Searching for Wide Companions and Identifying Circum(sub)stellar Disks through PSF-fitting of Spitzer/IRAC Archival Data

Raquel Martinez, UT Austin NASA Earth & Space Science Fellow BDEXOCON III October 22, 2019

Image Credit: Bill Saxton, NRAO/AUI/NSF

Outline

- Wide-Orbit Low Mass Companion Formation Scenarios
- Building the Wide Companion Population
- Pilot Study: Results and a New Wide Companion at the Planet-Brown Dwarf Boundary
- Future Directions & Summary

UK Astrophysical

Matthew Bate EXETER

Core Accretion

Gravitational Instability in Disks

Dynamical Processes

UK Astrophysical Fluids Facility

Matthew Bate EXETER

Gravitational Instability in Disks

Dynamical Processes

Core Accretion

UK Astrophysical

Matthew Bate EXETER

Core Accretion

Dynamical Processes

			1
			1
L .			
			1
F			1
			1
F			7
			1
			-
-			-
			1
P			
-			-
- C			-
			1
-			-
			1
-	· · · · · · · · · · · · · · · · · · ·	Sanda and an a state of the spin of the spin of the state of the second s	
		, ,	

Radial Distance from Star -

UK Astrophysical

Core Accretion

Dynamical Processes

Wide-orbit low mass companions represent lowmass extreme of stellar binary model and highmass and wide separation extreme of planet formation theories

Kraus et al. 2014

The demographics and properties of wide companions will constrain the extreme limit of their formation mechanism

Building the Wide Companion Sample

Star-forming Regions

Automation

Example Pipeline Flow

PSF Models from Spitzer Science Team described in Hoffman 05

Image-Specific MCMC Fit

System-Specific MCMC Fit

Model Parameters:

- Primary Flux (n)
- Projected separation (ρ)
- Position Angle (P.A.)
- Contrast (Δm)

Martinez & Kraus (2019)

Detection Limits

Martinez & Kraus (2019)

[SCH06] J0359+2009

Member of older, distributed Taurus population (Slesnick+06)

[SCH06] J0359+2009

- Candidate companions at 4.66" and 5.95" (Kraus & Hillenbrand 2012)
- Inner companion detected with
 [3.6]-[8.0] = 0.96 ± 0.05 mag
- Outer candidate companion not detected

Martinez & Kraus (2019)

Gaia DR2 parallax and proper motion measurements consistent with Taurus membership

[SCH06] J0359+2009 A: M = 60 \pm 10 M_{Jup} [SCH06] J0359+2009 B: M = 20 \pm 5 M_{Jup}

Martinez & Kraus (2019)

Spectroscopic Follow-Up: HET/LRS2 and GN-GNIRS

Allers & Liu (2013) NIR Classification Sp Ty: M9 ± 1 Gravity: Intermediate

$H\alpha$ variability

Summary

- Wide-orbit companions challenge both star and planet formation scenarios
- Developed pipeline to search for more of these systems
- Identifying candidate systems for groundbased and future space-based follow-up
- Stage is set to embark on systematic search for wide companions in archival Spitzer images

The FW Tau System

- Primary is close binary
- Companion confirmed to be comoving
- Near-infrared luminosity suggests companion mass ~10 M_{Jup}

Kraus et al. 2014

- Radio observations detected emission only associated with companion
- Estimated dust mass of 1-2 $\rm M_\oplus$
- Disk dynamics indicate heavier companion mass ~100 M_{Jup} (Wu & Sheehan 17)

Kraus et al. 2015

The FW Tau System

- Wide companion resolved; infrared excess confirmed
- Brightness of companion consistent with edge-on disk

SED shape more coincident with PMC

Spectroscopic Follow-Up: HET/LRS2

- Seeing-limited fiber-fed integral field spectrograph
- 12" X 6" FoV

 $W/m^2/\mu m$

10

E.

- Red arm: 6430Å to 10560Å
- Determine optical spectral type of FW Tau's wide companion and measure absolute accretion rates