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ABSTRACT The Internet of Things (IoT) provides the ability to extend the Internet into devices and
everyday objects, in a way that they are uniquely addressable. Sensors, actuators, as well as everyday devices
and objects such as cellphones, cars, and homes are interconnected and form a network that can be accessed,
monitored, and controlled remotely. Security is an important subject in IoT networks, since the devices and
the networks can be used as means of invading the users’ privacy. The current work examines the issue of
security agent location using indicative intrusion detection techniques for routing layer attacks. We analyse
the methodology, operation, as well as the complexity of each technique. Through extensive implementation
and experimentation, we are able to conclude that local security agents have the same performance results
with centralized and decentralized approaches, but with negligible overhead. As such, they are useful when
internal network communication, or network augmentation with monitoring nodes, is not feasible.

INDEX TERMS Internet of Things, Intrusion Detection Systems, Security Agents, Anomaly Detection,
Logistic Regression, Support Vector Machines.

I. INTRODUCTION

The trend to socially interact through the Internet has led to a
new technological era in the field of network communications
and services and shifted the attention towards connecting
everyday objects. This mode of connectivity has motivated
people to access sensor and embedded device data via the
Internet, thus creating the Internet of Things (IoT). The Inter-
net of Things is essentially an extension of the Internet into
devices and everyday objects, which can be accessed through
the Internet in a way uniquely addressable way. The ease
of communication with and between the things has boosted
the development of many applications that can provide new
services to citizens, companies, and public administration
[1], [2]. Smart homes, Smart Cities, Smart Critical infras-
tructures are some of the IoT examples that can make life
easier. Networks of this type inevitably attract people with
malicious intent, who aim in disrupting their functionality by
any means possible.

The Things in the IoT inherit wireless sensor security
vulnerabilities and at the same time are connected to the
largest untrusted network, the Internet, making them more

vulnerable and appealing for malicious interventions. Smart
City applications can draw attention to perpetrators as the
IoT applications become massive databases for the city. In
traditional networks, the end users have some control on the
security measures to adopt and they can avoid getting hacked
by updating their software and choosing the applications to
be executed. In Smart City applications the citizens cannot
control the security level of the underlying IoT. They may be
ignorant of its existence, but the perpetrators can definitely
violate it and, as a result, violate the citizens’ privacy.

The first line of defense in computer systems and networks
is the use of protocols and mechanisms that try to maintain
integrity, confidentiality and authentication, thus preventing
known malicious intruders from entering the network [3].
Intrusion Detection is considered to be the second line of
security defense [3]. The detection layer is responsible for
recognizing attacks, which have managed to breach the first
line of security defense and/or which try to disrupt the
network’s availability by acting within the network or the
node.

The current work examines the issue of the placement of
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security agents (SA) within the IoT network. Our contribu-
tions are: (a) the specification of the main ways to place
security agents and representative techniques for each; (b)
the design of a framework in which the techniques are trained
and evaluated using both benign and malicious node activity;
(c) the creation of the node activity using routing layer attacks
implemented according to their most accepted definitions;
(d) the deployment of the attacks against a simple routing
protocol, to remove any artifacts resulting from complex im-
plementations based on standards; (e) the detailed analysis of
three different anomaly IDS techniques; and (f) the extensive
evaluation of results, using multiple performance metrics.

The rest of the paper is structured as follows: Section II
presents common anomaly detection techniques and elabo-
rates on the techniques chosen to be evaluated. Section III
presents the steps taken to implement routing attacks, execute
them, and monitor sensor activity. Section IV, V, and VI show
the operations, training, and the evaluation results for each
detection technique. Section VII contains our conclusions.

II. BACKGROUND AND RELATED WORK
There are two basic intrusion detection techniques: anomaly
detection and pattern-based detection. Pattern detection, also
known as signature-based, detects attacks which have been
previously identified. For each attack detected, its unique
pattern and/or signature is computed, stored and used to
compare with real-time patterns. Anomaly detection aims in
detecting known and novel attacks by identifying abnormal
activity. Any deviation from normal activity is considered
to be malicious. Both detection techniques bear advantages
and disadvantages. The pattern detection technique has the
advantage of not raising many false alarms, since all the
alarms are based on known attacks. Nevertheless, to be able
to recognize a new attack, the attack first needs to happen,
which means that the unfortunate and unsuspecting networks
will be damaged. The anomaly detection technique has the
advantage of detecting novel attacks more easily by recog-
nizing abnormal activity.

Abnormal activity can be the result of either malicious
intervention or node malfunction. There are two stages of
operation in each anomaly detection technique; the training
and the deployment stage. At the training stage, normal
activity is defined. Defining normal activity is crucial in
minimizing false alarm rates and increasing detection rates
[4]. One key factor for determining normal activity is to
take into consideration both normal and abnormal conditions
[4]. An Intrusion Detection System (IDS) anomaly detection
agent is equipped with the knowledge of what normal activity
is and a tolerance threshold. At the deployment stage the IDS
agent monitors node and/or network activity. If the activity
exceeds a predetermined threshold or does not comply with
the definition of normal activity, it is marked as abnormal and
an alarm is raised.

Anomaly detection mechanisms can be classified based
on many things. One classification is based on the source
of the audit data, which may be the node, the network, or

FIGURE 1: Placement of Security Agents (SA) (a) BLR
using local SA, (b) SVM using global SA, and (c) Threshold
based decentralised SA

both. Another classification is based on the method used
for profiling normal activity and capturing abnormalities.
There are numerous surveys on the topic [5]–[7], so we will
not expand here. It suffices to recognize that anomaly IDS
are roughly classified as Machine Learning-based, Statistical
Analysis-based, and Rule/Threshold-based.

