier implementation, it was noticed that the pilot
max-tree had an extremely poor speed-up. That happened
because, after the tree was built, a technique called level
root fix [20] or canonization [5] was applied. The purpose of
this technique is to ensure that the parent pointer of every
node points directly to the level root node of its component
(or the component below). At first, it was thought to be
useful because it would ease the task of the DESCENDROOTS
function, lowering the number of hops on the pilot max-
tree and thus providing robustness towards worst-case sit-
uations to the algorithm. The level root fix can be done in
parallel, but from experiments performed on several images,
it turned out that there was no real benefit coming from its
use, especially on higher degrees of parallelism. The plot
in Fig. 12 shows similar completion times for four different
ways to implement the level root fix on the Double4 image:
in a centralized way, in a parallel way, within the DESCEN-
DROOTS function and finally without any fixing. With the
first two ways, the refinement stage was a bit faster, but the
extra time needed by the level root fixing procedures raised
the completion time of the pilot max-tree and cancelled any
benefit. The level root fixing in the DESCENDROOTS made
the performance worse on a high number of threads. We
chose not to apply level root fixing on the pilot max-tree.

8.2 Performance tests on real-world images

Our parallel algorithm was also tested on four real-world
images with very high-dynamic range, summarised in the
lower half of Table 1. The first image, see Fig. 8a (ESO
image in Table 1), was taken at the ESO Paranal Obser-
vatory in Chile by the VISTA infra-red wide-field survey
telescope. It portraits more than 84 millions stars in the
central regions of the Milky Way [32]. A section of about
7Gpx was cropped from the original 9Gpx so to fit the
memory specifications of our machine when executing the
parallel algorithm. It is an RGB image that we reduced to
one float luminance channel, by weighting and summing
the channels, as 0.2126R + 0.7152G + 0.0722B. The final
size of the ESO luminance image used in the tests is about
28 GB. The image named PRAGUE in the Table 1 is another

12

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60
S

p
e

e
d

−
u

p

Number of threads (Float4)

Sorting
Quantized image
Pilot max-tree
Refinement

(a)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

S
p

e
e

d
−

u
p

Number of threads (LOFAR)

Sorting
Quantized image
Pilot max-tree
Refinement

(b)

Fig. 10: Speed-up of each phase as function of the number of threads on the (a) Float4 and (b) LOFAR images.

Float1 Float4 ESO LOFAR Aneurysm
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

S
e

c
o

n
d

s
 /

 I
m

a
g

e
 s

iz
e

Sorting
Quantized image
Pilot max-tree
Refinement

Fig. 11: The completion time of each separate phase of the
parallel algorithm, normalized with the image size.

1 2 4 8 16 32 64
0

0.5

1

1.5

2

2.5
x 10

4

S
e

c
o

n
d

s

Threads (Double4)

Centralized
Parallel
In DescendRoot()
No fixing

Fig. 12: Completion time of the parallel algorithm with
several level root fixing techniques used on image Double4.

RGB image processed in the same way: it depicts a 4Gpx
section of the city of Prague, cropped from the original
18Gpx panorama image of the whole city, courtesy of Jeffrey
Martin/360cities.net. A section of the cropped image is
shown in Fig. 8b. The third image, referred to as LOFAR, see
Fig. 8c, is a 3D volume that represents a portion of the sky
in a 1024 x 1024 (spatial) x 1081 (temporal) image of a field
of radio sources, i.e. astronomical objects, corresponding to
6 hours of observation of the LOFAR [33] radio telescope
in The Netherlands. It contains float values. Our code
was extended to support 3D volumes, using 6-connectivity.
The fourth image is a smaller 3D volume containing an
angiography scan of an aneurysm. Its values have 16 bits per
pixel: they have been stretched to float values on 32 bits,
randomly filling with less significant decimals. The plot in
Fig. 13a shows a throughput of 5.85 Mpx/s and 5.41 Mpx/s
on 64 threads for the ESO and LOFAR image, respectively.
The aneurysm volume shows a value of 6.41 Mpx/s. All the
results show similarities with the results shown in Fig. 9
for the images with random float values. The LOFAR
image shows a better speed-up, about 40 on 64 threads: the
refinement stage reaches a speed-up of 50 on 64 threads. The
throughput of the sequential Berger algorithm is 0.28 Mpx/s
and 0.23 Mpx/s for the ESO and LOFAR images, between
20 and 23 times slower than the parallel approach. The same
trend appears on the aneurysm image, whose maximum
throughput is 6.42 Mpx/s for the parallel algorithm and
0.40 Mpx/s for the sequential algorithm. The parallel pro-
cessing of PRAGUE shows a throughput of 7.16 Mpx/s and
0.44 Mpx/s for the sequential Berger, a higher throughput
than the ESO image. Such behaviour was expected because
the PRAGUE image contains larger patches with the same
tonality: the refinement stage is faster because the number
of hops in FINDROOT or DESCENDROOTS is lower than in
the ESO case: there, the stellar detail increases the number
of small components, with large intensity differences with
the neighbouring pixels. Looking at the phases separately
confirmed that: the refinement stage for the PRAGUE image
performs better, while the other phases behave similarly.

