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Drug-target residence times can impact drug efficacy and safety, and are therefore

increasingly being considered during lead optimization. For this purpose, computational

methods to predict residence times, τ , for drug-like compounds and to derive

structure-kinetic relationships are desirable. A challenge for approaches based on

molecular dynamics (MD) simulation is the fact that drug residence times are typically

orders of magnitude longer than computationally feasible simulation times. Therefore,

enhanced sampling methods are required. We recently reported one such approach: the

τRAMD procedure for estimating relative residence times by performing a large number

of random acceleration MD (RAMD) simulations in which ligand dissociation occurs in

times of about a nanosecond due to the application of an additional randomly oriented

force to the ligand. The length of the RAMD simulations is used to deduce τ . The

RAMD simulations also provide information on ligand egress pathways and dissociation

mechanisms. Here, we describe a machine learning approach to systematically analyze

protein-ligand binding contacts in the RAMD trajectories in order to derive regression

models for estimating τ and to decipher the molecular features leading to longer τ

values. We demonstrate that the regression models built on the protein-ligand interaction

fingerprints of the dissociation trajectories result in robust estimates of τ for a set of

94 drug-like inhibitors of heat shock protein 90 (HSP90), even for the compounds for

which the length of the RAMD trajectories does not provide a good estimation of τ .

Thus, we find that machine learning helps to overcome inaccuracies in the modeling

of protein-ligand complexes due to incomplete sampling or force field deficiencies.

Moreover, the approach facilitates the identification of features important for residence

time. In particular, we observed that interactions of the ligand with the sidechain of F138,

which is located on the border between the ATP binding pocket and a hydrophobic

transient sub-pocket, play a key role in slowing compound dissociation. We expect that

the combination of the τRAMD simulation procedure with machine learning analysis will

be generally applicable as an aid to target-based lead optimization.

Keywords: drug-protein residence time, machine learning, drug-target binding kinetics, structure-kinetic

relationships (SKRs), heat shock protein 90 (HSP90), molecular dynamics simulation, tauRAMD
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INTRODUCTION

The binding affinity of small compounds to their target is
commonly used as a selection criterion in drug design pipelines,
both for the early screening of chemical libraries and for the
subsequent lead optimization. Recent studies have, however,
shown that drug efficacy often correlates better with the residence
time than with the binding affinity of drugs (Copeland et al.,
2006; Schuetz et al., 2017). These observations suggest that the
optimization of the kinetic properties of drug candidates at an
early stage of the drug design process would be advantageous.

The computation of drug-target binding kinetics by using
MD simulations is more challenging than the computation of
binding affinity (Romanowska et al., 2015). A major problem
in using conventional MD simulations for computing binding
kinetic parameters is the need to sample the intermediate
transition states between the bound and unbound states, which
is not required for the calculation of binding affinity. This
poses tremendous challenges for brute-force conventional MD
sampling, whose application is so far limited to computation of
the binding kinetics of small molecules to small proteins, e.g.,
benzamidine to trypsin, which still requires extensive millisecond
simulations (Dror et al., 2011; Wu et al., 2016). Reconstruction
of a single dissociation event for a pharmacologically relevant
compound, which typically occurs on the time-scale of minutes
or hours, is currently not feasible from conventional MD
simulations. To overcome this limitation, a range of enhanced
sampling techniques has been explored recently (Bruce et al.,
2018). Some of them are aimed at the reduction of the
configurational space to be sampled for the computation of
binding kinetic rates, e.g., metadynamics (Tiwary et al., 2015,
2017), weighted ensemble methods (Dickson and Lotz, 2016;
Dixon et al., 2018), or milestoning (Tang and Chang, 2017)
[a detailed review can be found elsewhere (Mollica et al.,
2016; Dickson et al., 2017)]. Although these methods are
designed for the prediction of the absolute values of binding
and unbinding rates within a reasonable computation time,
they are still very computationally demanding and require high
user expertise, which impedes the implementation of these
methods in drug design pipelines. Furthermore, in addition to
the limitations arising from the selection of the sub-space to be
sampled, intrinsic limitations of the underlying physical model
of molecular interactions, such as the force field and the water
model, may affect the accuracy of the computed rates.

