Classifying Security Attacks in IoT Networks Using
Supervised Learning

Christiana Ioannou and Vasos Vassiliou
Department of Computer Science, University of Cyprus and
RISE - Research Center on Interactive Media, Smart Systems and Emerging Technologies
Nicosia, Cyprus
{cioannou,vasosv} @cs.ucy.ac.cy

Abstract—Machine learning models have long be proposed to
detect the presence of unauthorized activity within computer
networks. They are used as anomaly detection techniques to
detect abnormal behaviors within the network. We propose to
use Support Vector Machine (SVM) learning anomaly detection
model to detect abnormalities within the Internet of Things. SVM
creates its normal profile hyperplane based on both benign and
malicious local sensor activity. An important aspect of our work
is the use of actual IoT network traffic with specific network-
layer attacks implemented by us. This is in contrast to other
works creating supervised learning models, with generic datasets.
The proposed detection model achieves up to 100% accuracy
when evaluated with unknown data taken from the same network
topology as it was trained and 81% accuracy when operating in
an unknown topology.

Index Terms—Internet of Things, IoT, Routing Attacks, Intru-
sion Detection Systems, Support Vector Machines.

I. INTRODUCTION

The Internet of Things (IoT) may be the most unsecure type
of network encountered nowadays. This is especially alarming
if we realize that the IoT is increasingly becoming a bigger
part of our everyday routine. Things are now connected to each
other forming their own network in a user’s private life, which
the user can access through the Internet. IoT applications
include smart cities, intelligent transportation, responsive envi-
ronments, and many more, which are, in certain cases, beyond
the users’ direct control. A computer owner can theoretically
control the level of security in their computer by adapting
security measures, not downloading certain applications, using
security software etc. A citizen in a Smart City cannot control
the security measures employed in the IoT-based smart city
environment and thus can not control their exposure level.

In general there exist three security layers to establish a
secure network. The preventive, detective and response layer,
applied in the same order. The first line of defense is the
prevention layer, usually equipped with rules on what is
allowed to enter the network or a device. The rules may
be applied automatically through the use of a firewall, or
sometimes by the user’s judgment. Nevertheless, they are

This research is part of a project that has received funding from the
European Union’s Horizon 2020 research and innovation programme under
grant agreement N°739578 and the government of the Republic of Cyprus
through the Directorate General for European Programmes, Coordination and
Development.

certain cases in which a new attack can penetrate this layer of
defence and infect the host and/or the network.

Intrusion detection systems (IDS) are the second line of
defense in computer systems and networks. They recognize
the attacks that have already penetrated the system’s preventive
measures. Detection mechanisms are generally classified as
pattern detection-based and anomaly detection-based. The
current work focuses on anomaly detection, which does not
require knowledge of the existing attack, as in the pattern de-
tection. An IDS raises an alarm when it detects an abnormal or
never seen behavior. Once an alarm is raised, the third security
layer is enabled. Automatic scripts or human intervention is
require to analyse the alarm and respond to the potential threat.

Despite the maturity of IDS technology for traditional
networks, current solutions are inadequate for WSN and IoT
systems, because of IoT particular characteristics that affect
IDS development. At first, processing and storage capacity
of network nodes that host IDS agents is an important issue.
In traditional networks, the system administrator deploys IDS
agents in nodes with higher computing capacity. IoT networks
are usually composed of nodes with resource constraints.
Therefore, finding nodes with the ability to support IDS agents
is harder in 10T systems. The second particular characteristic is
related to the network architecture. In traditional networks, end
systems are directly connected to specific nodes (e.g., wireless
access points, switches, and routers) that are responsible for
forwarding the packets to the destination. IoT networks, on
the other hand, are usually multihop. Then, regular nodes may
simultaneously forward packets and work as end systems. For
instance, in IoT networks, sensors with short-range commu-
nication capabilities are deployed in a structured or random
topology. Then, the data collected by a sensor is forwarded
through a path of sensors until reaching a gateway to the
Internet. This kind of architecture poses new challenges for
IDSs. The last characteristic is related to specific network
protocols. IoT networks use protocols that are not employed in
traditional networks, such as IEEE 802.15.4, IPv6 over Low-
power Wireless Personal Area Network (6LoWPAN), IPv6
Routing Protocol for Low-Power and Lossy Networks (RPL)
and Constrained Application Protocol (CoAP). Different pro-
tocols bring original vulnerabilities and new demands for IDS.

