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Abstract: In some super-resolution techniques, adjacent points are illuminated at different times. 

Thereby, their locations and light intensities can be detected even if the images are very blurred 

due to diffraction. According to conventional theories, the points’ inner details cannot be recovered 

because the images’ high frequency components are removed due to the diffraction-limit. But this 

study finds an exception, and full information can be extracted from a diffraction-blurred image. 

In such a “resolvable condition”, neither profile nor detail information is damaged by diffraction. 

Thereby, it can be recovered reversibly by solving equation systems in spatial domain or frequency 

domain. This condition is tightly relevant to the imaging condition of existing super-resolution 

techniques. Based on the condition, a method is proposed which can achieve unlimited high 

resolutions in principle, and its effectiveness is demonstrated by both theoretical analysis and 

simulation experiments. It can also work without any observed image outside the region of interest. 

Simulation experiments also show its tolerance to certain level of noise. 

Keywords: Super-resolution; diffraction-limit; resolvable condition; isolated lighting; positive 

effective PSF; equation system 

 

1. Introduction 

When an object (sample) is imaged by a conventional light microscope, the result is not an ideal 

image which shows sharp details. Instead, it is equivalent to the ideal image convolved with a Point 

Spread Function (PSF) whose central part is called Airy disk. Therefore, even a point is infinitely 

small, its image is an Airy-disk-shaped pattern rather than an ideal point. In 1873, Ernst Abbe first 

described the diffraction-limit: for two points with a distance less than a half of visible light’s 

wavelength, i.e., about 200~300nm, their images overlap each other and cannot be resolved. 

Usually, the Rayleigh Criterion can be adopted to judge whether points are resolvable. Samples’ 

structures smaller than the diffraction-limit were not resolvable with such microscopes until super-

resolution techniques emerged. These techniques are mainly divided into two categories [1]. The 

first category uses structural-illumination to image the sample multiple times, and then processes 

the resulting images to get a super-resolution image. Representative techniques: STED [2], 

RESOLFT [3], SIM [4], NL-SIM [5], et al. The second category manages to turn on individual 

molecules at different times, i.e., separates them by time, and then also reconstructs a super-

mailto:Edward.Y.Sheffield@hotmail.com


 2 / 24 
 

resolution image. Representative techniques: PALM [6], STORM [7,] PAINT [8], et al. Besides, 

a technique named MINFLUX [9] combines the advantages of the two categories. It can localize 

individual molecules with ultra-high precision. There is a different technique named Expansion 

Microscopy (ExM) [10]. It expands samples physically to resolve structures which are 

unresolvable directly. Besides, there are some other types of super-resolution technique, e.g., 

fluctuation-based and computer-vision-based approaches [11-13]. 

By now, super-resolution techniques have not only break the diffraction-limit, but also improved 

resolutions significantly. In techniques such as STED, PALM, STORM, Confocal, etc., luminous 

points are distant from one another (or there might be only one luminous point at one time). Their 

images (almost) do not overlap, thereby the locations and light intensities of these points can be 

extracted from the blurred image. Inspired by these techniques, we find a “resolvable condition” 

(please refer to METHODS for its definition) relevant to their imaging conditions. In the 

“resolvable condition”, structures (both inter-points and inner-points) smaller than the diffraction-

limit can be extracted directly from the blurred image, even if the points within the structures are 

imaged at the same time. From the point view of frequency, the image’s high frequency part is 

filtered out by the microscope. But the structures’ full information (including both profile and 

details) could still be recovered from the low frequency part, in the “resolvable condition”. Early 

researches have discussed some mathematic theory for recovering signals from low pass data [14], 

while this study finds that the detail information is not damaged by diffraction, in the “resolvable 

condition”; then we proposed a technique to recover a diffraction-blurred image’s Region of 

Interest (ROI) under this condition, in spatial domain and in frequency domain respectively. 

2. Methods 

2.1. Background analysis 

This study finds a condition and solves a problem in the field of optics. But the methods are partly 

based on computer science and information technique. Thereby, some background knowledge 

needs to be introduced briefly. First of all, an appropriate model should be chosen to represent 

images. In this study, we adopt a classic model widely used in the field of Digital Image Processing 

[15]. An image is divided into several uniform grids, then each grid is treated as a pixel, and its 

light intensity is called a pixel value. As a result, the image is represented as a matrix. The matrix 

(digital image signal) is an approximation of physical image in given sampling rate and 

quantization accuracy. The structure information of samples, which is what people concern, is 

carried in the corresponding digital image signals. In this case, our task is not to localize luminous 

points accurately, but to figure out the light intensity (pixel value) of each grid instead. 

The core of this study is based on the following phenomenon: information can be carried in the 

same signal in different ways. There is a common opinion in the field of Digital Image Processing: 
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a sample’s profile information, which changes slowly in space, corresponds to the low frequency 

part of its image’s Fourier spectrum; while its detail information, which changes fast in space, 

corresponds to the high frequency part. This is true in usual imaging condition because each pixel 

value corresponds directly to a grid in image area. Thereby, the spatial structure information is 

carried directly in pixel values. However, the situation might be different if the information is 

carried indirectly. Strictly speaking, both high frequency and low frequency components are 

concepts attached to signals rather than information. They do demonstrate fast-changing or slow-

changing forms in space domain. But they might not necessarily correspond to the profile or details 

of a sample if the information is not carried directly. 

Here are some simplified examples about information and its carriers. Example 1: if two 

physical points are used to carry information, their amount could represent the integer-value “2”, 

or their distance could represent a real-value such as 123.822253. In this example, the information 

carriers are physical objects. In many other cases, observed signals are used to carry information. 

Example 2: in a Single-Molecule-Localization microscope, the observed image of individual 

molecules is blurred, and the pixel values do not show the molecules’ detailed structure directly. 

But what people concern are the molecules’ locations and light intensities carried by the pixels 

indirectly. Such information can be extracted, with methods such as data fitting, when the 

microscope’s Point Spread Function (PSF) is known. In both of the examples, prior knowledge 

plays a key role, and determines how the information is carried in the signals. In example 1, it tells 

whether the information is carried in the amount or the distance of the two points. In example 2, it 

provides the template required for data fitting, i.e., the PSF. Besides the above examples, there are 

more researches relevant to how information is carried in signals in indirect or implicit ways. 

We find that in a certain condition, observed images always carry the full information of a 

sample’s structure, no matter they are sharp or diffraction-blurred. Therefore, the condition is 

termed “resolvable condition” here, and it has two aspects. 

The first aspect is named isolated lighting (or separated lighting). It means the Region of Interest 

(ROI) in the sample’s image is only affected by its own structure and lighting, and is independent 

of the rest of the sample and the whole surrounding. For example, only one small area of the sample 

is lighted, or only one molecule is turned on, while the rest part and the surrounding are either 

totally dark or have no light collected by the microscope. In practice, an ROI is treated to fulfill 

isolated lighting as long as the effect of the rest part and the surrounding is ignorable. For example, 

all the other light sources are far enough away from the ROI, similar to what happens in some 

super-resolution techniques but may need to be stricter. Such a condition is not difficult to 

implement with existing techniques. But it actually provides very strong prior knowledge because 

it determines infinitely many pixel values (i.e., zeros) outside the ROI. 