While absolute values are difficult to attain, it has been
demonstrated recently that the relative values of unbinding
rates for a series of ligands of a particular target are more
robust to these limitations (Marques et al., 2019). In line with
this finding, computationally efficient approaches that provide
estimates of the relative residence times for a set of compounds
have been reported. Instead of deriving the residence time from
the energetic profile of dissociation paths, these techniques allow
estimation of relative τ values from the times required for ligand
egress during enhanced sampling simulations. The residence
times obtained can then be scaled for direct comparison with
experimental data. One example of this approach is scaled
MD (Mollica et al., 2015; Schuetz et al., 2018a) in which the

potential of the system is rescaled during simulations. Another
approach, recently developed in our group, is the τRAMD
method (Kokh et al., 2018), which employs multiple short
random acceleration MD, RAMD, simulations to generate ligand
dissociation trajectories. Relative drug-protein residence times
are estimated from the times required for the ligand to leave
the binding pocket in simulations started from the structures of
protein-ligand complexes. In RAMD (Lüdemann et al., 2000),
an additional randomly oriented force is applied to the ligand’s
center of mass and its direction is altered during the simulations,
depending on the motion of the ligand. RAMD was originally
developed to explore ligand egress routes from protein binding
sites [see e.g., (Winn et al., 2002; Schleinkofer et al., 2005)],
where simulated trajectories were employed to explore ligand
unbinding pathways andmechanisms. In the τRAMDprocedure,
many trajectories are generated (usually more than 40 for each
compound) and each trajectory contains hundreds of thousands
of snapshots that may contain important information for the
ligand unbinding rate. The value of extracting molecular features
from MD simulations as fingerprints for building machine
learning (ML) models to predict molecular properties has been
demonstrated in Re. (Riniker, 2017). Here, we explore whether
fingerprint-basedML techniques can aid the detection of features
important for drug-target residence time in RAMD trajectories
and, furthermore, improve the robustness of the estimated
residence times.

ML has been applied for drug-target τ prediction in several
studies. Qu et al. (2016) derived quantitative structure-kinetics
relationships (QSKRs) for a set of HIV-1 protease inhibitors by
using Volsurf descriptors. Chiu and Xie (2016) went beyond a
static model by accounting for flexibility with a coarse-grained
normal mode analysis to classify HIV-1 protease inhibitors
in binding kinetics classes using a multi-target ML approach.
Comparative Binding Energy (COMBINE) analysis (Ortiz et al.,
1995; Perez et al., 1998), in which PLS (Partial Linear Regression
Projection to Latent Structures) is used to reweight components
of the bound protein-ligand interaction energies to predict
binding properties, has recently been applied to datasets of
HSP90 and HIV-1 protease inhibitors (Ganotra andWade, 2018)
and was found to give models with good predictive ability for
residence time. It should be noted that the COMBINE analysis
method was originally developed for the prediction of binding
affinity for congeneric series of compounds. While compounds
with a common scaffold are required for good prediction of
the equilibrium dissociation constant, KD, a good prediction
of the off-rate could be obtained for a dataset of diverse
compounds from analysis of the bound protein-ligand complexes
(Ganotra and Wade, 2018) suggesting that differences in the
unbound state are less important for off-rate than for binding
affinity. Huang et al. (2019) applied PLS analysis to interaction-
energy fingerprints extracted from snapshots of steered MD
ligand dissociation trajectories to obtain a predictive model
for residence time for a set of HIV-1 protease inhibitors and
found that important interactions for determining τ were in
the first half of the dissociation processes. This is consistent
with a previous steered MD study of HIV-1 protease inhibitor
dissociation in which the strength of the ligand-protein hydrogen
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FIGURE 1 | Structural and binding kinetic properties of the dataset of 94 N-HSP90 inhibitors. (A,B) Two conformations of the ATP binding site in N-HSP90 with a

bound ligand shown in stick representation with coloring by atom type; α-helix3 (highlighted in red) can be distorted in the middle (loop-type conformation (A),

compound 5 PDB ID 5J2X) or complete (helix-type conformation (B), compound 13, PDB ID 5J9X) (Amaral et al., 2017); the molecular surface of the binding pocket

colored by the Coulomb potential is shown in insets for both conformations: the ATP binding site has predominantly negative charge (red), whereas the transient

sub-pocket under α-helix3 is mostly hydrophobic. (C) Protein-ligand contacts for helix-binding compounds are illustrated for compound 13, (PDB ID 5J9X): the

ligand-protein binding network consisting of D93, T184, and three water molecules (red spheres) is common to all compounds; compounds bound to the

helix-conformation of the binding site also interact with F138 and may interact with residues in the hydrophobic pocket, such as W162 and Y139. (D) 2D

representation showing the four main groups of compounds discussed in the text. (E) Similarity matrix of the 90 N-HSP90 inhibitors generated using Maestro