Anomaly intrusion detection techniques can be classified
based on the methods used for profiling normal behavior and

capturing abnormalities. The main anomaly profiling tech-
niques can be categorized as applying thresholds, game theory,
fuzzy logic, machine learning, and biologically inspired tech-
niques. The current work proposes c-Support Vector Machines
(SVM) to be used as an IDS to detect routing layer attacks.
The c-SVM model creates its detection model by training it
with both benign and malicious activity. It uses local node
activity from the nodes within the network and manages to
have up to 100% accuracy in detecting the malicious node.

The rest of the paper is structured as follows: Section II
discusses other machine learning detection techniques. Sec-
tion III presents SVM and Section IV presents the training
and evaluations results of the proposed solution. Section V
concludes the current work.

II. RELATED WORK

Support Vector Machine (SVM) are a class of machine
learning algorithms that can create a binary classification
model out of complex highly non-linear problems [1]. An
SVM performs classification tasks by constructing hyperplanes
in a multidimensional space that separates cases of different
class labels. Many researchers have used SVM to detect
possible intruders in the network such as the work in [1]-[3].

The work in [3], proposes a multi-class SVM IDS system
and the work in [2] proposes a multi-class least square
SVM (LS-SVM) IDS model. Both works are evaluated using
traditional Internet traffic datasets (KDD-99). We believe that
those types of datasets are not representative of traffic found in
WSNs. However, they are suitable for showcasing the efficacy
of the SVM solution. Similar to the current work these past
works use activity from both benign and malicious activity to
train their system. The class labels of this dataset define either
a “normal” state of the system or one of four types of attacks:
“probe,”“denial of service (DoS),”“user to root (U2R),’and
“remote to local (R2L).” In the current work we are using
a binary classification, thus we label the training data only as
benign or malicious.

In the work of [1], they use one class SVMs as they trained
their system using only the normal behavior of the network
and sensing data. They support that by only using benign
behavior, an unknown attack will be detected. A centralized
node (the Sink) is responsible for intrusion detection including
data processing and anomaly detection tasks. Their scheme of
a centralized node detection system was created to not impose
memory and power overhead in the constrained nodes.

The constrained sensor nodes in the network transmit a
packet to the Sink node when they sense movement. The
Sink node is responsible for analysing the movement pattern
of the intruder within the network. It analyses the incoming
bandwidth utilization and the number of hops each message
took to reach the Sink.

The SVM detection technique of [1] uses bandwidth and
hop count to detect Blackhole and Selective Forward attacks.
They concluded that the Blackhole attack is detected with
100% accuracy, whereas the Selective Forward attack is de-
tected with 85% accuracy when the intruder drops packets

Fig. 1: The optimal hyperplane that separates the positive and
negative values. The position of the hyperplane is determined
by the training set pairs that are closest called the support
vectors [7].

coming from 80% of the nodes. However, their accuracy
decreases as the selective forward attack drops packets coming
from 30% and 50% of the nodes.

The work in [4], proposes a decentralized SVM within a
Wireless Sensor Network (WSN) in which the SVM model is
build and updated outside the network. The model’s support
vectors are transmitted to the cluster heads. The training data
was classified as benign and malicious as in the current work.
However, the work was evaluated using the KDD-99 database;
whereas, the current work is evaluated using routing layer
parameters taken from constrained sensor nodes executing
either benign or malicious application.