The convolution in a light microscope is usually expressed by the following equation: 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = 𝐼𝑑𝑒𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 ∗ 𝑃𝑆𝐹 + 𝑛𝑜𝑖𝑠𝑒 
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But the observed part of the sample, i.e., the ROI only has limited size in real applications. 

Thereby it is also affected by any extra light from other parts or the whole surrounding, especially 

the structures around the ROI. In this case, the above equation should be modified as follows: 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = 𝐼𝑑𝑒𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 ∗ 𝑃𝑆𝐹 +  𝑒𝑥𝑡𝑟𝑎 + 𝑛𝑜𝑖𝑠𝑒 

Where, “extra” means the extra light from other parts or the whole surrounding. In usual case, 

it is an unknown signal, and its values might be large and affect the result significantly. It tends to 

be larger when zooming factor is larger and points’ images overlap more severely. Actually, the 

extra light could even be much greater than the true signal itself when zooming factor is very large. 

For example, Fig. 1a and 1b show samples in normal condition and isolated lighting conditions, 

respectively. The dashed-line rectangles in all figures indicate the ROI, which is 50 × 50 pixels. 

It simulates a physical region of 100 × 100 nm. Thereby, the Airy-disk is about 100 × 100 

pixels, i.e., 200 × 200 nm under this zooming factor. Then, Fig. 1c and 1d is the convolution 

results of 1a and 1b, respectively. The ROI’s light intensities in 1c are overlapped by the images 

of outside structures. But that in 1d is affected by nothing else outside the ROI because the 

surroundings are all dark. As a result, the ROI’s light intensities in 1c are much greater than that 

in 1d. Actually, quantitative analysis shows that the former is more than 8.87 times greater than 

the latter. That means the extra light (unknown) is more than 7.87 times greater than the true signal, 

and submerges it overwhelmingly. Thereby, the ideal image cannot be figured out from the 

equation even when there is no noise at all. But in the condition of isolated lighting, e.g., in Fig. 

1d, the extra light is zero. Therefore, a significant barrier on this approach is entirely eliminated. 

The second aspect is named positive effective PSF, which means that all the values of the 

effective PSF are positive (i.e., greater than zeros). Where, effective PSF means the part of PSF 

which affects the convolution results in the ROI. This aspect might be fulfilled in various situations. 

For example, the effective PSF values are, of course, positive if the PSF is totally positive; this is 

a little stricter than the situation in usual applications [16]. Or, the PSF may have non-positive 

values at its “dark rings”, but only the central part of the PSF (i.e., the Airy disk) affects the 

convolution results in the ROI when the ROI is smaller than the diffraction-limit. In this case, the 

other part of the PSF would only affect the convolution results outside the ROI. Thereby, the 

effective PSF is the central part, whose values are usually all positive, for normal light microscopes. 

In practice, approximate solutions might be figured out sometimes even if the conditions are not 

fulfilled strictly, but the effectiveness would be uncertain. 

The pixels of sharp images carry the full information directly, including both profile and details. 

The blurred images carry not only the profile information directly, but also the full information 

indirectly in the “resolvable condition”. Such a situation of “one carrier, two types of information” 

is somewhat similar to the above example 1. Different ways of carry lead to different methods for 

extraction. Full information can be observed directly in sharp images. (Strictly speaking, 

microscopic images cannot be fully “sharp” because they are always the results of convolution due 
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to diffraction. Fortunately, errors are ignorable when points are distant enough from one another). 

But more steps might be required to extract full information from blurred images, e.g., solving a 

system of equations. This study is based on the aforementioned image model, no matter for space 

domain or frequency domain. Therefore, the task of information extraction is translated into the 

calculation of unknown pixel values, i.e., matrix elements. The rough locations of unknown pixels 

in the images should be estimated first, and this could be done using existing techniques such as 

Single-Molecule-Localization. 

 

Fig. 1. The effect of extra lights on ROI’s convolution results. (a) A sample in normal condition. 

(b) A sample in isolated lighting condition. (c) The convolution result in normal condition. (d) The 

convolution result in isolated lighting condition. The three dashed-line rectangles indicate the ROIs. 

The above phenomenon can also be explained in another way. Assume that a signal (e.g., an 

image) undertakes a certain processing (e.g., convolution). The ideal (original) signal can be 

recovered from the result if the processing is reversible. However, a conventional light microscope 
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filters out the high frequency part of any image, thereby the ideal image cannot be recovered 

reversibly. As mentioned before, the low frequency part of a signal represents its profile, and the 

high frequency part represents its details. Therefore, details (smaller than the diffraction-limit) are 

lost after imaged by the microscope. But the processing (convolution caused by the microscope) 

is reversible in the “resolvable condition”. As a result, the details can be recovered from the blurred 

image or the low frequency part. In the following sections, two recovering methods will be 

described, for space domain and frequency domain respectively. Noises are neglected here and 

considered separately. 

2.2. Method for spatial domain 

The effect of diffraction on imaging is usually modeled as the convolution of PSF with ideal 

images. It diffuses the light intensity of each pixel to other pixels, and thereby lowers the diversity 

of pixel values, i.e., blurs the images. For convenience, we first explain the method on 1D signals. 

Analogous to the aforementioned image model, a 1D range is also divided into several uniform 

segments, and each segment is represented by a value. Let’s take a simple signal as an example, 

as shown by Fig. 2. It has two values which are greater than zero, while all the other values are 

zeros. This is an analogy to the situation that there are only two luminous point. 

 

Fig. 2. The 1D situation of the spatial domain method. (a) Before convolution (the ideal signal). 

(b) During convolution. (c) After convolution (the observed signal). 

Where, Fig. 2a shows the 1D signal before convolution, which named “ideal signal” here. The 

two values in dash line need to be figured out. Fig. 2b shows the situation during convolution, 

where the convolution kernel is already known. It is equivalent to the PSF of a 2D imaging system, 

and called Impulse Response Function (IRF) here. Fig. 2c shows the resulting signal after 

convolution. It is also known already, and named “observed signal” here. The result of convolution, 

i.e., the observed signal looks like the IRF. It is much smoother than the ideal signal, which 

comprises two impulses. For image signals, being smoother usually means being more blurred, 

and harder to identify their details. 