[(Schrödinger, 2019); see text]. (F) Distribution of the experimental binding rate constants of the entire set of compounds. The three largest groups of compounds are

colored as denoted in the legend: “Ind. exposed”—indazole-based compounds with different R1 fragments, “Ind. buried”—indazole compounds with different R2

fragments, compounds with resorcinol and quinazoline scaffolds, as well as bulky compounds with a tricyclic fragment and different ATP-pocket binding core. (G)

Distribution of residence times of the helix-binding and loop-binding compounds.

bond network of the bound state was found to be crucial
for the dissociation process (Li et al., 2011), as well as with
the above-mentioned models based solely on analysis of the
bound state.

In the present study, we use our previously published τRAMD
simulation results for a data set of 70 inhibitors of the cancer
target HSP90 for which off-rates were measured by surface
plasmon resonance (SPR) (Amaral et al., 2017; Kokh et al.,
2018). These compounds bind in the ATP binding site of the
N-terminal domain of human HSP90 (N-HSP90α, residues 9-
236; NP_005339). The τRAMD procedure gave predictions of
relative residence times with an accuracy of about 2.3τ for
78% of the compounds and <2.0τ within congeneric series. It
was found that the computed residence times were sensitive to
the quality of the underlying MD simulations of the protein-
ligand complexes. For some compounds, deficiencies in the
force field or inaccuracies in the docking pose led to notable
underestimation of the residence time, although within a series of
compounds with the same binding scaffold and small fragment
substitutions, the ranking of the residence time was well-
reproduced. The latter result suggests that the inaccuracy of the
simulations of the bound state may be overcome in τRAMD
simulations if the transition state is the main determinant

of the variation in residence time within a congeneric series
of compounds.

Here, we have performed τRAMD simulations for an
additional 25 HSP90 inhibitors, whose binding kinetics were
recently reported (Schuetz et al., 2018b). We have then combined
these simulations with our previous simulations (Kokh et al.,
2018), and applied ML approaches to the combined dataset of
simulated trajectories for 94 HSP90 inhibitors.

N-HSP90 is a challenging target for the prediction of binding
kinetics, as it has a flexible ATP binding site lined by the unstable
α-helix3 that can adopt either “helical” or “loop” conformations
(see Figures 1A,B), depending on the ligand bound. The “helical”
conformation contains an additional hydrophobic sub-pocket
adjacent to the ATP binding site, which provides space for
substitutions on ‘helix-binders’ (fragment R2, see Figures 1C,D),
while this fragment is absent in the compounds bound to
the “loop” conformation (‘loop-binders’). It has been recently
demonstrated that the binding kinetics of resorcinol inhibitors
of HSP90 is related to the protein binding site conformation in
the bound complex, and that the R2 substitution can effectively
stabilize α-helix3 and result in lower binding and unbinding
rates for ligands with such fragments (Amaral et al., 2017). In
particular, ligands with large R2 substitutions, such as tricyclic
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FIGURE 2 | Workflow incorporating the simulation protocol for τRAMD simulations and the ML analysis. The τRAMD simulations provide (i) computed relative

residence times, and (ii) trajectories that are used for analysis of protein-ligand contacts and building a ML regression model for prediction of residence times and

determining the factors governing residence time (see section Methods and Materials); data sets generated and elements of simulation workflow are highlighted by

blue and gray background, respectively.

compounds (Figure 1D), generally have the slowest binding and
unbinding kinetics (Figure 1F).