The current work creates and evaluates the c-SVM model
for the same network topologies as found in [5]. The attacks
used are taken from the work of [6], namely Selective Forward,
Blackhole and Sinkhole.

III. SUPPORT VECTOR MACHINES

The current section describes the methods used to create
our SVM model. SVMs maximize the margin around the
decision surface, also called hyperplane. In order to maximize
it, support vectors, also known as training sets, are used as
inputs.

As with any machine learning technique, there exist input
and output training samples. The input training sample fea-
tures are denoted as x1,rs,...x;, and the predicted value is
denoted as y; for each ;. The training set is labeled in pairs
(z4,9i),t = 1,...,1 where z € R™ and y € {1,—1}. The
output is a set of weights w; one of which corresponds to
each input feature and in a linear combination they predict
the value of y.

The difference of the SVM from other machine learning
techniques, is that it uses the optimization of maximising the
margin to reduce the number of weights that are nonzero to
just a few that correspond to the important features and provide
useful information in deciding the hyperplane (see Figure 1).
The nonzero weights correspond to the support vectors.

A. C-Support Vector Classification

The work in [6] concluded that taking into consideration
the impact on the attacks can provide insights on the network

TABLE I: Routing parameters used as input in the SVM

Routing parameters
Data Packets Received Data Packets Sent
Packets Forwarded Packets Dropped
Announcements Received

behavior. Therefore, we use the C-support vector classification
optimisation for SVM. The C-support optimization type of
SVM is used when there are more than one classes of data. In
our case, we have two classes: the benign and the malicious.

The decision function for the C-class SVM is shown in
equation (1) [8].

1
sgn(wT¢(x) +b) = sgn(Zyz-aiK(wi, z) + b) (1)

i=1

Where ¢(x;) maps z; into a higher-dimensional space,
K(x;,xj), is the kernel function. The kernel function we
used for our purposes is discussed in section III-C and b is a
coefficient. For more information on how to derive the decision
function refer to [8].

B. Scaling

Scaling is applied to both training and evaluation data sets
to construct the data in a form that the SVM can take as
input and construct the hyperplane. We use scaling in order to
prevent certain parameters that are in greater numeric ranges
to dominate those in smaller numeric ranges [8]. At the same
time, applying scaling returns the parameters that are at most
important to retrieve better results [8].

We apply scaling for all support vector (x;,y;) using the
following equation (2):

z=(f-a)——22 4 @)
maxz — minx

where x is the scaling of parameter ¢ > 0 and x > 0. Also
min z and max z is the minimum and maximum numbers of
the input vector. The constants [«, 8] correspond to the scaling
range in our case [—1, 1]. The scaling did not change the labels
Yi-

Scaling our data returns the support vectors with the signifi-
cant parameters that are later used as input to our SVM model.
Parameters that were scaled to 0 are not included as they do
not provide any useful information to our SVM model.

C. Radial Basis Function kernel

There are various kernel functions we can use for our
SVM. We choose the Radial Basis Function (RBF) kernel to
implement our SVM. RBF kernel is used for non-linear data
and label classification. We chose the RBF kernel as it gave
us better results than the Linear kernel function and has less
complexity than other kernel functions, such as the sigmoid

/:) @ O] Qj‘ 3) Lr) @ \3—) @ ®
® © € ® O ©® 0 O O O
® @ @O @ O ® ©®© © ® O
@ ® O © ® @ ® O} @ ®

(a) Sink in the middle of the grid (b) Sink on top left corner of the grid

Fig. 2: Network Topology and placement of the Sink node

and polynomial kernel. The RBF kernel function we used is
shown in equation (3).