 

a b c 
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However, detail information can be recovered from the observed signal, in the “resolvable 

condition”. For the 1D situation in Fig. 2, the ROI covers the two non-zero values (just like two 

separated pixels in an image). The condition means the observed signal’s values in the ROI are 

only relevant to the ideal signal’s values in the ROI, and the IRF’s values. No other values of the 

ideal signal can affect the convolution result because they are all zeros. In this case, the observed 

signal is the convolution of the ideal signal with the IRF. Therefore, the two unknown values in 

Fig. 2a can be figured out from the known IRF and observed signal. (Otherwise, if the “resolvable 

condition” is not fulfilled, there might be unknown luminous points at unknown locations outside 

the ROI. Their images, which extend infinitely, would overlap the ROI. Thereby, the 

aforementioned relationship would be incorrect). Denote: 

1. The ideal signal’s unknown values are 𝑥𝑎 and 𝑥𝑏 at the left and right, respectively; 

2. The amplitude, i.e., the central value of the IRF is 𝑝; 

3. The IRF has value 𝑞𝑎  at the location of 𝑥𝑎  when its center is at the location of 𝑥𝑏 . 

Therefore, the value 𝑞𝑎 ∙ 𝑥𝑏 is shown by the left dark diamond in Fig. 2b. 

4. The IRF has value 𝑞𝑏  at the location of 𝑥𝑏  when its center is at the location of 𝑥𝑎 . 

Therefore, the value 𝑞𝑏 ∙ 𝑥𝑎 is shown by the right dark diamond in Fig. 2b. 

5. The observed signal has values 𝑦𝑎 and 𝑦𝑏 at the location of 𝑥𝑎 and 𝑥𝑏, respectively. 

Since the observed signal is the convolution of the ideal signal with the IRF, we get the following 

system of equations: 

{
𝑦𝑎 = 𝑝 ∙ 𝑥𝑎 + 𝑞𝑎 ∙ 𝑥𝑏
𝑦𝑏 = 𝑝 ∙ 𝑥𝑏 + 𝑞𝑏 ∙ 𝑥𝑎

        (1) 

The solution of the above system of equations is: 

{
𝑥𝑎 =

𝑝∙𝑦𝑎−𝑞𝑎∙𝑦𝑏

𝑝2−𝑞𝑎∙𝑞𝑏

𝑥𝑏 =
𝑦𝑎

𝑞𝑎
+
𝑝∙𝑞𝑎∙𝑦𝑏−𝑝

2∙𝑦𝑎

𝑝2∙𝑞𝑎−𝑞𝑎
2∙𝑞𝑏

        (2) 

When 𝑝 = 1 and the IRF is symmetrical, i.e., 𝑞𝑎 = 𝑞𝑏 = 𝑞, formula (2) becomes: 

{
𝑥𝑎 =

𝑦𝑎−𝑞∙𝑦𝑏

1−𝑞2

𝑥𝑏 =
𝑦𝑏−𝑞∙𝑦𝑎

1−𝑞2

          (3) 

For example, suppose that the ideal signal is (⋯ 1.2 3.4 ⋯), where the suspension points 

mean infinitely many zeros; the IRF is (⋯ 0.9981 1.0 0.9981 ⋯), where the suspension 

points mean arbitrary values (they do not affect the result in this case); therefore, 𝑝 = 1, 𝑞𝑎 =

𝑞𝑏 = 0.9981; then assume that the observed signal is (⋯ 4.5934 4.5977 ⋯), where 4.5934 

and 4.5977 are the values of 𝑦𝑎  and 𝑦𝑏  respectively, and suspension points mean the other 

values. Substitute these values into formula (2) and we get: 𝑥𝑎 = 1.2 and 𝑥𝑏 = 3.4. In other 

words, the ideal signal is recovered from the observed signal and the IRF. 
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It can be seen that only part of the observed signal and the IRF is used. In fact, it is not necessary 

to use 𝑦𝑎 and 𝑦𝑏 which have the corresponding location to 𝑥𝑎 and 𝑥𝑏. The method also works 

if values at other locations are chosen from the observed signal. In practice, it may be helpful for 

relieving the effect of observation errors if more values are used to build an overdetermined system 

of equations. 

Now we will extend the procedure to 2D signals, e.g., the situation of 2D imaging, as shown by 

Fig. 3. Where, Fig. 3a shows the image in ideal conditions, i.e., without the effect of diffraction. 

Such an image is named “ideal image” in this case. Fig. 3b shows the image observed by the 

microscope, which is named “observed image”. It is the convolution result of the ideal image with 

the PSF, due to diffraction. 

 

Fig. 3. The 2D situation of the spatial domain method. (a) Before convolution (the ideal image). 

(b) After convolution (the observed image). The two dashed-line rectangles indicate the ROI. 

It can be seen that all the pixels in the ideal image equal zeros except in a rectangular ROI. 

Therefore, the condition of isolated lighting is fulfilled. The PSF’s Fourier spectrum is an ideal 

low pass filter, therefore the PSF extends infinitely in space domain. But the PSF’s energy or light 

intensity is mainly concentrated in the central area. The observed image is extremely blurred, and 

looks similar to the PSF. It is very difficult to see any details in the observed image, especially in 

the ROI, which is indicated by a dashed-line rectangle. In fact, the condition of isolated lighting 

does not restrict the ROI’s shape. Even an ROI with many disconnected and irregular areas is 

acceptable, as long as its rough location could be estimated in the observed image. However, one 

easy way is to find a rectangle to cover all the areas, and then treat the rectangle as the ROI. In 

order to decrease the complexity of calculation, the rectangle should be as small as possible. 

Similar to 1D situation, the observed image’s pixels in the ROI are only relevant to the ideal 

image’s pixels in the ROI and the pixels (values) of PSF. The other pixels in the ideal image do 

    

 

b a 
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not affect the result of convolution because they are all zeros. In this case, the observed image is 

the convolution of the ideal image with the PSF. Therefore, the unknown pixels in the ideal image 

can be figured out from the known PSF and observed image. Let’s: 

1. Treat the ideal image’s ROI as an image named 𝑓(𝑘, 𝑙), 𝑘 = 1, 2,⋯ , 𝐾 and 𝑙 = 1, 2,⋯ , 𝐿; 

where 𝐾 and 𝐿 are the amount of the ROI’s row and column. 𝑘 and 𝑙 start from (1, 1) 

at the ROI’s most left-top pixel. 

2. Denote the PSF as image 𝑝(𝑢, 𝑣), and set a coordinate with its origin at the PSF’s center. 

Thereby, the pixel value is 𝑝(0, 0) at the PSF’s center, and both 𝑢  and 𝑣  belong in 

[−∞,+∞]; 

3. Treat the observed image’s ROI as an image named 𝑔(𝑚, 𝑛), where 𝑚 = 1, 2,⋯ ,𝐾 and 

𝑛 = 1, 2,⋯ , 𝐿. 