The set of 94 compounds considered in the present
study contains molecules with 11 different scaffolds:
resorcinol (28), hydroxyindazole (47), benzamide (3),
aminoquinazoline (8), aminopyrrolopyrimidine (2), 7-
azaindole (2), aminothienopyridine (1), imidazopyridine
(1), 6-hydroxyindole (1), and adenine (1) (with the number of
compounds given in brackets; see Supplementary Tables 1

and 2; SMILES of all studied compounds are given in
Supplementary Table 4). The scaffold occupies the ATP
binding pocket and binds to D93 as illustrated in Figure 1C

for an indazole-based compound. The three most populated
scaffolds are shown in Figure 1D, along with an example of
compounds with different binding scaffolds but a common
tricyclic group, which will be discussed below. Further, the
resorcinol compounds with triazole and 2-methylbenzyl solvent-
exposed groups and different buried fragments, illustrated
in Figure 1D, build a sub-group of 8 compounds. Following
Schuetz et al. (2018b), one can also distinguish two sub-groups
of indazole compounds: (i) indazole-exposed: 24 compounds
with a 3-methylbenzyl R2 moiety in the hydrophobic sub-pocket

and different exposed R1 fragments, and (ii) indazole-buried:
17 compounds with an exposed 4-(4-morpholinyl) phenyl R1

fragment and different buried R2 fragments (see Figure 1D).
The rest of the compounds is quite diverse, as can be seen
from the 2D similarity plot generated using Maestro software
(Schrödinger, 2019) by hierarchical clustering of compounds
based on their 2D fingerprint similarity in Figure 1E. There
are both loop- and helix-binders of different scaffolds, though
the sub-set of loop-binders is much smaller (only 13) than
the helix-binders.

The experimental binding kinetics data for the full compound
set (Amaral et al., 2017; Kokh et al., 2018; Schuetz et al., 2018b)
are plotted in Figure 1F. Both off-rates (koff = 1/τ ) and on
rates (kon) vary by several orders of magnitude and there is
no clear correlation between them, indicating that both the
height of the transition barrier and the free energy of the bound
state vary across the compound set. Notably, the helix-binders
generally have longer residence times than the loop-binding
compounds (Figure 1G).

Here, we built ML models based on the τRAMD dissociation
trajectories for this data set aimed at: (i) investigating whether
residence time can be deduced from the protein-ligand contact
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FIGURE 3 | Workflow illustrating the generation of features from simulated τRAMD trajectories: (1) Extraction of interaction fingerprints as features for ML; (2)

Discarding of the bound state part of the trajectory (highlighted in pink). The discarded part of the trajectory depends on the threshold used, resulting in data-sets A,

B, and C (see text for details); (3) Averaging of the features over all snapshots in each trajectory; (4) Averaging of the features over all trajectories for each compound;

(5) Removal of features that appear rarely or are strongly correlated with other features. The size of each set of data at each stage of the workflow is indicated in red.

occurrence in τRAMD ligand dissociation trajectories, in
particular for the cases where the relative residence times
derived from the lengths of τRAMD trajectories are consistently
underestimated; and (ii) identifying molecular properties that
affect ligand residence time and that can be used to guide the
design of ligands with altered binding kinetics.

METHODS AND MATERIALS

An overview of the simulation workflow is given in Figure 2.
For each compound, the τRAMD procedure was performed,
which consists of the preparation of the solvated protein-ligand
complex, the equilibration of the system using multiple replicas
of standard MD simulation, and then the simulation of multiple
RAMD ligand dissociation trajectories. The τRAMD relative
residence times are obtained using the protocol reported by Kokh
et al. (2018). In the second part of the workflow, the protein-
ligand contacts (referred to hereafter as interaction fingerprints,
IFs) are extracted from τRAMD dissociation trajectories. Then,
for all compounds, the IFs are transformed into a set of features
for the ML analysis, which includes the clustering of the ligand
dissociation properties and the building of regression models for
residence time based on available experimental binding kinetics
data (see the next section). The workflow is described in detail in
the following sections.

Kinetic and Structural Data for the Dataset
of HSP90 Inhibitors
We employed 69 of the 70 compounds with structural and kinetic
data in Kokh et al. (2018). One compound [70 in Kokh et al.

(2018)] was eliminated from the dataset because its complex with
N-HSP90 was structurally unstable during MD equilibration. For
two compounds with affinities and long residence times beyond
the measurement range (PDB ID 2VCI and 5NYI, compounds 1
and 4, see Supplementary Tables 1, 2), we used the lower limit
values of koff = 10−4 s−1 and KD = 10−9 M−1. Additionally, we
studied 25 compounds from Schuetz et al. (2018b). Since there
are no crystal structures of protein-ligand complexes available
for these 25 compounds yet, the ligands were modeled in the N-
HSP90 binding site using (MOE., 2017) on the basis of similarity
to available crystal structures for similar compounds: PDB ID
5OCI and 6EFU for the indazole compounds, and PDB ID 5J86
for the resorcinol compounds.