K(zis,25) = exp(— || & — x5 ||?),
1
v>0,7y=— 3)

202
o is a free parameter

D. Cross-Validation and Grid Search

The parameters C' and vy used to derive the decision function
and the kernel function shown in (3) are free parameters for
the SVM and RBF kernel [8]. To find the values of (C,~)
an experimental search based on our data is conducted. The
values of (C,) should be chosen so as to avoid over fitting of
our data. Over-fitting our data means mapping the data closer
to the threshold line thus minimising the margin from our
hyperplane, instead of maximising, which is the goal of SVM
[8].

To avoid over-fitting by selecting more appropriate values
for (C,~) we use the cross-validation and grid search method.
The cross validation technique separates the input data to
training and evaluation. With the grid search, various pairs
of (C,~) are evaluated to find the best pair. The method of
cross-validation and grid search is repeated until the best pair
of (C,~) is found.

IV. RESULTS

There are two basic stages of SVM, the training stage and
the evaluation state. At the training stage, the SVM takes as
input training data and creates a hyperplane. The classification
hyperplane model is evaluated at the evaluation stage in which
the model created takes as input new data and maps them in
the hyperplane. The end result of the evaluation stage is the
classification of the data in the model. The parameters we used
as input in both the training and evaluation stage were taken
from each sensor (shown in Table I).

Two network grid topologies used are shown in Figures
2a and 2b. Figure 2a, places the Sink in the middle and
is considered to be the best case scenario as a packet has
four possible options to reach the Sink. The farthest sensor
node away from the Sink was four hops away. The sensor
activity used for training the c-SVM model were taken from
experimental results from the Sink-in-the-Middle topology.

TABLE II: SVM Training and Evaluation Data Set when Sink is in the middle

Training Set - Support Vectors

Evaluation Set

Attack Benign | Viral Total Benign | Viral | Total
Selective Forward - Block Node 80 80 160 20 20 40
Selective Forward - Forwarding Ratio 80 80 160 20 20 40
Selective Forward & Blackhole - Block Node 80 80 160 20 20 40
Selective Forward & Blackhole - Forwarding Ratio 80 80 160 20 20 40
Sinkhole 80 80 160 20 20 40
Sink in the middle (All attacks) 80 400 800 20 100 200
Sink on top (All attacks) 200 800 1000

To retrieve local sensor activity, two sets of experiments
were conducted. The benign scenarios in which all nodes
within the network were executing the benign application and
the malicious scenarios in which at least one node within the
network was malicious.

For the current work we used the attacks from the work
of [6] and the RMT tool to collect the data [9]. The data
was retrieved from each sensor node besides the Sink node at
predefined time intervals called epochs and averaged per the
distance of the sensor nodes from the Sink node. Each epoch
was set to one (1) second and the total number of epochs used
per distance was 25. The benign application was a periodic one
and each sensor generated 60 packets per second.

The data taken from the experimental results when the Sink
was placed in the middle, was split to 80% and 20% for
the training and evaluation stage respectively. The number of
epochs used for the training set and the evaluation set are
shown in Table II.

A. Training

At the training stage we used routing data taken for the
Selective Forward, Blackhole, and Sinkhole attacks in the best
case scenario in which the Sink is placed in the middle of the
sensor network. In our case we have two classes, the benign
and the malicious class, denoted -1 and 1 respectively. The
l is the number of epochs of averaged routing layer data of
sensors based on the distance from the Sink.

To construct the training model we use the following steps:

1) Label data into benign and malicious in the form of
vectors (z;,y;)

2) Apply scaling to our training set

3) Apply the RBF kernel to our training set

4) Apply cross validation and grid search to our training
set

5) Input our training set and (C,) values to create the
SVM model (to derive the optimal hyperplane (see
Figure 1))

Based on the attack we use for our training model the
significant parameters varied. For Selective Forward attacks,
the scaling step returns data for only four parameters: data
packets received, data packets forwarded, packets dropped and
announcements received. For the Sinkhole attack, the scaling
step returns the training set for all five parameters shown in
Table I. The results of the free parameters (C,) are shown in
column titled Significant routing parameters in Table III. We

also created SVM models for each attack including the non-
significant parameters to evaluate the impact of the parameters
(shown in column All routing parameters in Table III).