13

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

M
e

g
a

p
ix

e
ls

 p
e

r
s
e

c
o

n
d

Number of threads

ESO
PRAGUE
LOFAR
Aneurysm

(a)

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

S
p

e
e

d
−

u
p

Number of threads

ESO
PRAGUE
LOFAR
Aneurysm

(b)

Fig. 13: Processed Mpx per second (a) and speed-up (b) computed on the ESO, PRAGUE, LOFAR and Aneurysm images.

We find interesting to highlight the performance also in
terms of absolute execution time. As reported in the last two
columns of Table 2, the sequential Berger algorithm takes 7
hours and 1 hour and 20 minutes, for the ESO and LOFAR
images. Wall-clock times decrease to 20 and 4 minutes, re-
spectively, when our parallel algorithm is run on 64 threads.
The PRAGUE image shows similar behaviour, going from
2 hours and a half to 10 minutes on 64 threads. Recently,
experiments were made to perform object segmentation in
high resolution 3D volumes containing floating point values
related to the radio spectral line emission of galaxies [13].
In this work, noise background was subtracted from the
volume and almost half of the pixels belonged to the root
node. The load is highly unbalanced towards the thread
managing the 0-valued pixels. A straightforward solution
would be to treat those pixels independently, because it is
known that they belong to the root node.

9 CONCLUSIONS

In this paper we proposed a parallel algorithm to build
max-trees of very high-dynamic range images efficiently.
Existing parallel methods have shown good performance
only up to 16 bits per pixel. Our algorithm combines in a
two-step process the root-to-leaf flooding and leaf-to-root
merging approaches, hence we named it “hybrid”. A max-
tree of a quantized version of the input image, called pilot
max-tree, is built to support the merging of the sub-trees
built later with a parallel leaf-to-root approach, efficiently
and correctly. It has proven to deal well even with floating
point images or volumes at high resolutions. On 64 threads,
speed-up values range between an average of 23 for the
simulated images and about 30 for the real-world images
tested. It was shown that the max-tree can now be com-
puted about 14 times and 20 times faster, on artificial and
real-world images respectively, than the fastest sequential
method that supports XDR images, implemented by Berger
et al. [5]. Our parallel solution enables the processing of
kinds of images that was prohibitive before.

In future work, optimal load balance and quantization
for highly skewed grey-level distributions will be investi-
gated. A further development could be to apply the same
parallel approach to alpha-trees [36]. They are graph struc-
tures extensively used in remote-sensing image analysis.
Even though remote-sensing images do not always show
high-dynamic range values, the dissimilarity metrics used to
identify the component partitions that generate branches of-
ten present floating point values. Such partitions trees could
be built in parallel and merged with a similar technique.

ACKNOWLEDGEMENTS

This work was funded by the Netherlands Organisa-
tion for Scientific Research (NWO) under project number
612.001.110. The authors would like to thank Prof. A. Ger
de Bruyn for making the LOFAR dataset available.

REFERENCES

[1] P. Salembier, A. Oliveras, and L. Garrido, “Antiextensive con-
nected operators for image and sequence processing,” IEEE T.
Image Process., vol. 7, no. 4, pp. 555–570, Apr 1998.

[2] E. J. Breen and R. Jones, “Attribute openings, thinnings, and
granulometries,” Comput. Vis. Image Und., vol. 64, no. 3, pp. 377
– 389, Nov 1996.

[3] G. K. Ouzounis and M. H. F. Wilkinson, “Mask-based second-
generation connectivity and attribute filters,” IEEE T. Pattern Anal.,
vol. 29, no. 6, pp. 990–1004, Jun 2007.

[4] M. Masias, J. Freixenet, X. Lladó, and M. Peracaula, “A review of
source detection approaches in astronomical images,” Mon. Not.
R. Astron., vol. 422, no. 2, pp. 1674–1689, 2012.

[5] C. Berger, T. Géraud, R. Levillain, N. Widynski, A. Baillard, and
E. Bertin, “Effective component tree computation with application
to pattern recognition in astronomical imaging,” in Proc. Int. Conf.
Image Proc. 2007, vol. 4, Sep 2007, pp. 41–44.

[6] B. Perret, S. Lefevre, C. Collet, and E. Slezak, “Connected com-
ponent trees for multivariate image processing and applications
in astronomy,” in Proc. 20th Int. Conf. Pattern Rec., Aug 2010, pp.
4089–4092.