MD and RAMD Simulations
The τRAMD protocol as described by Kokh et al. (2018) was
followed. Here, we outline this protocol briefly for completeness.
First, the starting structure of each protein-ligand complex was
protonated at pH 7. The ligand was protonated using MOE
(MOE., 2017) and the protein was protonated using PDB2PQR
(Unni et al., 2011). The atomic partial charges of the ligands
were assigned using the RESP approach (Bayly et al., 1993)
with the molecular electrostatic potential computed using ab
initio quantum mechanical calculations performed at the HF
level with a 6-31G∗(1d) basis set using the Gamess software
(Gordon and Schmidt, 2005). The protonated protein-ligand
complex was solvated in a periodic box of TIP3P water molecules
and Na+ and Cl− ions at an ionic strength of about 150mM.
Crystallographic water molecules were retained. The system was
energy minimized, gradually heated and shortly equilibrated
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FIGURE 4 | Results of τRAMD simulations. (A) Scaled τRAMD residence times plotted vs. measured log (1/koff ) values on a logarithmic scale for the complete set of

compounds. The τRAMD residence times are scaled according to the linear fitting (log(τRAMD) = 0.39*log(1/koff ) −0.52) of all compounds except for the 13 outliers

identified in Kokh et al. (2018) (shown with background yellow circles). Two groups of indazoles (with different exposed R1 and buried R2 fragments, see Figure 1D),

resorcinol and quinazoline compounds, as well as compounds with a tricyclic fragment, are colored as denoted in the legend; other compounds are shown in gray.

The black line shows the one-to-one correspondence of the computed and experimental data and the interval within 1.5-fold of the mean of the residuals (0.9 log([s]))

is shown by the gray area. The distributions of measured and τRAMD computed residence times are shown along the X and Y axes, respectively. (B) Linear fitting with

95% confidence interval for several sub-groups of compounds highlighted in (A): indazole exposed, indazole buried, and resorcinol colored as in (A). (C) Histogram

showing the distribution of the mean absolute error, MAE, of τRAMD residence times relative to measured values; the long tail arises from the outliers.

with gradually decreasing restraints on all non-hydrogen atoms
of the protein, ligand, and crystallographic water molecules
using the AMBER molecular dynamics simulation software
(Case et al., 2016). Simulations were run under NPT conditions
(Langevin thermostat and barostat). Then the coordinates of
the preliminary equilibrated binding complex were transferred
to the NAMD program (Phillips et al., 2005) and used as the
input for heating and equilibrating the system. The coordinates
and velocities obtained after 30–40 ns of equilibration were used
to initiate simulations of ligand dissociation using the RAMD
method with a randomly oriented force on the ligand with
a constant magnitude of 14 kcalmol−1Å−1. Every 100 fs, the
orientation of the force was randomly re-initialized if the center
of mass of the ligand had moved <0.025Å. The simulations were
stopped when the center of mass of the ligand had moved 30 Å
from the original bound position.

At least four MD equilibration replicas were prepared and
from each replica 10–20 RAMD dissociation trajectories were
generated. The relative residence time was defined as the
time when a dissociation event was observed in 50% of the
trajectories. It was computed for each starting replica and
then averaged over all replicas simulated. Sufficient sampling to
compute residence time was ensured by increasing the number
of equilibration replicas and/or the number of dissociation
trajectories if necessary as discussed in Kokh (2018).

Feature Generation
The feature generation procedure is illustrated in Figure 3. First,
a set of interaction fingerprints (IF) was obtained from the
τRAMD dissociation trajectories (40–100 trajectories for each
compound) using the following protocol: (i) the position of
the center of mass of the ligand and the coordinates of the
protein and the ligand atoms were extracted from each trajectory
frame and stored using a tcl script for the VMD program
(Humphrey et al., 1996) (snapshots illustrating egress routes and
residues contacting the ligand during dissociation are visualized
in Supplementary Figure 1); (ii) the coordinates extracted in (i)
were used to generate interaction fingerprints for each frame
using an OpenEye’s OEChem Toolkit (OpenEye., 2018) as 7-bit
strings encoding hydrophobic, aromatic face-to-face and edge-
to-face, H-bond donor/acceptor and cationic/anionic interaction
types (Marcou and Rognan, 2007; Mysinger et al., 2012). Then
the interaction fingerprints were grouped into four categories of
protein-ligand contacts: hydrogen-bond (HB), aromatic (ARO),
ionic (IP), and apolar (APO) interactions, and each category was
assigned a value of 1 or 0 according to whether the contact type
was, respectively, present or not; (iii) finally, the bound-state part
of the trajectory was removed and only the part of the trajectory
covering the transition of the ligand from the bound to the
unbound state was used for further analysis (step 2 in Figure 3).
Since the threshold for the separation between the bound- and
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FIGURE 5 | Result of clustering analysis based on the IFs of the ligand dissociation trajectories. (A,B) Clustering of the complete data set of 94 compounds: (A) mean