B. Evaluation of SVM training model

From the training stage we created an SVM model with
the adjacent (C,) that we are going to use for the evaluation
stage. The data sets that were used for the evaluation are shown
in Table II.

To set up our data evaluation sets we applied the following
steps in the order shown:

1) Label data into benign and malicious in the form of
vectors (z;,y;)

2) Apply scaling to our training set

3) Input our evaluation sets and (C,~) values that we
retrieve from our training stage to the SVM model

To present our results, we use the Accuracy parameter
(ACC) as an indicator for our model. The equation for ACC is
shown in (4). We also use the Confusion Matrix that classifies
the types of the alarms as shown in Table IV.

> TruePositives + Y TrueNegatives
> Total Population

ACC = 4

The True Positive/Negative values are the correct predic-
tions of the model. True Positive means that the model was
given an activity that was benign and was correctly identified.
The same applies to True Negative values when given a viral
activity and the model correctly identifies it.

The results of our SVM model are shown in Figures 3
and 4. The SF notation stands for Selective Forward, FR
is Forwarding Ratio, BN is Block Node, SFBH is Selective
Forward and Blackhole attack. Sink-middle scenario, is the
scenario in which all data from all malicious and benign
scenarios were used in the training stage to derive a general
SVM model that can capture routing layer attacks (see in Table
IT). The general SVM model was evaluated using data taken
from the network topology Sink in the middle and data from
a different topology, when the Sink is found on top of the
network. In the Sink on top scenario, all data from malicious
and benign scenarios in the network topology in which the
Sink is found on top of the network, were used to evaluate the
general SVM model trained with Sink in the middle scenario
(see in Table II).

For each attack we created an SVM model and we later
evaluated it with its corresponding evaluation set. Figure 3

TABLE III: SVM (C,) values from our training results

All Routing Parameters Significant Routing Pa-
rameters
Training Set C Yy C Yy
Selective Forward - Forwarding Ratio 32.0 0.0078 128.0 0.5
Selective Forward - Block Node 2048.0 | 0.0049 0.03125 | 0.5
Selective Forward + Blackhole - Forwarding Ratio 8.0 0.0078 0.03125 | 0.0078
Selective Forward + Blackhole - Block Node 8.0 0.5 2.0 0.0078
Sinkhole 32.0 0.0078 8.0 2.0
Sink in the middle (All attacks) 0.125 0.0078 0.125 0.0078125
TABLE IV: Confusion Matrix
SVM Results for multiple scenarios
True diagnosis Percentage 100 — — —
Benign Viral Correct
. Benign | True Positive | False Negative | %
True Condition Viralg False Positive | True Negative % o i
Iy
% 60 1
g
SVM Results for multiple scenarios 9\2 40 -]
90 T T T T T T T
80 4 20 i
-~
0
*
5 0f 1 55 5% :E:E 5 EEEE
I oaf 1 a5 2 2" a5 2 27
=} wn) wvl
ES

30 1
20

SF-FR
SF-BN
SFBH-FR
SFBH-BN
Sinkhole
Sink-middle
Sink-top

All WSP Parameters

Fig. 3: Percentage of accuracy of SVM model per malicious
scenario with all routing parameters

shows the percentage of accuracy of our SVM training model
when we used all routing parameters. At the scaling step we
included the O value parameters to examine the importance of
using significant parameters. Figure 4, shows the evaluation
results of our training SVM model in which we only used
the significant routing parameters. Comparing the two cases
the results show that we get higher accuracy levels when
only the significant routing layer parameters are used. The
highest percentage of attack classification accuracy was 82.5%
when all routing layer parameters were used in training stage,
whereas by only using the significant routing layer parameters
we achieved 100% accuracy.