The classification we consider in this work relates to the
location of the security agents and the way they operate.
There are three key ways to place an intrusion detection
agent: locally/distributed, globally/centralized, and decen-
tralized [6]. Local security agents are installed in every
IoT object and are responsible both for monitoring node
behavior and for detecting node malfunction or malicious
operation (see Fig. 1a). In certain cases, local agents can
also be assigned the role of monitoring neighboring traffic
and detecting malicious neighbors, thus becoming distributed
security agents. The concern with local security agents is
the computational and memory overhead they may impose
[6]. A more centralized approach is having a global security
agent installed within a central node, the Sink or Gateway
node, that is responsible for monitoring all network traffic
and detecting attacks (see Fig. 1b). There are two major draw-
backs in having a global agent: it creates additional traffic to
transmit node status reports and in case of an attack the global
agent may have a difficulty monitoring the network traffic, as
most of the traffic may not reach their destination [6], [8].
Decentralized security agents, place multiple agents within
the network to monitor clusters of nodes (see Fig. 1c). The
decentralized approach is a combination between distributed
agents and global agents aimed to avoid the drawbacks of
both. According to [6], the advantage of this approach is that
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each decentralized security agent can be customized to each
cluster of nodes it monitors and it can set up its own set of
rules to achieve better results. The disadvantage of this ability
to customize the operation is the configuration overhead.

For the purpose of this work, we have chosen a represen-
tative solution for each placement strategy. For the decen-
tralized solution we use the rule-based approach proposed
by R. da Silva et al. in [9]. For the centralized approach,
we analyse an anomaly detection technique using a C-Class
SVM model. This is based on the work of Kaplantzis et al. in
[10], but extended with both malicious and benign activity,
for a more precise definition of abnormalities, as suggested
by [11]. The complexity and overhead of this technique
places the security agent at a powerful node able to monitor,
or receive, the whole network activity. The third method to be
evaluated is the Binary Logistic Regression statistical model,
as suggested by Ioannou et al. [12]. The computation and
complexity of the model allows to analyze a local security
agent approach, in which every node is also a security agent
that bases its detection on local node activity.

The rest of the section, presents details for each of the three
detection techniques.

A. LOCAL IDS USING BINARY LOGISTIC REGRESSION
Binary Logistic Regression (BLR) allows the analysis and
prediction of a dichotomous outcome. It is a statistical
method that typically predicts a binary dependent variable
based on a set of independent variables. Each independent
variable can be continuous, discrete, categorical, or binary.
BLR Logistic regression is also being applied in health care
and financial and economic models to provide prognosis [13].
Logistic regression has also being used in [14] to evaluate
Wireless Sensor Network (WSN) data reliability. In [15] they
used Logistic Regression (LR) to detect patient anomalies
and sensor faults in medical WSNs. The work in [16] is
closely related to ours as they use BLR to detect malicious
system calls within a personal computer. They monitored sys-
tem calls invoked by both benign and malicious applications
in a Windows operating system.

B. GLOBAL IDS USING SUPPORT VECTOR MACHINES
Support Vector Machine (SVM) is a class of machine learn-
ing algorithms that can create a binary classification model
out of complex highly non-linear problems [10]. An SVM
performs classification tasks by constructing hyperplanes in a
multidimensional space that separates cases of different class
labels. SVM has been used to detect possible intruders in the
network such as the work in [10] and to detect outliers in the
data [17]. In both [10] and [17], they use one-class SVMs as
they trained their system using only the normal activity of the
network and sensing data. They support that by only using
benign activity, an unknown attack can still be accurately
detected.

In their work, a centralized node (the Sink) is respon-
sible for intrusion detection including data processing and
anomaly detection tasks. Their scheme of a centralized node

detection system was created to not impose memory and
power overhead on the constrained nodes.

C. DECENTRALIZED IDS USING THRESHOLDS
The authors in [18], proposed monitoring a WSN network
using performance parameters between source and destina-
tion nodes, such as packet loss, signal to noise ratio, bit
error rate, number of hops, and energy consumption. The
work proposed in [19], detects insider attacks by monitoring
packet dropping rate, packet sending rate, forwarding delay
time, and sensor readings. The packet dropping rate requires
buffering the recently sent packets. The packet sending rate
counts the number of packets sent for a specific time lapsed.
Forwarding delay time computes the difference in time be-
tween the time a packet takes to be transmitted to node x and
the time node x takes to forward the packet. The authors in
[20] proposed an IDS system based on an average received
power and average packet arrival rate.

In [21], they implement an IDS with four modules. Each
sensor sends status messages to the server. The heartbeat
module periodically sends status messages with no specific
data information to the server to acknowledge its existence.
Lack of status messages from a node can be classified as a
disconnected or faulty node. For the heartbeat module, they
leveraged the data messages that the nodes were sending to
the server. The movement module is triggered when the sen-
sor senses a movement. A threshold is applied at the server
to investigate whether the node has been physically moved or
sensed a movement. The Carrier Sense Time (CST) module
sends alert messages to the server if a certain threshold for the
CST has been exceeded indicating the presence of a security
threat called jamming. The last IDS module is the OTAP
module in which it is responsible to detect, using signatures,
any unauthorized attempt for reprogramming the node. It
sends alarm messages to the server for further investigation.

The work in [22] proposes various metrics to detect DoS
attacks in WSNs. At predefined time intervals, cluster head
nodes request information from nodes within the network,
either from a subset on nodes within clusters of nodes or
specific nodes, and evaluate them. The information requested
include power consumption, packets received and sent. The
parameters are then formed into metric values and thresholds
are applied to determine whether there is an intrusion.

In [9], the authors propose applying rules to detect pos-
sible attacks within the network. Each rule is customized to
detect specific attacks. When multiple rules are violated, their
IDS raises an alarm. They define five rules in which they
can detect multiple attacks when they exceed a limit. The
interval rule monitors the time passed between the reception
of two consecutive messages within the allowed limits. At
the retrasnmission rule, the monitoring node listens to the
packet sent from a node and received by another node within
its vicinity. If the relay node does not forward the packet
received an alarm is raised. The integrity rule monitors mes-
sages’ payload that needs to be the same from the origin to
the destination. The delay rule monitors retransmission time,
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the repetition rule monitors the number of times a message
is retransmitted. The radio transmission range rule monitors
the messages’ origin. If the message received is not from
a neighboring node then an alarm is raised. The last rule
is the jamming rule that monitors the number of collisions
associated with a message.