and standard deviation of log residence times in each cluster obtained in 50 clustering runs; (B) weights of IFs for each cluster. HB, ION, ARO, and APO mean

hydrogen bond (donor or acceptor), ionic, aromatic, and apolar interactions, respectively; (C,E) Position of indazole compound bound to the helix-type conformation

of the binding pocket (PDB ID:5LNZ), and (C) of resorcinol compound bound to the loop-type conformation (PDB ID: 5J2X) (E); residues that contribute to the

protein-ligand contacts along the ligand dissociation trajectories are shown in stick representation and colored by protein region consistently with (B). (D) Clustering of

the resorcinol loop-binders (see compound list in Supplementary Table 2) showing mean and standard deviation of the log residence time in each cluster (above)

and cluster composition (below).

transition parts can be defined arbitrarily, we explored three
possible threshold definitions (these will be referred to as data
sets, A, B and C, hereafter): (A) when two IF observed in the
bound state (i.e., in the first frame of a trajectory) are lost, or (B)
when 20%, or (C) when 60% of the bound-state contacts are lost
(the size of each data set is given in Supplementary Table 3).

Although the sequence of interaction events may bear
important information about the ligand dissociation mechanism,
preliminary tests showed that the RAMD trajectories generated
did not permit us to build a reliable time-dependent model,
probably due to having insufficient number of snapshots along
the ligand dissociation trajectories as the artificial random
force accelerated dissociation. Therefore, we eliminated time
dependence in our data by computing the occurrence of each
type of contact in each trajectory and averaging them over all
trajectories for a particular compound (steps 3 and 4 in Figure 3).
This provided us with a matrix of 94 labels (compounds) x 311
features (fingerprints). This matrix was further reduced by partial

elimination of the noise in the data set. In particular, since we
did not expect that a very rare contact would affect dissociation
rate, we excluded features that were found in fewer than 5% of the
frames for any compound. This reduced the number of features
to 68/69/75 for the complete A/B/C data-sets, respectively. Then,
we performed preliminary correlation analysis and removed one
of the features from each pair that had a correlation R2

> 0.9,
thus further reducing the number of features to 47/48/57 for the
data-sets A/B/C, respectively (see Supplementary Table 3).

To explore the influence of molecular properties on the
residence time, we additionally generated a set of molecular
features, MFs, for all compounds using MOE (MOE., 2017).
The MFs include the number of bonds of different types, the
number of atoms with hydrogen-bond properties, the number of
heavy atoms, and the solvation energy (the complete list is given
in Supplementary Table 2). For testing the importance of these
molecular features, they were either added to the IFs of data-set
A or used as a separate feature set.
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FIGURE 6 | Clustering of indazole compounds: (A) weights of IFs for each cluster (coloring scheme and labels as in Figure 4); (B) mean and standard deviation of log

residence times of compounds in each cluster; (C) population of selected molecular fragments in each cluster (see Supplementary Figure 6 for naming convention);

the structures of two compounds discussed in the text are shown below (fragment substitutions are highlighted in blue); (D) Position of indazole compound 37 in the

binding pocket, the main contact residues are shown in sticks and colored as in (A).

Machine Learning Protocol
The scikit-learn Python library (Pedregosa et al., 2011) was used
for all machine learning (ML) procedures.

Regression Analysis
The data sets were normalized by transforming each feature
vector to the interval [0:1]. The ML models were trained
and tested against measured log(1/koff) values. Two regression
models (RM), one linear—Ridge Linear Regression with L2

regularization terms (LR)—and one non-linear—Support Vector
Regression (SVR)—were found to be more balanced and slightly
more stable in cross-validation than the other methods tested
(Partial Least Squares, Random Forest and Gaussian Boosting
Regression). Additionally, a dummy regression model with the
mean value of the training set as a null-hypothesis (referred to as
Dummy Regressor hereafter) was used as a control.