Let’s take a rotationally symmetrical PSF as an example, and the other PSF could be handled 

similarly. During convolution, let the PSF overlap the ideal image, and align the PSF’s center with 

each pixel in the ideal image’s ROI each time. Then, multiply each pixel in the ideal image’s ROI 

with its corresponding PSF pixel, and accumulate all the results. The accumulative value is the 

observed image’s pixel value in the corresponding location. The above procedure could be 

implemented concisely with a program. In mathematics, this could be expressed with a system of 

linear equations as follows: 

𝐴𝑥 = 𝑦          (4) 

Where: 

𝐴 =

(

 
 
 
 

𝑝(0,0) ⋯ 𝑝(0, 𝐿 − 1) ⋯ 𝑝(𝐾 − 1,0) ⋯ 𝑝(𝐾 − 1, 𝐿 − 1)
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

𝑝(0,−𝐿 + 1) ⋯ 𝑝(0,0) ⋯ 𝑝(𝐾 − 1,−𝐿 + 1) ⋯ 𝑝(𝐾 − 1,0)
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

𝑝(−𝐾 + 1,0) ⋯ 𝑝(−𝐾 + 1, 𝐿 − 1) ⋯ 𝑝(0,0) ⋯ 𝑝(0, 𝐿 − 1)
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

𝑝(−𝐾 + 1,−𝐿 + 1) ⋯ 𝑝(−𝐾 + 1,0) ⋯ 𝑝(0,−𝐿 + 1) ⋯ 𝑝(0,−0) )

 
 
 
 

 

This is a matrix with a size of (𝐾 ∙ 𝐿) × (𝐾 ∙ 𝐿). Then: 

𝑥 =

(

 
 
 
 

𝑓(1,1)
⋮

𝑓(1, 𝐿)
⋮

𝑓(𝐾, 1)
⋮

𝑓(𝐾, 𝐿))

 
 
 
 

 

This is a matrix (vector) with a size of (𝐾 ∙ 𝐿) × 1, and it is actually a sequence of all the pixels 

in the ideal image’s ROI, arranged row by row from top to bottom. Then: 
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𝑦 =

(

 
 
 
 

𝑔(1,1)
⋮

𝑔(1, 𝐿)
⋮

𝑔(𝐾, 1)
⋮

𝑔(𝐾, 𝐿))

 
 
 
 

 

This is also a matrix (vector) with a size of (𝐾 ∙ 𝐿) × 1, and it is actually a sequence of all the 

pixels in the observed image’s ROI, arranged row by row from top to bottom. 

The above 𝐴 is determined by the PSF, and 𝑦 is determined by the observed image. In other 

words, both 𝐴  and 𝑦  are already known, and 𝑥  is actually the rearrangement of the ideal 

image’s unknown pixels. In theory, if we substitute the ideal image’s vector 𝑥 into formula (4), 

the resulting 𝐴𝑥 should equals 𝑦. Accordingly, the ideal image can be get by solving formula (4). 

In the above procedure, only the pixels in the observed image’s ROI are adopted. Actually, if the 

other pixels of the observed image are also used, an overdetermined system could be build 

including more equations. In practice, that may be helpful for improving the method’s capability 

of noise resistance. In this case, the unknowns are still the ideal image’s pixels in the ROI because 

all the other pixels are known to be zeros, in the condition of isolated lighting. 

There are many classic or cutting-edge methods can be adopted for solving the above system of 

equations. Its solvability can be explain as follows. On the one hand, the system of equations 

should obviously have at least one solution, i.e., the ideal image itself. On the other hand, the 

“resolvable condition” has a second aspect, i.e., effective PSF is totally positive. Therefore, the 

elements of matrix 𝐴 are all positive. In addition, the elements of vector 𝑥, i.e., the ideal image’s 

pixels are all non-negative also, thereby 𝐴𝑥 = 0 is true only when 𝑥 = 0. In other words, the 

system of homogeneous linear equations 𝐴𝑥 = 0 only has the zero solution. Therefore, according 

to the property of system of linear equations, the corresponding system of nonhomogeneous linear 

equations 𝐴𝑥 = 𝑦 has only one solution (i.e., the ideal image) [17]. 

In the above procedure, the ideal image is figured out by building and solving a system of 

equations. This seems to be unreasonable in frequency domain because the high frequency part of 

the image has been filtered out by the microscope. However, we find that the full information of a 

sample’s spatial structure can be recovered even with only a small amount of frequency elements 

in the “resolvable condition”. 

2.3. Method for frequency domain 

According to Fourier Optics, convolution caused by diffraction is equivalent to filtering ideal 

images with an ideal low pass filter. Assume that the low pass filter’s amplitude is 1, without loss 

of generality. First, let’s describe the method on a simple 1D signal, as shown by Fig. 4. 
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Fig. 4. The 1D situation of the frequency domain method. (a) The ideal signal including only two 

non-zero values. (b) The corresponding spectrum, where only the most left two values are 

preserved. 

Where, Fig. 4a shows an ideal signal. It has only two unknown values, while all the other values 

are zeros. Therefore, the condition of isolated lighting is fulfilled. Fig. 4b shows the ideal signal’s 

Fourier spectrum. After low pass filtering, all the high frequency components become zeros. 

Therefore, the known spectrum only includes low frequency components, and is named “observed 

spectrum” here. For example, the most left two values in the spectrum are preserved, and treated 

as the observed spectrum. In 1D case, the low pass filter is equivalent to the IRF’s Fourier spectrum, 

which is usually called System Transfer Function (STF). In this case, there is a mathematical 

relationship between the ideal signal and the observed spectrum. Assume that: 

1. The length of the ideal signal is 𝑁, and 𝑁 ≥ 2; 

2. The ideal signal’s unknown values are 𝑥𝑎 and 𝑥𝑏 respectively, where both 𝑎 and 𝑏 are 

integers within [0, 𝑁 − 1]; 

3. Arbitrarily choose two values 𝑋𝑐 and 𝑋𝑑 from the observed spectrum, where both 𝑐 and 

𝑑 are integers. 

The formula of 1D discrete Fourier Transform is as follows [18]: 

𝑋𝑘 = ∑ 𝑥𝑛 ∙ 𝑒
−
2𝜋𝑖

𝑁
∙𝑘∙𝑛𝑁−1

𝑛=0         (5) 

Since all the ideal signal’s values are zeros except 𝑥𝑎 and 𝑥𝑏, the above formula becomes: 

𝑋𝑘 = 𝑥𝑎 ∙ 𝑒
−
2𝜋𝑎𝑘𝑖

𝑁 + 𝑥𝑏 ∙ 𝑒
−
2𝜋𝑏𝑘𝑖

𝑁       (6) 

Let 𝑘 equals 𝑐 and 𝑑 respectively, then substitute them into formula (6), and we get: 

{
𝑋𝑐 = 𝑥𝑎 ∙ 𝑒

−
2𝜋𝑎𝑐𝑖

𝑁 + 𝑥𝑏 ∙ 𝑒
−
2𝜋𝑏𝑐𝑖

𝑁

𝑋𝑑 = 𝑥𝑎 ∙ 𝑒
−
2𝜋𝑎𝑑𝑖

𝑁 + 𝑥𝑏 ∙ 𝑒
−
2𝜋𝑏𝑑𝑖

𝑁

      (7) 