The IDS agents are distributed among the network and
are responsible to monitor and detect possible attacks. Their
method requires that the constrained nodes are monitored by
at least one monitoring node. A monitoring node is responsi-
ble to eavesdrop their neighbors and apply detection rules.

III. METHODOLOGY
To evaluate the different IDS techniques we executed the
following four steps:

1) Definition and Implementation of Attacks
2) Data Collection Methodology
3) IDS operation
4) Evaluation

In this section we will explain items 1), 2) and 4). Details
of each IDS technique (item 3) are presented in Sections
IV, V, and VI for the Local, Centralized, and Decentralized
approaches respectively.

For most of the components in the current work, we used
the Contiki operating system [23] and the associated Cooja
simulator [24]. We created our own routing protocol; imple-
mented the attacks, based on the most common definition of
them; collected the data using a specially created monitoring
tool; simulated the attacks; retrieved the experimental data
for training purposes; and, finally, implemented the IDS
techniques.

A. WEIGHED SHORTEST PATH ROUTING PROTOCOL
The attacks were created over an in-house implemented
simple routing protocol called WSP, which is based on the
widest-shortest path concept. Numerous routing protocols
have been proposed to be used for the IoT, the most popular
being the Routing Protocol for Low Power and Lossy Net-
works (RPL) over 6LowPAN (Low power Wireless Personal
Area Networks) [1], [25], [26]. To evaluate the anomaly
techniques independent of the routing protocol constraints
we chose to implement the attacks using a simple routing
protocol with minimal signaling overhead.

WSP takes into consideration the distance of the sensor
node from the Sink node and the signal strength of its
neighbors. The protocol requires that each sensor node has a
neighbor table, which is created when the network is formed
and is updated periodically or after an event. A table entry
includes the neighbor’s node id, the number of hops to the
sink, and the last measured RSSI value to that neighbor. Once
a node is activated, it transmits broadcast control messages,
announcing its existence. Unless the node is the Sink, it
advertises a hop count of -1, up until it figures out its location
within the routing tree topology. The Sink advertises a hop
count of 0. The Sink’s neighbors are the first nodes that

update their hop count to 1 hop away from the Sink and
broadcast it. Their neighboring nodes update their tables
accordingly, and broadcast their new hop count set to 2. The
process is repeated up until all nodes are connected. A sensor
node chooses a relay node, initially based on the distance
from the Sink and then according to the highest RSSI.

B. ROUTING LAYER ATTACKS
Routing layer attacks aim in exploiting routing protocol vul-
nerabilities to disrupt the network’s flow by diverting traffic
towards the compromised node making it difficult for the
network to accomplish its intended goal. The compromised
node may alter, redirect, or drop the packets received, thus
changing the network operation. The current work focuses
on three routing layer attacks, the Selective Forward, the
Blackhole and the Sinkhole attacks.

The Selective Forward (SF) attack, as the name implies,
selectively chooses which packets to forward and which ones
to drop. In the current work, the selection of the packets is
done randomly; either by a predefined probability, named
Forwarding Ratio (FR) or by blocking specific neighboring
node’s packets for a specific time interval, named Blocking
Node (BN). The Blackhole (BH) attack maliciously adver-
tises that the malicious node is one hop away from the Sink.
The BH attack is used in combination with SF attack and with
both dropping selection methods.

The Sinkhole attack advertises itself as the Sink and lures
traffic from all the network, not just the neighboring nodes,
towards itself. A Sinkhole attack can then either tamper with
routing packets, spoof or replay route messages, or even
transmit false report attacks to constitute the compromised
node as a more attractive path to forward packets [27]–[29].
The victim nodes transmit their packets toward the malicious
node and their packets are essentially lost [27]. The best
location to create a Sinkhole attack is near the Sink where it is
easier to “fool” neighbooring nodes and get all the traffic that
was destined for the Sink [28]. It was shown that depending
on the network topology, even when the malicious node is
located further away from the Sink node, it can still deny the
Sink the ability to receive packets from large portions of the
network [8].

C. DATA COLLECTION
Data collection from each node was done using the Remote
Monitoring Tool (RMT) described in [30]. RMT is able to
collect data from any layer of the protocol stack and also
collect information on CPU activity and power consumption.
For this work, we are using data from the routing layer that
includes data packets received, data packets sent, number of
packets forwarded, number of packets dropped, and number
of announcements received (see Table 1).

D. EXPERIMENTAL DATA
Each detection technique was trained and evaluated over the
same network topology. Fig. 2 shows the network topology
we used. The Sink node (shown in a dark color) is in the
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TABLE 1: Routing Layer Parameters

WSP
Data Packets Received Data Packets Sent
Packets Forwarded Packets Dropped
Announcements Received

FIGURE 2: Network Topology: Sink in the middle of the grid

middle of a 5x5 grid. The numbers in each node show the
distance, in hops, of the node to the Sink. The Sink has four
neighboring nodes and the farthest nodes are four hops away
from the Sink.

For the Local and Centralized methods, two types of sce-
narios were created to gather data and evaluate the detection
mechanism. In a benign scenario all nodes within the network
are executing a benign application. For each topology we
execute 10 benign simulations each with a different random
seed. In a malicious scenario one node within the network is
executing a malicious application. For each network topology
we executed 24 malicious scenarios for the Selective Forward
attack, 24 malicious scenarios for the Blackhole attack, and
24 malicious scenarios for the Sinkhole attack.

The scenarios were evaluated within a 15-minute exper-
imental time. The nodes started transmitting data after the
first 2 minutes of experimental time. The 2 minute window
was set to allow the sensor nodes to be connected and reach
a steady state. The RMT monitoring time interval was set
to 30 seconds, thus the data retrieved in the 15 minute
experimental time was for 26 monitoring periods. Only the
first 25 monitoring time intervals were used, as experimental
time expired before certain nodes had the chance to compute
the last monitoring time interval.