As shown in Figure 4, SVM managed to get 100% clas-
sification for the attacks of Selective Forward along with
Blackhole attack and the Sinkhole attack. When Selective
Forward is evaluated with either Forwarding Ratio or Block
Node, the best accuracy level the SVM model achieves is
87.6%. We also trained our SVM model with the data from
all attacks when the Sink is in the middle and evaluated it
with the corresponding evaluation set. The SVM model was

All WSP Parameters Significant WSP Parameters

Fig. 4: Percentage of accuracy of SVM model per malicious
scenario when using only significant parameters

able to classify the attacks with an accuracy level of 85%. We
also use the SVM model that was trained when the Sink is in
the middle topology with data from the topology where the
Sink is found on top of the grid. The SVM model was able
to classify the attacks with 81% accuracy.

TABLE V: SVM: Selective Forward - Forwarding Ratio

True diagnosis Percentage
Evaluation Set Benign | Viral | Correct
Benign 15 5 75%
SE-FR Viral T 9| 95%
Accuracy ratio(ACC)= 0.85

TABLE VI: SVM: Selective Forward - Block Node

True diagnosis Percentage
Evaluation Set Benign | Viral | Correct
Benign 15 5 75%
SE-BN Viral 0 20] 100%
Accuracy ratio(ACC)= 0.875

Tables V, VI, VII, VIII, IX, X and XI show the Confusion
Matrix for each attack scenario and the accuracy levels that
we used in Figure 4. In the Selective Forward - Forwarding
Ratio, the accuracy level is 0.85% while the SVM model
was able to detect 95% of the malicious behavior but only
25% of the benign behavior (see Confusion Matrix V). In the
Selective Forward - Block Node, the SVM model was able

TABLE VII: SVM: Selective Forward and Blackhole - For-
warding Ratio

True diagnosis ~ Percentage
Evaluation Set Benign | Viral | Correct
Benign 20 0 100%
SFBH-EN Viral 0 30 100%
Accuracy ratio(ACC)= 1

TABLE VIII: SVM: Selective Forward and Blackhole - Block
Node

True diagnosis Percentage
Evaluation Set . Benign | Viral | Correct
SBHBN |t 00 o0
Accuracy ratio(ACC)= 1

TABLE IX: SVM: Sinkhole

True diagnosis ~ Percentage
Evaluation Set Benign | Viral | Correct
e[S M 0ot
Accuracy ratio(ACC)= 1

TABLE X: SVM: Evaluation of all routing layer attack when
Sink is in the middle of the grid

True diagnosis Percentage
Evaluation Set Benign | Viral | Correct
. . Benign 100 0 100%
Sink - middle 5 5] 75%
Accuracy ratio(ACC)= 0.958

TABLE XI: Evaluation of the SVM training model when Sink
is in the middle of the grid with node behavior in a topology
where the Sink is found on top of the grid

True diagnosis ~ Percentage
Evaluation Set Benign | Viral | Correct
. Benign 175 25 88%
Sink - on Top I~y 68 | 635 | 79%
Accuracy ratio(ACC)= 0.81

to identify correctly all malicious behavior and achieved a
75% percentage correctness to classify benign node behavior.
The accuracy level compared to the SF-FR was increased by
0.025% (see Confusion Matrix VI).

C. SVM complexity

SVM models have proven to be good indicators of whether
sensor activity is malicious or benign but they come at the cost
of high complexity. According to [7], the SVM computation
overhead depends on the number of support vectors. In the
best case scenario, in which we know beforehand the support
vectors, to determine the coefficients of the support vectors by
a system of R linear functions a number of operations pro-
portional to R? is required. The cost of complexity increases
if the support vectors need to be discovered. The authors in

[7] also state that computing the kernel function has a high
computation cost as well.