Solve the above system of linear equations, and we get: 

𝑥𝑎 =
𝑋𝑐∙𝑒

−2𝜋𝑏𝑑𝑖
𝑁 −𝑋𝑑∙𝑒

−2𝜋𝑏𝑐𝑖
𝑁

𝑒
−2𝜋(𝑎𝑐+𝑏𝑑)𝑖

𝑁 −𝑒
−2𝜋(𝑎𝑑+𝑏𝑐)𝑖

𝑁

       (8) 

and: 

 

b a 



 12 / 24 
 

𝑥𝑏 =
𝑋𝑐−𝑥𝑎∙𝑒

−2𝜋𝑎𝑐𝑖
𝑁

𝑒
−2𝜋𝑏𝑐𝑖
𝑁

        (9) 

For example, assume that the ideal signal is (0 0 0 6.7 8.9 0 0 0), and thereby the 

corresponding Fourier spectrum is (15.6 −13.6376 − 4.7376𝑖 ⋯). In the latter, the complex 

values 15.6 and −13.6376 − 4.7376𝑖 are the chosen components of the observed spectrum, 

and the suspension points represent the other components. Therefore, 𝑁 = 8，𝑎 = 3，𝑏 = 4，

𝑐 = 0，𝑑 = 1，𝑋𝑐 = 15.6，𝑋𝑑 = −13.6376 − 4.7376𝑖 . Please note that 𝑎, 𝑏, 𝑐, 𝑑  are all 

coordinate indices of 1D signals, which start from 0. Substitute the above values into formulas (8) 

and (9), and we get 𝑥𝑎 = 6.7 and 𝑥𝑏 = 8.9. In other words, the ideal signal is recovered from 

the observed (low frequency) spectrum. 

It can be seen that only two frequency components of the observed spectrum are used. Actually, 

they could be chosen from the low frequency part, or the high frequency part, or even arbitrary 

part. This method works as long as a system of equations is built and a unique solution is got. In 

practice, it may be helpful for relieving the effect of errors if more frequency components are used 

to build an overdetermined system of equations. 

Now we will extend the procedure to 2D signals, e.g., the situation of 2D imaging. In this case, 

the STF is called Optical Transfer Function (OTF) which is equivalent to the PSF’s Fourier 

spectrum, as shown by Fig. 5. 

 

Fig. 5. The 2D situation of the frequency domain method. (a) The ideal image including a small 

ROI. (b) The corresponding frequency spectrum, where the low frequency part is encircled. 

Where, Fig. 5a shows an ideal 2D signal without being filtered, which is named “ideal image” 

here. Fig. 5b shows the ideal image’s spectrum of 2D discrete Fourier transform. After being 

filtered by an ideal low pass filter, the spectrum’s components outside the dotted circle are all 
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removed. Thereby, the known spectrum includes components inside the circle only, and is named 

“observed spectrum”. Please note that the spectrum is shown conventionally in Fig. 5b, i.e., the 

low frequency components are at the center. But it is still handled in original format in the 

following procedure, i.e., the high frequency components are at the center. In this case, there is a 

mathematical relationship between the ideal image and the observed spectrum. Assume that: 

1. The ideal image is 𝑥(𝑚, 𝑛); 𝑚 = 1, 2,⋯ ,𝑀，𝑛 = 1, 2,⋯ ,𝑁, where 𝑀 and 𝑁 are the 

amount of the image’s row and column, respectively; 𝑚 and 𝑛 start from (1, 1) at the 

image’s most left-top pixel; 

2. The size of the ideal image’s ROI is 𝐾 × 𝐿, and the row number and the column number of 

the ROI’s left-top pixel are 𝑎 and 𝑏, respectively; 

3. The ideal image’s full spectrum is 𝑌(𝑢, 𝑣), where 𝑢 = 1, 2,⋯ ,𝑀，𝑣 = 1, 2,⋯ ,𝑁; 

4. Choose a rectangular area from the observed spectrum, with a size of 𝐾 × 𝐿; the row 

number and the column number of its left-top pixel are 𝑐 and 𝑑, respectively; for example, 

𝑐 = 𝑑 = 0. 

The formula of 2D discrete Fourier transform is as follows [15]: 

𝑌(𝑢, 𝑣) =
1

𝑀𝑁
∙ ∑ ∑ 𝑥(𝑚, 𝑛) ∙ 𝑒−2𝜋𝑖(

𝑚∙𝑢

𝑀
+
𝑛∙𝑣

𝑁
)𝑁−1

𝑛=0
𝑀−1
𝑚=0      (10) 

Since all the ideal image's pixels are zeros except those within the ROI, the above formula 

becomes: 

𝑌(𝑢, 𝑣) =
1

𝑀𝑁
∙ ∑ ∑ 𝑥(𝑚, 𝑛) ∙ 𝑒−2𝜋𝑖(

𝑚∙𝑢

𝑀
+
𝑛∙𝑣

𝑁
)𝑏+𝐿−1

𝑛=𝑏
𝑎+𝐾−1
𝑚=𝑎     (11) 

Substitute the chosen components of the observed spectrum into formula (11), and we get a 

system of equations 𝐴𝑥 = 𝑦, where : 
𝐴

=
1

𝑀𝑁

∙

(

 
 
 
 
 
 

𝑒−2𝜋𝑖(
𝑎∙𝑐
𝑀
+
𝑏∙𝑑
𝑁
) ⋯ 𝑒

−2𝜋𝑖(
𝑎∙𝑐
𝑀 +

(𝑏+𝐿−1)∙𝑑
𝑁

)
⋯ 𝑒

−2𝜋𝑖(
(𝑎+𝐾−1)∙𝑐

𝑀 +
𝑏∙𝑑
𝑁
)

⋯ 𝑒
−2𝜋𝑖(

(𝑎+𝐾−1)∙𝑐
𝑀 +

(𝑏+𝐿−1)∙𝑑
𝑁

)

⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

𝑒
−2𝜋𝑖(

𝑎∙𝑐
𝑀 +

𝑏∙(𝑑+𝐿−1)
𝑁

)
⋯ 𝑒

−2𝜋𝑖(
𝑎∙𝑐
𝑀 +

(𝑏+𝐿−1)∙(𝑑+𝐿−1)
𝑁

)
⋯ 𝑒

−2𝜋𝑖(
(𝑎+𝐾−1)∙𝑐

𝑀 +
𝑏∙(𝑑+𝐿−1)

𝑁
)

⋯ 𝑒
−2𝜋𝑖(

(𝑎+𝐾−1)∙𝑐
𝑀 +

(𝑏+𝐿−1)∙(𝑑+𝐿−1)
𝑁

)

⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

𝑒
−2𝜋𝑖(

𝑎∙(𝑐+𝐾−1)
𝑀 +

𝑏∙𝑑
𝑁
)