In both benign and malicious applications, the data rate
was set to one (1) packet per second (for an effective data
rate of 384 bps). Every node was transmitting 30 packets per
monitoring time interval and if it was a relay node, it was also
forwarding the packets received by its neighboring nodes.
At the end of the experimental time, the data gathered for
each malicious scenario at the WSP layer was 25 monitoring

TABLE 2: Confusion Matrix

Diagnosis
Viral Benign

True
Condition

Viral True Positive False Negative
Benign False Positive True Negative

periods from 24 constrained nodes.
The data per monitoring time was used as input for eval-

uating the local and global detection methods described in
the following sections. In the decentralized approach, the
data that was used was based on monitoring traffic between
neighboring nodes. Section VI describes in detail the steps
taken to monitor data and detect abnormal traffic between
neighbors.

E. EVALUATION METRICS
The confusion matrix shown in Table 2 classifies the alarms
into four value types. The True Positive/True Negative values
are the correct predictions of the model. True Positive (TP)
values are the number of viral node activities that the model
has correctly identified. The same applies to True Negative
(TN) values; when given a benign activity, the model cor-
rectly identifies it, and no alarm is raised. On the contrary, the
False Positive/False Negative values show the misclassifica-
tions of the model. The False Positive (FP) values correspond
to benign node activities that are are detected by the model as
malicious. The False Negative (FN) values are the malicious
sensor activities that have not raised an alarm.

The Accuracy and Precision ratio (ACC) shows the ratio
of correct classifications over the total classifications made
[31]. The ACC is shown in (1)

ACC =
TP + TN

TP + TN + FP + FN
(1)

Recall, also known as True Positive Rate (TPR), shows
the ratio of TP, the alarms that were raised by the malicious
nodes, over the total number of malicious events.

Recall/TPR =
TP

TP + FN
(2)

The Recall/TPR is usually accompanied with the Pre-
cision, or Positive Predictive Value (PPV), that shows the
percentage of correctly identified malicious nodes within the
network (see (3)) [32]. The Precision/PPV has also been used
with the name Detection Rate in [25], [33].

Precision/PPV =
TP

TP + FP
(3)

IV. LOCAL IDS USING BINARY LOGISTIC REGRESSION
The current section describes a detection method based on
local SA (see Fig. 1a). Binary Logistic Regression (BLR) is
used to predict a binary dependent variable based on a set of
independent variables. To avoid a high number of false alarm
rates, by defining strict thresholds, we use BLR analysis that
takes as input both benign and viral local node activity and
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outputs a profiling equation. The dependent variable to be
predicted is whether the activity is caused by a viral node or
not. The independent variables are a set of network activity
parameters (shown in Table 1).

There are two stages in this approach, the training and the
evaluation stage. The training stage takes as input a set of
sample node activity data and outputs a regression model.
The training stage indicates which independent variables
are the most significant to the regression model [16]. The
evaluation stage tests the model against a different data set.

For the training set, the independent variables are used
as gathered to avoid any computation overhead that may be
required at the deployment stage. The dependent variable
classifies the nature of the node activity whether it was
created by a malicious or a benign node. Probability P, as
shown in (4), is the probability that the network activity is
“viral”.

P =
eα+β1x1+β2x2+···+βnxn

1 + eα+β1x1+β2x2+···+βnxn
(4)

where n is the number of independent variables. Each xi rep-
resents the value of ith independent variable, α is constant, β
is the regression coefficient.

The challenge of logistic regression is to fit the mathe-
matical data with the actual data such as to maximize the
goodness of fit. The mathematical tool for computing the
goodness of fit is called the maximum likelihood which is
the condition probability of the dependent variable, given the
set of independent variables P (DependentV ariable|X).

For this research the p-value was used to evaluate the inde-
pendent variable significance. The p-value for xi is computed
using generalized linear model (see (5)).

Y = α+ β1x1,1 + β2x2,2 + · · ·+ βnxi,j (5)

where Y is a matrix with the independent variables. Each
X represents the value of the independent variable, α is a
constant, β is the regression coefficient.

The independence parameters chosen where those with a
p-value more than 0.05. Once a set of important independent
variables is determined by the p-value, equations (4) and (5)
were used iteratively using the evaluation data to verify their
importance.

A. TRAINING STAGE

For the training set, the independent variables are used as
gathered and averaged per node distance offline. To classify
the vectors, whether they are taken from benign or malicious
nodes, we include the dependent variable. The dependent
variable has two values: 0, for “benign”, and 1 for “viral”.
The classification process allows the logistic regression to
evaluate the significance of each independent variable in
identifying the nature of the activity.

We refer to the set of benign vectors as B and the set of
the viral vectors as V . The vector representation of benign
and viral vectors is the following:

bi = {bi,1, bi,2, . . . , bi,j}T (6)

where bi,j represents the local activity j made by a benign
node at the time interval i.

vk = {vk,1, vk,i, . . . , vk,j}T (7)

where vk,j represents the local activity j made by viral node
at the time interval k.

The local node activities for the B are extracted from the
benign scenario of each topology in which no compromised
node is present. The local node activities for the V are
extracted from the corresponding malicious scenario where
there exists a compromised node within the network.

T training = {ti,1, ti,2, . . . , ti,j} (8)

U training = {uk,1, uk,2, . . . , uk,j} (9)

We created two data sets Ttraining by using 80% of the
activities fromB andUtraining by using 80% of the activities
from V . The final training set is defined as:

Xtraining = {ti,1, ti,2, . . . , ti,j , . . . , uk,1, uk,2, . . . , uk,j}
(10)

The vectors in the set Xtraining are used as the input of
independent variables to BLR to derive the model.