The modeling workflow consisted of the following steps (as
illustrated in Supplementary Figure 2):

(i) Split the data set into a training (internal) set and an

external test set. For the test set, we selected 20% of
compounds from the data set while ensuring that the test set
contained 2 randomly selected compounds from the outlier
subset of 8 quinazolines (compounds 58–65) and six other
compounds (11, 17, 30, 66, 67, 69) as defined in Kokh
et al. (2018); these compounds are highlighted in yellow in
Supplementary Table 2), and 20% (i.e., at least 9 compounds)

from the subset of indazole compounds (compound scaffolds
are given in Supplementary Table 2). The rest of the test set
was selected randomly from the remaining compounds. The
purpose of this selection was two-fold: (1) to test the prediction
accuracy for compounds that were considered as outliers in
τRAMD simulations; and (2) to avoid over-representation
of the indazole compounds in the training set, since they
constitute almost 50% of all compounds in the data set.

(ii) Selection of hyperparameters for the two regression

models, LR and SVR (this block is zoomed in in
Supplementary Figure 2). The internal training set was
used for the selection of hyperparameters. The following
parameters were optimized: coefficient of the regularization
term for the LR model; kernel coefficient (the RBF kernel
was used), parameter of the loss function, and coefficient
of the error term for the SVR model. We employed
exhaustive grid-search with 10-fold cross-validation
(using random permutation splitting with a validation
test set size of 20%). The results of the optimization
procedure are given in Supplementary Data and illustrated
in Supplementary Figures 3, 4.

(iii) Training and testing of the models. After the
hyperparameters were selected, 10 cross-validation runs
were performed on the internal training set. In each round,
two regression models, LR and SVR, were trained on a sub-set
of the internal training set and then the mean absolute error,
MAE, and the Q2

F3 metric, reported as the most reliable

Frontiers in Molecular Biosciences | www.frontiersin.org 8 May 2019 | Volume 6 | Article 36

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Kokh et al. Determinants of Drug-Target Residence Time

FIGURE 7 | Representative examples of computed vs. experimental residence times obtained for data-sets. (A) A and (B) C using linear (LR) and non-linear (SVR) ML

models as well as from the τRAMD residence time estimation procedure. Black/blue and red points belong to the training/validation and external test sets, respectively.

metric for the evaluation of the regression models (Todeschini
et al., 2016), were computed for the training and validation
sub-sets (generated using random permutation splitting with
a validation sub-set size of 20%), as well as for the external
test set (all for the residence time on a log10 scale; for more
details, see Supplementary Information). Additionally, the
same data sub-sets were used to evaluate the Dummy model
and the τRAMD simulations.

Then new internal training/external test set combinations
were generated step (i) and the steps (ii–iii) were repeated.
All MAE and Q2

F3 values obtained in these calculations were
stored. Altogether, we performed 200 computation rounds,
each with a different split of training and test sets, to gain
proper statistics. The histograms of the MAE distributions
obtained for each ML method were compared with those for the
Dummy model for control; histograms of MAE and Q2

F3 were
compared with the corresponding distributions obtained from
the τRAMD protocol. The complete procedure for 100 rounds
takes about 1.5 h on a laptop with an Intel Core i5-5200U, 2.2
GHz processor.

Clustering
We employed a Gaussian Mixture Model (GMM) for the
classification of the compounds by their IFs in the data sets A for

all compounds and for the sub-set of indazole-based compounds
only. The feature set was normalized by transforming to the
interval [0:1], as for the regression models. For the scikit-learn
GMM function, we used an option where each component has
its own multivariate covariance matrix. To estimate the optimal
number of clusters, we used the Akaike information criterion (see
Supplementary Information for details). Following a scan of
cluster size, 6 clusters were chosen on the basis of minimum loss
of information for the complete data set of 94 compounds (A)
and 4 clusters for the indazole sub-set of the data set A (Ind) (see
Supplementary Figures 5A,B). For each dataset, 50 independent
repeats of clustering were performed. For each clustering round,
the clusters were ordered by increasing average residence time
of the inhibitors belonging to each cluster, and the weights of
all features in each cluster were stored. Finally, for each dataset,
the mean cluster residence time, τc, over the 50 clusterings was
computed for each of the clusters (from their average residence
times), with the first having the shortest τc.