⋯ 𝑒
−2𝜋𝑖(

𝑎∙(𝑐+𝐾−1)
𝑀 +

(𝑏+𝐿−1)∙𝑑
𝑁

)
⋯ 𝑒

−2𝜋𝑖(
(𝑎+𝐾−1)∙(𝑐+𝐾−1)

𝑀 +
𝑏∙𝑑
𝑁
)

⋯ 𝑒
−2𝜋𝑖(

(𝑎+𝐾−1)∙(𝑐+𝐾−1)
𝑀 +

(𝑏+𝐿−1)∙𝑑
𝑁

)

⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

𝑒
−2𝜋𝑖(

𝑎∙(𝑐+𝐾−1)
𝑀 +

𝑏∙(𝑑+𝐿−1)
𝑁

)
⋯ 𝑒

−2𝜋𝑖(
𝑎∙(𝑐+𝐾−1)

𝑀 +
(𝑏+𝐿−1)∙(𝑑+𝐿−1)

𝑁
)
⋯ 𝑒

−2𝜋𝑖(
(𝑎+𝐾−1)∙(𝑐+𝐾−1)

𝑀 +
𝑏∙(𝑑+𝐿−1)

𝑁
)
⋯ 𝑒

−2𝜋𝑖(
(𝑎+𝐾−1)∙(𝑐+𝐾−1)

𝑀 +
(𝑏+𝐿−1)∙(𝑑+𝐿−1)

𝑁
))

 
 
 
 
 
 

 

This is a matrix with a size of (𝐾 ∙ 𝐿) × (𝐾 ∙ 𝐿). Then: 

𝑥 =

(

 
 
 
 

𝑥(𝑎, 𝑏)
⋮

𝑥(𝑎, 𝑏 + 𝐿 − 1)
⋮

𝑥(𝑎 + 𝐾 − 1, 𝑏)
⋮

𝑥(𝑎 + 𝐾 − 1, 𝑏 + 𝐿 − 1))
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This is a matrix (vector) with a size of (𝐾 ∙ 𝐿) × 1, and it is a sequence of all the pixels in the 

ideal image’s ROI, arranged row by row from top to bottom. Then: 

𝑦 =

(

 
 
 
 

𝑦(𝑐, 𝑑)
⋮

𝑦(𝑐, 𝑑 + 𝐿 − 1)
⋮

𝑦(𝑐 + 𝐾 − 1, 𝑑)
⋮

𝑦(𝑐 + 𝐾 − 1, 𝑑 + 𝐿 − 1))

 
 
 
 

 

This is also a matrix (vector) with a size of (𝐾 ∙ 𝐿) × 1, and it is a sequence of the chosen 

components of the observed spectrum, arranged row by row from top to bottom. 

Similar to the method for spatial domain, vector 𝑥 can be got by solving 𝐴𝑥 = 𝑦, and then the 

ideal image can be got by the rearrangement of 𝑥. Although the rectangular area are chosen from 

the observed spectrum, other shapes or even randomly chosen components are also allowed in this 

method. This method works as long as a system of equations is built and a unique solution is got. 

In practice, it may be helpful for relieving the effect of errors if more frequency components are 

used to build an overdetermined system of equations. 

It can be seen that larger ROI could be recovered if more spectrum components are preserved 

after filtering. In a special (extreme) case, all the spectrum components are known. Thereby, the 

ideal image could be got directly by inverse filtering or inverse Fourier transform. Actually, it is a 

classic way recovering a full image from its full Fourier spectrum. This study finds more possibility: 

recovering part of an image (with full details) from part of its Fourier spectrum (e.g., including 

only low frequency). That means even low frequency components carry full details of a sample's 

spatial structure (in an ROI), and seems inconsistent with traditional opinions. After excluding 

several explanations, we believe that the reason is the "integrity of spectrum", i.e., different 

frequency components are tightly relevant in the “resolvable condition”. Let's take 2D case as an 

example. As can be seen from the formula of 2D discrete Fourier transform, the spectrum is 

actually the accumulation of the products of each pixel 𝑥(𝑚, 𝑛) with its corresponding basis 

function in frequency domain. Each product is as follows: 

1

𝑀𝑁
∙ 𝑥(𝑚, 𝑛) ∙ 𝑒−2𝜋𝑖(

𝑚∙𝑢
𝑀
+
𝑛∙𝑣
𝑁
)
 

This is a function including all frequency components, and its amplitude is affected by the 

corresponding pixel value 𝑥(𝑚, 𝑛). When the pixel value varies, the function’s values change 

accordingly at any frequency with the same percentage. In other words, each pixel value is carried 

on the amplitude of its corresponding function, or the function’s value carries its corresponding 

pixel value at each frequency (from the lowest to the highest frequency). Taking an extreme 

situation as an example, there is only one function (product) in the image’s spectrum when there 

is only one pixel in the image’s ROI. In other words, the spectrum is the product of the only pixel 

with its corresponding basis function. When 𝑀, 𝑁 and the pixel’s location (𝑚, 𝑛) is known, the 
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basis function 
1

𝑀𝑁
∙ 𝑒−2𝜋𝑖(

𝑚∙𝑢

𝑀
+
𝑛∙𝑣

𝑁
)
 is also known. Therefore, pick the observed spectrum’s value 

at an arbitrarily selected frequency, and divided it by the basis function’s value at the same 

frequency, then the result is the unknown pixel value 𝑥(𝑚, 𝑛). Actually, the selected frequency 

could even be zero frequency, i.e., DC component in this case. This situation is similar to that 

when an individual molecule’s light intensity is extracted using Single-Molecule-Localization 

techniques. When there are more unknown pixels, they can be figured out by building and solving 

a system of equations, as shown by the aforementioned procedure. From this point of view, this 

technique could be treated as the extension of existing techniques such as Single-Molecule-

Localization, and it further “split” a single point into 2 × 2,  3 × 3 or more points, i.e., the ROI. 

It can be seen that the full frequency spectrum is relatively redundant when the ROI is smaller than 

the ideal image. In this case, there is no need to recover the full spectrum, as what popular 

deconvolution techniques do, for the recovery of the ideal image. A blurred image without high 

frequency components looks meaningless and less informative, but it actually contains the full 

information of the ideal image, in the “resolvable condition”. In other words, after different ideal 

images are filtered, the resulting blurred images all seem similar and undistinguishable. But they 

are actually different from one another, as can be seen from formula (10). From the information 

theory’s point of view, that means they actually carry different information, i.e., they are 

distinguishable [19]. 

3. Results and discussion 

 

Fig. 6. The PSF and its Fourier spectrum. (a) The experimental PSF. (b) The PSF’s Fourier 

spectrum which is an ideal low pass filter. Frequency components are all removed if they are more 

than 6 pixels away from the center, i.e., zero frequency. 

 

a b 
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Simulation experiments are performed for spatial domain and frequency domain respectively. 