T evaluation = {ti,1, ti,2, . . . , ti,j} (11)

Uevaluation = {uk,1, uk,2, . . . , uk,j} (12)

We also created two evaluation sets Tevaluation and
Uevaluation that 20% of the correspondingB and V sets were
used. The evaluation metric Xevaluation is defined as:

Xevaluation = {ti,1, ti,2, . . . , ti,j , . . . , uk,1, uk,i, . . . , uk,j}
(13)

We constructed a BLR model for each attack using the
monitoring parameters taken at the routing layer. To derive
the detection model of each attack, only the respective mali-
cious activity was used. Table 3 shows the number of vectors
used for each training and evaluation set (seen as j in (10)
and (13)). The vectors for the training and evaluation sets
were randomly selected.
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TABLE 3: Training and Evaluation Data Sets when Sink is in
the middle

Attack
j in Xtraining j in Xevaluation

Benign Viral Total Benign Viral Total

SF - BN 80 80 160 20 20 40

SF - FR 80 80 160 20 20 40

SF & BH - BN 80 80 160 20 20 40

SF & BH - FR 80 80 160 20 20 40

Sinkhole 80 80 160 20 20 40

TABLE 4: BLR Evaluation: Selective Forward Attacks

True diagnosis
Evaluation Set Viral Benign

SF-FR Viral 15 5
Benign 0 20

Accuracy ratio (ACC) = 0.88
Recall / TPR = 0.75
Precision / PPV = 1

True diagnosis
Evaluation Set Viral Benign

SF-BN Viral 15 5
Benign 0 20

Accuracy ratio (ACC) = 0.88
Recall / TPR = 0.75
Precision / PPV = 1

B. EVALUATION STAGE
The objective is to capture the model by using a small set
of significant variables and to achieve a high overall correct
prediction percentage.

The BLR detection model for each attack was evaluated
using the respective Xevaluation metric. The SF-FR BLR
model was evaluated using the Xevaluation metric that in-
cluded malicious node activity created by nodes under the
influence of a SF-FR attack. An activity is considered to be
benign when the probability (as shown in (4)) is less than 0.5,
otherwise, the node activity is classified as viral.

1) Selective Forward
In the training stage we created two Selective Forward BLR
models, a model for Selective Forward - Forwarding Ratio
(SF-FR) and a BLR model for the Selective Forward - Block
Node (SF-BN), using only four independent variables. The
independent variables that were used are the number of
packets forwarded (PFR), data packets received (PRC), the
number of announcements received (PAn), and the number
of packets dropped (PDR). The resulting probability model
is shown in (14).

P =
eα+βfr∗PFRi+βrc∗PRC+βdr∗PDR

1 + eα+βfr∗PFRi+βrc∗PRC+βdr∗PDR
(14)

The evaluation results for both Forwarding Ratio and
Block Node attacks are shown in Table 4. An alarm is raised
when the result of the BLR model is more than 0.5. As
expected, there are false negatives, since there are nodes

TABLE 5: BLR Evaluation: Selective Forward and Blackhole
Attacks

True diagnosis
Evaluation Set Viral Benign

SFBH-FR Viral 20 0
Benign 0 20

Accuracy ratio (ACC) = 1
Recall / TPR = 1
Precision / PPV = 1

True diagnosis
Evaluation Set Viral Benign

SFBH-BN Viral 20 0
Benign 0 20

Accuracy ratio (ACC) = 1
Recall / TPR = 1
Precision / PPV = 1

TABLE 6: BLR Evaluation: Sinkhole Attack

True diagnosis
Evaluation Set Viral Benign

Sinkhole Viral 20 0
Benign 0 20

Accuracy ratio (ACC) = 1
Recall / TPR = 1
Precision / PPV = 1

within the network that are never chosen to be relay nodes.
More specifically, four nodes within the network are placed
the furthest away from the Sink, in this case four hops away,
and they are never chosen to forward any packets. Therefore,
even though they are compromised, they do not have any
impact on the compromised node activity. The Precision
(PPV) metric is 100% indicating that all alarms raised are
classified correctly as viral activity. The Recall (TPR) shows
that the model was able to detect the viral node in 75% of
the malicious scenarios. The Accuracy rate is 88%, as it also
takes into consideration correct classification of the benign
activity. The BLR model was able to classify correctly 100%
of the benign activity.

2) Selective Forward and Blackhole
We followed the same principle of training and evaluation for
analysing the Selective Forward and Blackhole attacks. We
derived two BLR models, one for each attack, and evaluated
them with their corresponding evaluation sets. The results are
shown in Table 5. The node activities were correctly clas-
sified to either benign or malicious. The BLR models have
successfully detected all attacks having a 100% Accuracy
level, 100% Recall, and 100% Precision.

3) Sinkhole
At the training stage of the Sinkhole attack, the most sig-
nificant parameters differ from the Selective Forward and
Blackhole attacks. More precisely, there were again four sig-
nificant parameters: packets forwarded (PFR), data packets
received (PRC), data packets sent (PPS), and number of
announcements received (PAn) (see Table 1).
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FIGURE 3: The optimal hyperplane that separates the pos-
itive and negative values. The position of the hyperplane is
determined by the training set pairs that are closest called the
support vectors [35].

The Sinkhole BLR model also achieved a 100% detection
Accuracy, 100% Precision and 100% Recall. The model
detected and raised an alarm for all malicious activity and
correctly classified all benign activity with no false alarms.

C. COMPLEXITY
Local detection methods require monitoring local node ac-
tivity and computing at real time a regression model. RMT
is used as a background process that stores node activity and
presents them at predefined time intervals. The computation
and memory overhead of RMT are not deterrent factors for
implementing the BLR regression model [30]. BLR detection
models have been successfully implemented and launched in
sensor nodes in [34]. Along with RMT, the regression models
(for the three attacks), impose only an extra 9.58 KB of ROM
and a 0.58% increase in power and energy.

V. GLOBAL IDS USING SUPPORT VECTOR MACHINES
The current section describes the method used in the
Global/Centralised SA case (see Fig. 1b).