[7] G. K. Ouzounis and M. H. F. Wilkinson, “Hyperconnected at-
tribute filters based on k-flat zones,” IEEE T. Pattern Anal., vol. 33,
no. 2, pp. 224–239, Feb 2011.

14

[8] P. Teeninga, U. Moschini, S. C. Trager, and M. H. F. Wilkinson, “Im-
proved detection of faint extended astronomical objects through
statistical attribute filtering,” in Mathematical Morphology and Its
Applications to Signal and Image Processing, ser. LNCS, J. A. Benedik-
tsson, J. Chanussot, L. Najman, and H. Talbot, Eds. Springer
International Publishing, 2015, vol. 9082, pp. 157–168.

[9] M. H. F. Wilkinson, P. Soille, M. Pesaresi, and G. K. Ouzounis,
“Concurrent computation of differential morphological profiles on
giga-pixel images,” in Proc. Int. Symp. Math. Morphology (ISMM)
2011, ser. LNCS, P. Soille, M. Pesaresi, and G. K. Ouzounis, Eds.
Springer Berlin/Heidelberg, 2011, vol. 6671, pp. 331–342.

[10] M. Pesaresi, M. H. F. Wilkinson, U. Moschini, and G. K. Ouzounis,
“Concurrent computation of connected pattern spectra for very
large image information mining,” in ESA-EUSC-JRC 8th Conference
on Image Information Mining. Publications Office of the European
Union, 2012, pp. 21–25.

[11] M. Pesaresi, G. Huadong, X. Blaes, D. Ehrlich, S. Ferri, L. Gueguen,
M. Halkia, M. Kauffmann, T. Kemper, L. Lu, M. A. Marin-
Herrera, G. K. Ouzounis, M. Scavazzon, P. Soille, V. Syrris, and
L. Zanchetta, “A global human settlement layer from optical
hr/vhr rs data: Concept and first results,” Selected Topics in Applied
Earth Observations and Remote Sensing, IEEE Journal of, vol. 6, no. 5,
pp. 2102–2131, Oct 2013.

[12] P. Serra, R. Jurek, and L. Flöer, “Using negative detections to
estimate source-finder reliability,” Publications of the Astronomical
Society of Australia, vol. 29, pp. 296–300, 2012.

[13] U. Moschini, P. Teeninga, M. H. F. Wilkinson, N. Giese, D. Punzo,
J. M. van der Hulst, and S. C. Trager, “Towards better segmenta-
tion of large floating point 3D astronomical data sets: first results,”
in Proceedings of the 2014 conference on Big Data from Space (BiDS’14).
Publications Office of the European Union, 2014, pp. 232–235.

[14] M. A. Westenberg, J. B. T. M. Roerdink, and M. H. F. Wilkinson,
“Volumetric attribute filtering and interactive visualization using
the max-tree representation,” IEEE T. Image Process., vol. 16, pp.
2943–2952, 2007.

[15] Y. Xu, T. Géraud, and L. Najman, “Connected filtering on tree-
based shape-spaces,” IEEE transactions on pattern analysis and ma-
chine intelligence, vol. 38, no. 6, pp. 1126–1140, 2016.

[16] M. H. F. Wilkinson, “A fast component-tree algorithm for high
dynamic-range images and second generation connectivity,” in
Proc. Int. Conf. Image Proc. 2011, Sept 2011, pp. 1041–1044.

[17] R. Jones, “Connected filtering and segmentation using component
trees,” Comput. Vis. Image Und., vol. 75, no. 3, pp. 215 – 228, 1999.

[18] R. E. Tarjan, “Efficiency of a good but not linear set union algo-
rithm,” J. ACM, vol. 22, pp. 215–225, 1975.

[19] L. Najman and M. Couprie, “Building the component tree in quasi-
linear time,” IEEE T. Image Process., vol. 15, no. 11, pp. 3531–3539,
Nov 2006.

[20] M. H. F. Wilkinson, H. Gao, W. H. Hesselink, J.-E. Jonker, and
A. Meijster, “Concurrent computation of attribute filters on shared
memory parallel machines,” IEEE T. Pattern Anal., vol. 30, no. 10,
pp. 1800–1813, Oct 2008.

[21] E. R. Urbach and M. H. F. Wilkinson, “Shape-Only Granulometries
and Grey-Scale Shape Filters,” in Proc. Int. Symp. Math. Morphology
(ISMM) 2002, H. Talbot and R. Beare, Eds., vol. 6. CSIRO
Publishing, Apr 2002.

[22] E. R. Urbach, J. B. Roerdink, and M. H. F. Wilkinson, “Connected
shape-size pattern spectra for rotation and scale-invariant classifi-
cation of gray-scale images,” IEEE T. Pattern Anal., vol. 29, no. 2,
pp. 272–285, Feb 2007.