Each ideal image (expected image) tested is of size 768 × 768, and has an ROI in it. Then, 19 

different sizes of ROI, i.e., 2 × 2, 3 × 3, ⋯, 20 × 20 pixels, are tested for both spatial domain 

and frequency domain respectively. Furthermore, 20 random tests are performed for each size. In 

order to cover various possibilities, the pixel values in the ROI are randomly generated in each 

test. Therefore, 19 × 20 = 380 different ideal images are tested for spatial domain and frequency 

domain, respectively. 

In theory, the Airy-disk-shaped PSF extends infinitely because the microscope is an ideal low 

pass filter. But according to the analysis in METHODS, the convolution result in the ROI is 

affected only by the PSF’s central area when the PSF is large enough. Therefore, the PSF of size 

501 × 501 is adopted in this experiment as shown by Fig. 6a. The PSF’s Fourier spectrum is 

shown by Fig. 6b. 

3.1. Results for spatial domain 

 

Fig. 7. The Averaged Errors of the spatial domain method. Where, lateral axis shows the ROI’s 

size, from 2 × 2 to 20 × 20 pixels. Vertical axis shows the Averaged Error. The error bars show 

the standard deviations of the Average Errors. The value 1.00E+05 means 1.00 × 105, and the 

other values are similar. 

Now we will describe the experiment for spatial domain. After convolution, all the observed 

images look blurred, just like Fig. 1d, but they actually carry information different from one 

another. Figure out the ideal images’ unknown pixels using our method for spatial domain, and the 
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Averaged Errors (AEs) of the results are shown by Fig. 7. There is an Averaged Error for each 

size, which means the average of all the testing errors in the 20 tests. The testing error is defined 

as ‖𝒙 − 𝒙′‖ (𝑲 ∙ 𝑳)⁄ , which represents the mean square error between the recovered pixels and 

their corresponding pixels in the ideal image’s ROI. In the formula, 𝒙  represents the vector 

rearranged from recovered pixels, 𝒙′ represents the vector rearranged from the pixels in the ideal 

image’s ROI, and 𝑲 ∙ 𝑳 is the count of pixels in the ROI. All the Averaged Errors are also shown 

in Table 1, as follows. 

 

 

Table 1. The Averaged Errors (AEs) of the spatial domain method. The value 3.23E-08 means 

3.23 × 10−8, and the others are similar. 

 

Therefore, we calculate the Averaged Difference (ADs). There is an Averaged Difference for 

each size, which means the average of all the difference values in the 20 tests. Where, the 

difference value is defined as ‖𝑨𝒙 − 𝒚‖ (𝑲 ∙ 𝑳)⁄ , which reflects how well the vector 𝒙 fulfills the 

formula 𝑨𝒙 = 𝒚. In this experiment, 𝒚 represents the vector rearranged from observed pixels in 

the ROI. By checking the difference value, we can see how well the ideal image fulfill the 

corresponding system of equations. For each size of ROI, the difference values are averaged for 

all the 20 random tests. The resulting Averaged Differences are shown in Table 2. In addition, the 

standard deviations of difference values are less than 1E − 16 for all the above sizes. According 

to these results, the system of equations in this method can model the imaging procedure accurately 

enough. That suggests that the large errors in Table 1 are not caused by the method’s principle. 

More accurate results could be got if more effective approaches are used to solve the system of 

equations. Therefore, the method’s effectiveness is also proved indirectly for size 4 × 4 to 20 ×

20. 

ROI size  𝟐 × 𝟐 𝟑 × 𝟑 𝟒 × 𝟒 𝟓 × 𝟓 

AE  3.23E-08 0.21  202.93  236.88  

 
ROI size 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10 

AE 458.63  1778.16  1634.61  2649.79  1652.73  

 
ROI size 11 × 11 12 × 12 13 × 13 14 × 14 15 × 15 

AE 1909.78  2252.56  3667.90  3863.32  6898.65  

 
ROI size 16 × 16 17 × 17 18 × 18 19 × 19 20 × 20 

AE 3835.98  12051.00  7861.40  49128.85  21946.59  
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Table 2. The Averaged Differences (ADs) of the spatial domain method. 

 

3.2. Results for frequency domain 

Then we will describe the experiment for frequency domain. In this experiment, the observed 

image’s frequency spectrum is zero except its low frequency part. Figure out the ideal image’s 

unknown pixels using our method for frequency domain. The resulting Averaged Errors (AEs) are 

shown in Fig. 8, and Table 3. 

 

Fig. 8. The Averaged Errors of the frequency domain method. Similar to the experiment for spatial 

domain, the lateral axis shows the ROI’s size, and the vertical axis shows the Averaged Errors. 

The error bars also show the standard deviations of the Average Errors. 

ROI size  2 × 2 3 × 3 4 × 4 5 × 5 

AD  2.43E-17 2.48E-17 3.98E-17 4.86E-17 

 
ROI size 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10 

AD 7.30E-17 1.03E-16 1.09E-16 1.60E-16 2.00E-16 

 
ROI size 11 × 11 12 × 12 13 × 13 14 × 14 15 × 15 

AD 2.12E-16 2.44E-16 3.42E-16 4.00E-16 4.12E-16 

 
ROI size 16 × 16 17 × 17 18 × 18 19 × 19 20 × 20 

AD 4.26E-16 4.58E-16 5.91E-16 6.99E-16 7.62E-16 
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As can be seen from Table 3, the Averaged Errors are very tiny for sizes 2 × 2 to 4 × 4. 

Therefore, the recovered results can be treated as the same as the corresponding ideal images. That 

verifies the effectiveness of the method: the spatial resolution is increased by 4 times in each 

dimension if each pixel is resolved into 4 × 4 pixels with full details.  The errors for size 4 × 4 

in the spatial method are larger than those here. But both the two methods are based on the same 

principle. This suggests that the larger errors are not caused by the principle. 

 

 

Table 3. The Averaged Errors (AEs) of the frequency domain method. 

Then, the Averaged Differences (ADs) are also calculated, as shown by Table 4. In addition, 

the standard deviations of difference values are less than 1E − 12 for all the sizes. According to 

these results, the system of equations in this method can model the imaging procedure accurately 

enough. More accurate results could be got if more effective approaches are used to solve the 

system of equations. Therefore, the method’s effectiveness is also proved indirectly for sizes 5 ×

5 to 20 × 20. 

 

 

Table 4. The Averaged Differences (ADs) of the frequency domain method. 