SVMs maximize the margin around the decision surface,
also called hyperplane. In order to do so, support vectors, also
known as training sets, are used as inputs. As with any ma-
chine learning technique, there are input and output training
samples. The input training sample features are denoted as
x1,x2,. . . xl, and the predicted value is denoted as yi for each
xi. The training set is labeled in pairs (xi, yi), i = 1, . . . , l
where x ∈ Rn and y ∈ {1,−1}. The output is a set of
weights wi one of which corresponds to each input feature
and in a linear combination they predict the value of y.

The difference of the SVM from other neural networks
is that it uses the optimization of maximising the margin
to reduce the number of weights that are nonzero to just a
few that correspond to the important features and provide
useful information in deciding the hyperplane (see Fig. 3).
The nonzero weights correspond to the support vectors.

A. C-SVM METHODOLOGY
The following section presents the steps taken to create the
SVM detection model. It explains the reason C-Class SVM

was used, the scaling performed on the input data, the kernel
type, and how the free parameters were computed.

1) C-Support Vector Classification
The work in [8] concluded that taking into consideration the
impact of the attacks can provide insights on the network
activity. Therefore, we use the C-support vector classification
optimisation for SVM. The C-support optimization type of
SVM is used when there are more than one class of data. In
our case, we have two classes: benign and malicious.

Assuming the training set xi ∈ Rn, where i = 1, . . . , l; xi
is separated in two classes; y ∈ Rl such that yi ∈ {1,−1};
l is the number of local node activity. C-SVM solves the
optimisation problem shown in (15) [36].

min
ω,b,ξ

subject to

1

2
ωᵀω + C

l∑
i=1

ξi

yi(ω
ᵀφ(xi) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , l

(15)

In (15), φ(xi) maps xi, into a higher-dimensional space
and C > 0 is the regularisation parameter. Due to the
possible high dimensionality of the weights w, we solve the
problem shown in (16) [36].

min
α

subject to

1

2
αᵀQα− eᵀα

yᵀα = 0

0 ≥ αi ≥ C, i = 1, . . . , l

(16)

In (16), e = [1, . . . , 1]ᵀ is the vector of all ones, Q is an
l by l positive semi-definite matrix, Qi,j ≡ yiyjK(xi,xj),
is the kernel function. The kernel function we used for our
purposes is discussed in Section V-A3. After we solve (16),
we solve equation 17 to find the optimal w.

ω =
l∑
i=1

yiαiφ(xi) (17)

The decision function for the C-class SVM is shown in
(18) [36].

sgn(ωᵀφ(x) + b) = sgn

(
l∑
i=1

yiαiK(xi,x) + b

)
(18)

2) Scaling
Scaling is applied to both training and evaluation data sets
to construct the data in a form that the SVM can take as
input and construct the hyperplane. We use scaling such as to
avoid certain parameters that are in greater numeric ranges,
dominate those in smaller numeric ranges [36]. At the same
time, applying scaling returns the parameters that are at most
important to retrieve better results [36].

We apply scaling for all support vector (xi, yi) using the
following:
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x,i = (β − α) xi −minx

maxx−minx
+ a (19)

where x,i is the scaling of parameter i > 0 and x > 0. Also
minx and maxx is the minimum and maximum numbers
of the input vector. The constants [α, β] correspond to the
scaling range in our case [−1, 1]. The scaling did not change
the labels yi.

Scaling our data returns the support vectors with the sig-
nificant parameters that are later used as input to our SVM.
Parameters that were scaled to 0 are not included as they do
not provide any useful information to our SVM model.

3) Radial Basis Function Kernel
There are various kernel functions one can use for SVM. We
chose the Radial Basis Function (RBF) kernel, as it is suitable
for non-linear data and label classification. Our selection was
also influenced by initial experimentation in which the RBF
kernel gave us better results than the linear kernel function
and exhibited less complexity than other kernel functions,
such as the sigmoid and polynomial kernel. The resulting
RBF kernel function we used is shown in (20).

K(xi,xj) = exp(−γ ‖ xi − xj ‖2),

γ > 0, γ =
1

2σ2

σ is a free parameter

(20)

4) Cross-Validation and Grid Search
The parameters C and γ used in (16) and (20), are free
parameters for the SVM and RBF kernel [36]. To find the
values of (C, γ) an experimental search based on our data
is conducted. The values of (C, γ) should be chosen so as
to avoid over fitting of our data. Over-fitting our data means
mapping the data closer to the threshold line thus minimising
the margin from our hyperplane, instead of maximising it,
which is the goal of SVM [36].

To avoid over-fitting by selecting more appropriate val-
ues for (C, γ) we use the cross-validation and grid search
method. The cross validation technique separates the input
data to training and evaluation. With the grid search, various
pairs of (C, γ) are evaluated to find the best pair. The method
of cross-validation and grid search is repeated until the best
pair of (C, γ) is found.

B. TRAINING AND EVALUATION
To construct our SVM model we used the Matlab LIBSVM
tool [36] and local node data taken from RMT.

1) Training
In our case we have two classes, the benign and the viral
class, denoted -1 and 1 respectively.

To construct the training model we use the following steps:
1) Label data into benign and malicious in the form of

vectors (xi, yi)

TABLE 7: SVM (C, γ) values from our training results

Significant Parameters
Training Set C γ
Selective Forward - Forwarding Ratio 128.0 0.5
Selective Forward - Block Node 0.03125 0.5
Selective Forward + Blackhole - Forwarding
Ratio

0.03125 0.0078

Selective Forward + Blackhole - Block Node 2.0 0.0078
Sinkhole 8.0 2.0

TABLE 8: SVM Evaluation: Selective Forward - Forwarding
Ratio

True diagnosis
Evaluation Set Viral Benign

SF-FR Viral 19 1
Benign 5 19

Accuracy ratio (ACC) = 0.85
Recall / TPR = 0.95
Precision / PPV = 0.79

2) Apply scaling to the training set
3) Apply RBF kernel to the training set
4) Apply cross validation and grid search to the training

set
5) Input the training set and (C, γ) values to create the

SVM model
Based on the attack we use for our training model, the

significant parameters varied. For Selective Forward attacks,
the scaling step returns data for the parameters data packets
received (PRC), packets forwarded (PFR), number of packets
dropped (PDR) and the number of announcements received
(PAn). For the Sinkhole attack, the scaling step returns the
training set for all five parameters shown in Table 1. The
results of the free parameters (C, γ) are shown in the column
titled Significant Parameters in Table 7.