The online analysis computational overhead is also a pro-
hibiting factor to implement SVM on constrained nodes [3],
[4]. The work in [3], measures computation overhead based
on running time for the training and evaluation procedures.
The experiments were conducted in desktop computers with
Intel Core 17 3.40 GHz processor. The shortest running time
for the evaluation phase was 2.6 seconds and the longest 25.73
seconds. The running time within a constrained node will be
in the order of minutes when a sensor node may be equipped
with a 8MHz microcontroller [10].

SVM computational complexity overhead makes it diffi-
cult, if not impossible, to be implemented in a constrained
node. The authors [1] and [11] apply SVM machines in
non-constrained nodes to detect possible intervention to the
network or data outliers to avoid imposing computational
overhead to the constrained nodes.

V. CONCLUSIONS

We proposed a c-SVM machine learning model as an
anomaly IDS that is trained and evaluated using both benign
and malicious local sensor activity. The derived c-SVM model
was also evaluated with activity from a different topology than
the one used for the training.

The detection accuracy levels reach up to 100% when
the Blackhole and Sinkhole attacks were present. The lowest
accuracy level was 81% when the model was evaluated in a
different network topology for all routing attacks.

The complexity of the c-SVM determines the location of
the IDS in the IoT. Based on the computational cost of the
c-SVM the IDS should be placed in high energy nodes, such
as in the gateway node that connects the IoT to the Internet.

REFERENCES

[1] S. Kaplantzis, A. Shilton, N. Mani, and Y. Sekercioglu, “Detecting
Selective Forwarding Attacks in Wireless Sensor Networks using Sup-
port Vector Machines,” in Intelligent Sensors, Sensor Networks and
Information, 2007. ISSNIP 2007. 3rd International Conference on, Dec
2007, pp. 335-340.

[2] Enamul Kabir and Jiankun Hu and Hua Wang and Guangping Zhuo, “A
Novel Statistical Technique for Intrusion Detection Ssystems,” Future
Generation Computer Systems, 2018.

[3] Abdulla Amin Aburomman and Mamun Bin Ibne Reaz, “A novel
weighted support vector machines multiclass classifier based on differ-
ential evolution for intrusion detection systems,” Information Sciences,
vol. 414, pp. 225 — 246, 2017.

[4] Sedjelmaci, Hichem and Feham, Mohamed, “Novel Hybrid Intru-
sion Detection System for Clustered Wireless Sensor Network,” arXiv
preprint arXiv:1108.2656, 2011.

[5] Ioannou, Christiana and Vassiliou, Vasos, “An Intrusion Detection
System for Constrained WSN and IoT Nodes Based on Binary Logistic
Regression,” in Proceedings of the 21st ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
ser. MSWIM ’18. ACM, 2018.

[6] C. Ioannou and V. Vassiliou, “The Impact of Network Layer Attacks
in Wireless Sensor Networks,” in International Workshop on Secure
Internet of Things (SloT 2016), Crete, Greece, Sep. 2016.

[7]1 L. Bottou and C.-J. Lin, “Support Vector Machine Solvers,” Large scale
kernel machines, pp. 301-320, 2007.

[8] C.-C. Chang and C.-J. Lin, “LIBSVM: a Library for Support Vector
Machines,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[9]

[10]

[11]

C. Toannou, V. Vassiliou, and C. Sergiou, “RMT: A Wireless Sensor
Network Monitoring Tool,” in Proceedings of the 13th ACM Symposium
on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous
Networks, ser. PE-WASUN ’16, 2016, pp. 45-49.

Tmote Sky Ultra Low Power IEEE 802.15.4 compliant wireless sensor
module, Moteiv Corporation, 6 2006.

Y. Zhang, N. Meratnia, and P. Havinga, “Adaptive and Online One-
Class Support Vector Machine-Based Outlier Detection Techniques for
Wireless Sensor Networks,” in Proceedings of the 2009 International
Conference on Advanced Information Networking and Applications
Workshops, ser. WAINA ’09. Washington, DC, USA: IEEE Computer
Society, 2009.