ROI size  2 × 2 3 × 3 4 × 4 5 × 5 

AE  1.21E-09 1.63E-04 0.59  118.56  

 
ROI size 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10 

AE 1432.21  2977.23  7357.42  3455.11  28796.84  

 
ROI size 11 × 11 12 × 12 13 × 13 14 × 14 15 × 15 

AE 14055.47  5611.23  1518.55  5025.37  1011.36  

 
ROI size 16 × 16 17 × 17 18 × 18 19 × 19 20 × 20 

AE 1632.88  3181.26  12717.13  641.46  2037.52  

 

ROI size  2 × 2 3 × 3 4 × 4 5 × 5 

AD  5.86E-14 1.72E-13 2.23E-13 2.86E-13 

 
ROI size 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10 

AD 5.11E-13 5.63E-13 9.39E-13 1.13E-12 1.39E-12 

 
ROI size 11 × 11 12 × 12 13 × 13 14 × 14 15 × 15 

AD 1.58E-12 2.20E-12 2.51E-12 2.79E-12 3.18E-12 

 
ROI size 16 × 16 17 × 17 18 × 18 19 × 19 20 × 20 

AD 3.46E-12 3.77E-12 4.03E-12 4.15E-12 4.37E-12 
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Furthermore, the methods are also verified indirectly for size 21 × 21 to 100 × 100. Given 

the limitation of computational resource and time, only one random test is performed for each size. 

All the results demonstrate that the methods can model the imaging procedure precisely because 

the Averaged Difference is smaller than 5E − 12 in each test. In practice, the 100 × 100 ROI 

can be a single luminous point such as a fluorescent molecule. 

Fig. 9 shows the zoomed view of an experiment result. The 3 × 3 pixels at the center of Fig. 

9a or Fig. 9c form the ROI, which is shown as a square at the center of Fig. 9b. After convolution, 

the observed image actually extends infinitely, and it is very blurred. Thereby, the pixels in Fig. 

9b look almost all the same, but they are different slightly. Existing techniques could be used to 

estimate the ROI’s location, which is indicated by the asterisk in Fig. 9b. The recovered image is 

almost the same as the ideal image, and includes both profile and detail information. 

 

Fig. 9. The zoomed view of an experiment result. (a) Ideal image (before convolution). (b) 

Observed image (after convolution). (c) Recovered image. In all the three images, dot-line grids 

represent the borders of pixels. The asterisk in (b) indicates the estimated location of the ROI. 

An experiment is also performed on larger images, and the result of an example is shown by 

Fig. 10. Where, Fig. 10a is the ideal image, which simulates the sample’s physical structure 

including various objects. Although it is a synthesized image (300 × 300 pixels), it is enough to 

test the proposed technique in principle. Fig. 10b is the direct convolution of the ideal image with 

the PSF, and it simulates the image from a conventional microscope. Fig. 10c is the result 

recovered with the proposed technique. For this simulated microscope, assume that its resolution 

is 5 nm per pixel. The sample (ideal image) is scanned with a luminous point of 15nm × 15nm, 

just like what happens in STED. Thereby, the ROI is 3 × 3 pixels at each time, and the ideal 

image (300 × 300  pixels) is scanned for totally 100 × 100  times. The Airy-disk’ radius is 

approximately between 200 to 300 nm, thereby it is between 40 and 60 pixels. The conventional 

result (Fig. 10b) is very blurred (even hard to see meaningful profile) because the Airy-disk is 

much larger than any details. But the recovered image is sharp, with full details, and the averaged 

error is ignorable (about 0.0045 of the averaged pixel value of the ideal image). As the resolution 

of a conventional microscope is about 200nm, the improvement of resolution is about 200/5 = 40 
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times in this experiment. In principle, the whole image could be treated as an ROI and recovered 

in one pass, as long as the “resolvable condition” is fulfilled. But in practice, it would be difficult 

to solve the large system of equations (300 × 300 unknowns in this example) accurately enough. 

 

Fig. 10. An example of larger images. (a) Ideal image (sample structures). (b) Convolved 

directly (conventional microscope). (c) Recovered with the proposed technique. 

The recovered image would have similar accuracy to the simulation experiment if the observed 

image and PSF are completely accurate. But noises are almost inevitable in practice. A preliminary 

experiment shows that the recovered image is acceptable when PSNR (Peak Signal-to-Noise Ratio) 

is greater than a certain threshold such as 250. It can be seen that the technique is sensitive to noise, 

thereby further research on SNR improvement would be necessary. There are many valuable 

methods in fields such as Noise Reduction which may be utilized. Besides, the proposed technique 

recovers detail information directly from an image without high frequency components. But noises 

usually contain more high frequency components. This difference may also be helpful to suppress 

noises. 

4. Conclusion 

Usually, an image’s low frequency part represents its profile, and high frequency part represents 

its details. A conventional light microscope filters out high frequency part, and thereby makes the 

details cannot be recovered. In other words, the convolution caused by the microscope is 

irreversible. But this study finds a “resolvable condition” which is relevant to the imaging 

condition of existing techniques. In this condition, the observed image (or its Fourier spectrum) 

has redundancy in the “resolvable condition”. Thereby, the details can be recovered from part of 

the observed image, or part of its Fourier spectrum (e.g., low frequency components). In other 

words, a sample’s structure (including both profile and details) can be extracted directly from a 

blurred image, even if its size is much smaller than the diffraction-limit and its inner points are 

imaged at the same time. Thereby, the convolution is reversible and the recovery is independent 

of high frequency in this condition.  
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Then, a technique is proposed based on the above findings and image deconvolution. The latter 

is usually employed for the recovery of degraded images, e.g., relieving the effect of defocused 

light. Usually, it cannot recover the results of ideal low pass filters. But some classic deconvolution 

approaches are modified to a super-resolution technique when used in the “resolvable condition”. 

It can extract sharp images from diffraction-blurred images directly, and get full details of samples’ 

spatial structure without using high frequency components. Therefore, it is termed 

“Deconvolutional Super-resolution (DeSu-re)”. Popular convolution methods such as wiener 

filtering, usually requires images not to be cropped. But the proposed technique can work even 

without any observed image outside the ROI. In principle, it could be used for resolving the inner 

structures of luminous points even if they are infinitely small; or distinguishing multiple points at 

the same time, even if they overlap one another. Therefore, this technique could achieve unlimited 

resolutions in theory. When combined with existing techniques, it can “split” a single point into 

multiple smaller points and thus improves resolution by several times. The simulation experiments 

directly verify resolution improvement to 200%~300% (i.e., 2~3 times) for the spatial domain 

method, and 200%~400% (i.e., 2~4 times) for the frequency domain method. In addition, they also 

indirectly verify resolution improvement to 200%~10,000% (i.e., 2~100 times) for both methods. 

One of the future directions is to achieve higher resolution and verify the effectiveness in practice. 

But there are still practical difficulties, especially the strong effect of the observed image’s and 

PSF’s distortion (e.g., noise) on the results. Therefore, it is also an important future direction to 

get practical results as close to simulation results as possible. With the development of imaging 

devices and the improvement of signal-noise ratio, the accuracy of the proposed technique would 

also improve accordingly. The proposed technique could be combined with other techniques such 

as conventional microscope, confocal microscope, existing super-resolution methods, and so on. 

By extracting more details directly from the data of these techniques, higher resolutions or 

efficiency could be achieved. For example, further resolve the inner details of individual molecules, 

fluorescent probes or tiny light sources after localization them. Or, several adjacent points 

(molecules, etc.) could be imaged and resolved at the same time, using the proposed technique. 
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