2) Evaluation of SVM training model
From the training stage we created an SVM model with the
adjacent (C, γ) to be used for the evaluation stage. The data
sets that were used for the evaluation are shown in Table 3.

To set up our data evaluation sets we applied the following
steps:

1) Label data into benign and malicious in the form of
vectors (xi, yi)

2) Apply scaling to the evaluation set
3) Input the evaluation sets and (C, γ) values that we

retrieve from the training stage to the SVM model
The results of the SVM model are shown in Fig. 4. The

SF notation stands for Selective Forward, FR is Forwarding
Ratio, BN is Block Node, SF-BH is Selective Forward and
Blackhole attack.

In Selective Forward malicious activity the SVM did not
entirely correctly classify node activity as in the Selective
Forward with Blackhole and Sinkhole attacks. The Selective
Forward attack drops packets that should have otherwise
been forwarded. The SVM model has a Precision of 95%
in SF-FR and 100% in SF-BN with the cost of creating
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FIGURE 4: Percentage of accuracy of SVM model per mali-
cious scenario when using only significant parameters

TABLE 9: SVM Evaluation: Selective Forward - Block Node

True diagnosis
Evaluation Set Viral Benign

SF-BN Viral 20 0
Benign 5 15

Accuracy ratio (ACC) = 0.86
Recall / TPR = 1
Precision / PPV = 0.8

TABLE 10: SVM Evaluation: Selective Forward and Black-
hole - Forwarding Ratio

True diagnosis
Evaluation Set Viral Benign

SFBH-FN Viral 20 0
Benign 0 20

Accuracy ratio (ACC) = 1
Recall / TPR = 1
Precision / PPV = 1

TABLE 11: SVM Evaluation: Selective Forward and Black-
hole - Block Node

True diagnosis
Evaluation Set Viral Benign

SFBH-BN Viral 20 0
Benign 0 20

Accuracy ratio (ACC) = 1
Recall / TPR = 1
Precision / PPV = 1

TABLE 12: SVM Evaluation: Sinkhole

True diagnosis
Evaluation Set Viral Benign

Sinkhole Viral 20 0
Benign 0 20

Accuracy ratio (ACC) = 1
Recall / TPR = 1
Precision / PPV = 1

FIGURE 5: Placement of Security Agents using Thresholds

false positives. As a result, Recall is only 80% and 79%,
respectively.

In the Selective Forward with Blackhole and the Sinkhole
attacks, the results show that the SVM models have correctly
classified all activities (see 10, 11, and 12).

C. COMPLEXITY
SVM models have proven to be good indicators of whether
node activity is malicious or benign, but they come at the cost
of high complexity. According to [35], the SVM computation
overhead depends on the number of support vectors. In the
best case scenario, in which we know beforehand the support
vectors, to determine the coefficients of the support vectors
by a system of R linear functions we require a number
of operations proportional to R3. The cost of complexity
increases if the support vectors need to be discovered. The
authors in [35] also state that the kernel function has a high
computation cost as well.

SVM computational complexity overhead makes it diffi-
cult, if not impossible, to be implemented in a constrained
node. The authors [10] and [17] apply SVM machines in
non-constrained nodes to detect possible intervention to the
network or data outliers.

Placing SVM at a global position, comes with the cost of
creating extra network traffic. The central node/gateway can
detect malicious activity only based on information it has
locally or has received. Network nodes should make available
to the gateway their activity, thus imposing a communication
overhead in the detection process.

VI. DECENTRALIZED IDS USING THRESHOLDS
The current section presents a decentralized security agent
approach, as shown in Fig. 1c. We implemented the work
proposed by [9] using monitoring nodes to detect malicious
intervention within the network. More precisely, we applied
the retransmission rule that was designed to detect Selective
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TABLE 13: Monitoring Blocks

Monitoring
Nodes

Neighboring
Node ID

Threshold
Max Avg Min

M1 2, 3, 7, 8 23 5 0
M2 4, 5, 9, 10 175 98 15
M3 5, 6, 10, 11 66 28 5
M4 7, 8, 12, 13 187 82 10
M5 14, 15, 19, 20 165 61 11
M6 16, 17, 21, 22 51 13 1
M7 17, 18, 22, 23 142 77 5
M8 19, 20, 24, 25 90 18 1

Forward and Blackhole attacks [9]. The sinkhole attack can-
not be recognized using this method. The monitoring node
eavesdrops network traffic and tracks a packet’s status. When
a packet is sent to a neighboring node to be forwarded, the
monitoring node checks whether the relay node has success-
fully forwarded the packet as intended. If the relay node does
not forward the message, or if a threshold of packets not
forwarded is exceeded, then an alarm is raised.

The position of the monitoring nodes should be such that
each regular node is covered by at least one monitoring node.
Eight monitoring nodes were placed in key positions in the
network topology to achieve full coverage, as shown in Fig. 5.
In certain cases there is overlapping between the monitoring
nodes’ range, and some nodes are monitored by more than
one node. The nodes that each monitoring node is responsible
for are listed in Table 13.

Each monitoring node is responsible for listening to the
traffic between its neighboring nodes, saving the packets
sent and packets forwarded by each node. At predefined
time intervals the monitoring node evaluates the number of
packets sent and the number of packets forwarded from and
to a specific node. To evaluate the exact number of packets
sent versus the number of packets forwarded, the monitoring
node needs to have within its range both the sender node
and the relay node. An alarm is raised when the number of
packets not forwarded exceeds a predefined threshold. The
algorithm we followed for the monitoring node is shown in
Algorithm 1.