[23] W. H. Hesselink, “Salembier’s min-tree algorithm turned into
breadth first search,” Inf. Process. Lett., vol. 88, no. 5, pp. 225–229,
Dec 2003.

[24] A. Meijster and M. H. F. Wilkinson, “A comparison of algorithms
for connected set openings and closings,” IEEE T. Pattern Anal.,
vol. 24, no. 4, pp. 484–494, Apr 2002.

[25] E. Carlinet and T. Géraud, “A comparison of many max-tree
computation algorithms,” in Mathematical Morphology and Its Ap-
plications to Signal and Image Processing, ser. LNCS, C. Hendriks,
G. Borgefors, and R. Strand, Eds. Springer Berlin Heidelberg,
2013, vol. 7883, pp. 73–85.

[26] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Intro-
duction to Algorithms, 2nd ed. McGraw-Hill Higher Education,
2001.

[27] N. Amato, R. Iyer, S. Sundaresan, and Y. Wu, “A comparison
of parallel sorting algorithms on different architectures,” College
Station, TX, USA, Tech. Rep., 1998.

[28] P. Terdiman. (2000, Apr.) Radix sort revisited. [Online]. Available:
http://codercorner.com/RadixSortRevisited.htm

[29] M. Herf. (2001, Dec.) Radix tricks. [Online]. Available:
http://stereopsis.com/radix.html

[30] E. Lengyel, Game Engine Gems 2, 1st ed. A. K. Peters, Ltd., 2011.
[31] L. Ha, J. Krüger, and C. T. Silva, “Fast Four-Way Parallel Radix

Sorting on GPUs,” Computer Graphics Forum, vol. 28, no. 8, pp.
2368–2378, 2009.

[32] R. K. Saito, D. Minniti, B. Dias, M. Hempel, M. Rejkuba, J. Alonso-
Garcia, B. Barbuy, M. Catelan, J. P. Emerson, O. A. Gonzalez, P. W.
Lucas, and M. Zoccali, “Milky way demographics with the VVV
survey. i. the 84-million star colour-magnitude diagram of the
galactic bulge,” Astronomy & Astrophysics, Aug 2012.

[33] “LOFAR lofar telescope and its applications,” www.lofar.org, ac-
cessed: 2014-01-28.

[34] M.-K. Hu, “Visual pattern recognition by moment invariants,” IRE
T. Inform. Theor., vol. 8, no. 2, pp. 179–187, Feb 1962.

[35] L. K. Rashid, W. Hassanein, and M. A. Hammad, “Analyzing and
enhancing the parallel sort operation on multithreaded architec-
tures.” J. Supercomput., vol. 53, no. 2, pp. 293–312, Aug 2010.

[36] G. K. Ouzounis and P. Soille, The alpha-tree algorithm. Publications
Office of the European Union, Dec 2012.

Ugo Moschini obtained a MSc in Computer Sci-
ence from the University of Pisa, Italy, in 2010.
After working on university satellite operations
at the European Space Agency (ESA) Research
and Technology Centre in The Netherlands, he
was appointed at the ESA Operations Centre
in Germany. He developed a method to com-
press satellite housekeeping telemetry in real-
time, patented in the EU and USA. In 2016,
he obtained a PhD from the Johann Bernoulli
Institute at the University of Groningen, working

on image analysis tools, connected and hyperconnected morphological
filters with application to astronomical and remote sensing images.

Arnold Meijster obtained a PhD in computing
science from the Institute of Mathematics and
Computing Science, University of Groningen,
The Netherlands in 2004, on parallel algorithms
for morphological image processing. After that
he worked at the Centre for High Performance
Computing and Visualization of the University of
Groningen, working on development of parallel
and distributed algorithms for various high per-
formance computing applications. He is currently
lecturer at the Johann Bernoulli Institute, and the

institute for artificial intelligence and cognitive engineering (ALICE) of
the University of Groningen.

Michael Wilkinson obtained an MSc in astron-
omy from the Kapteyn Laboratory, University
of Groningen in 1993, after which he worked
on image analysis of intestinal bacteria at the
Department of Medical Microbiology, University
of Groningen, obtaining a PhD at the Institute
of Mathematics and Computing Science, also
in Groningen, in 1995. He was appointed as
researcher at the Centre for High Performance
Computing in Groningen working on simulating
the intestinal microbial ecosystem on parallel

computers. During that time he edited the book “Digital Image Analysis
of Microbes” (John Wiley, UK, 1998) together with Frits Schut. After
this he worked as a researcher at the Johann Bernoulli Institute for
Mathematics and Computer Science (JBI) on image analysis of diatoms.
He is currently senior lecturer at the JBI, working on morphological
image analysis and especially connected morphology.

http://codercorner.com/RadixSortRevisited.htm
http://stereopsis.com/radix.html
www.lofar.org