A. THRESHOLDS

As proposed by the work in [9], the thresholds are established
using benign information only. It is assumed that at the
beginning of the simulation the network is benign and for a
short period of time the monitoring nodes listen to the traffic
and construct their thresholds. For our work, we simulated
ten times a network in which the Sink is in the middle using
random seeds and using only the benign applications we
define the required thresholds. To construct the thresholds for
each monitoring node, we averaged the results of packets not
forwarded. For the purpose of our evaluation we derived three
thresholds for each monitoring node; the minimum, average
and maximum number of packets not forwarded (shown in
Table 13).

Algorithm 1 Monitoring Node: Detection of non-forwarded
messages

1: for Each neighboring node i do
2: Listen to traffic by node i
3: if Sent Packets then
4: Update table packets sent
5: end if
6: if Forwarded Packets then
7: Update table packets forwarded
8: end if
9: end for

10: if Detection Time Interval is expired then
11: for Each neighboring node i do
12: for Each entry in the packets sent table do
13: if Next hop node j is a neighboring node then
14: for Each entry in the packets forwarded

of j node do
15: if Packet not found then
16: Update packets not found variable
17: else
18: break
19: end if
20: end for
21: end if
22: end for
23: if Packets Not found is more than threshold then
24: Raise Alarm!
25: end if
26: end for
27: end if

TABLE 14: Decentralized Evaluation: Selective Forward

True diagnosis
Evaluation Set Viral Benign

SF-FR Viral 3 21
Benign 39 513

Accuracy ratio (ACC) = 0.9
Recall / TPR = 0.13
Precision / PPV = 0.07

True diagnosis
Evaluation Set Viral Benign

SF-BN Viral 4 20
Benign 40 512

Accuracy ratio (ACC) = 0.9
Recall / TPR = 0.17
Precision / PPV = 0.09

B. EVALUATION
Similarly to the previous cases, for the evaluation stage we
conducted simulations of 15 minutes, out of which the first
two minutes were considered as the initialization stage and
no monitoring was taking place. At the initialization stage
the network is created using the WSP routing protocol. Each
minute the monitoring node compares the packets forwarded
and sent for each of the neighboring nodes following Algo-
rithm 1.
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TABLE 15: Decentralized Evaluation: Selective Forward and
Blackhole Attacks

True diagnosis
Evaluation Set Viral Benign

SFBH-FR Viral 17 7
Benign 33 519

Accuracy ratio (ACC) = 0.93
Recall / TPR = 0.71
Precision / PPV = 0.34

True diagnosis
Evaluation Set Viral Benign

SFBH-BN Viral 17 7
Benign 30 522

Accuracy ratio (ACC) = 0.94
Recall / TPR = 0.71
Precision / PPV = 0.362

We conducted a total of 96 malicious experiments for the
topology in which the Sink is in the middle. The malicious
scenarios included one malicious node that would be infected
either with the Selective Forward attack or with the Selective
Forward and Blackhole attack. We again used the two varia-
tions of the Selective Forward attacks; the Block Node attack
and the Forwarding Ratio attack.

The results presented correspond to the case where the
thresholds in the monitoring node were set to the maximum
number of packets forwarded shown in Table 13. The max
threshold created the least number of false alarms.

1) Selective Forward
The confusion matrices in Table 14 show the results for
the Selective Forward attacks. The Accuracy rates of both
Forwarding Ratio (FR) and Block Node (BN) are 90% as
the monitoring nodes were able to correctly classify most of
the activity to the correct type. However, the Recall rate was
13% for the FR and 17% for the BN, indicating that there
was a high ratio of misclassifications. The FR Precision is
7% and 9% for the BN as most the malicious activity were
undetected.

2) Selective Forward and Blackhole
The Selective Forward and Blackhole attack returned higher
values on the evaluations metrics compared with the Selec-
tive Forward attacks. The Accuracy rates for FR and BN were
93% and 94% respectively, the Recall values were 71% for
both attacks and the Precision values were 34% and 36.2%
(shown in Table 15).

C. COMPLEXITY
The framework of using thresholds to detect the presence
of malicious attack is promising as it has achieved ap-
proximately more than 90% Accuracy levels and in certain
cases the monitoring nodes were able to detect which node
is malicious within the network. However, the Recall and
Precision rates were low, showing that a lot of false alarms
were created. To apply the threshold algorithm requires more
dedicated nodes within the network, which need to be placed

at key locations. The thresholds of the monitoring nodes need
to be different and depend on the location of the monitoring
node (see Table 13).

The threshold algorithm requires additional memory and
has computational overhead. In the worst case scenario the
computational cost of Algorithm 1 can reach up to O(N2).
The monitoring nodes require memory to store the number
of packets sent and packets forwarded for each neighboring
node.

VII. CONCLUSIONS
In this work we have evaluated three anomaly-based IDS for
IoT, each one placing its security agent(s) at different loca-
tion(s) within the network. For the local SA method we used a
technique based on the Binary Logistic Regression. BLR was
proven suitable to be installed at a node, to monitor, and to
detect abnormalities with negligible computational cost and
without any communication cost. SMV was considered in the
context of global SA method and a threshold-bases technique
was used as an example of a distributed SA solution. Table
16 shows a synopsis of the highest Accuracy achieved by
each technique. BLR provides the opportunity to have only
one parameter to set and offers both high detection rates (ac-
curacy, recall and precision) and easy implementation [34].
Threshold-based detection is easier to set, but needs a lot
of trial and error to find the correct levels for the monitored
parameters and is quite sensitive to topology and application
changes. It also requires dedicated nodes to be placed at
key positions and to listen promiscuously to neighbor traffic
(see Fig. 1c). c-SVM, on the other hand, does provide high
accuracy levels, but it is complex to setup and does not offer
any advantage over BLR. SVM has a higher communication
cost compared to BLR and Threshold, as its nodes have to
communicate their local activity to the global security agent
(see Fig. 1b). On the contrary BLR is installed within the
node and monitoring and detection are done automatically
without having to report to a central node or extra hardware
(see Fig. 1a).
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