Further, for the indazole subset (Ind), we explored how
some selected structural properties of the compounds are
distributed over the clusters. For this, we selected two sets of
small fragments that might affect the dissociation rate constant
(see Supplementary Figure 6): (i) seven types of solvent-
exposed fragments (i.e., different classes of the R1 substitution
(Figure 1D) and six types of buried fragments (i.e., R2, placed
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FIGURE 8 | Assessment of the RM quality. Histograms of mean absolute error, MAE (A) and Q2
F3 score (B) of the external test set obtained in 200 repeated

test/training set splitting using RMs and the same values computed from τRAMD simulations (C,D) are shown in blue along with results for the Dummy model

(orange); results for the sub-set of only quinazoline compounds (from the full data set A) are shown by red lines; in τRAMD simulations Q2
F3 values (D) are negative for

quinazoline compounds; in the right-hand plot of panels (C,D) all quinazoline compounds were removed as outliers. The data-set used are denoted in each plot: A

and C data-sets, MF—data-set from molecular descriptors only.

in the hydrophobic sub-pocket, see Figure 1C). The number of
compounds in each cluster with the corresponding R1 and R2

fragments was computed and normalized by the cluster size.

RESULTS AND DISCUSSION

τRAMD Simulations
Computed relative residence times obtained from the τRAMD
simulations for the 94 compounds are shown vs. measured 1/koff
values on the logarithmic scale in Figure 4A. As discussed in
our previous study (Kokh et al., 2018), 14 compounds from the
dataset are outliers: compounds 11, 17, 30, 66, 67, 69, and 8

quinazoline compounds (highlighted in yellow in Figure 4A).
Without the outliers, i.e. for 80 compounds (85% of the data set),
the correlation coefficient R2 = 0.75, MAE= 0.39± 0.06, and the
mean prediction uncertainty, MPU, is 3.1 τ on average, which
is somewhat higher than in the set of 70 compounds studied
previously (Kokh et al., 2018) (R2 = 0.86 and MPU = 2.3τ

for 78% of the compounds, i.e. 55 compounds after omission
of outliers).

To understand the reason for this difference, one has to
look at the simulation results for the indazole compounds
since most of the added compounds are indazoles. 17 out of
the 25 additional compounds have an indazole scaffold with
a buried 3-methylbenzyl R2 substituent and different exposed
R1 fragments (shown in dark red in Figures 1F, 4A). This
group has a computed τ that is systematically longer by
approximately 0.5 log units than the value from the linear fit
for the other compounds, despite showing a good correlation
with the experimental τ values within the group (R2 = 0.86,
MAE = 0.34, Figure 4B). In contrast, variation of the buried
R2 fragment in the indazoles leads to a large and non-specific
deviation of computed τ values from the fit. Specifically, a
series with 4-(4-Morpholinyl) phenyl substitutions in indazole
compounds (group colored in cyan in Figures 1F, 4A,B) has
a correlation coefficient with experimental data of R2 = 0.67,
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TABLE 1 | Results of evaluation tests for different models: mean of MAE and Q2
F3 score obtained from 200 rounds of simulations (the standard deviation is given in

parentheses) for the external test sets.

RM A B C A* MF Ind

MAE LR 0.47(0.08) 0.51(0.09) 0.60(0.11) 0.43(0.08) 0.51(0.10) 0.39(0.10)

SVR 0.48(0.09) 0.53(0.10) 0.60(0.11) 0.43(0.08) 0.45(0.11) 0.39(0.11)

τRAMD 0.76(0.12) 0.39(0.06) – 0.38(0.08)

Dummy 0.71(0.11) 0.61(0.11) 0.71(0.11) 0.55(0.14)

Q2
F3 LR 0.57(0.21) 0.44(0.30) 0.29(0.30) 0.54(0.23) 0.36(0.52) 0.41(0.52)

SVR 0.56(0.22) 0.44(0.30) 0.28(0.30) 0.51(0.25) 0.52(0.30) 0.38(0.58)

τRAMD −0.41(0.47) 0.69(0.10) – 0.57(0.23)

Calculations were done for data-sets A, B, and C (see main text) are based on the complete set of 94 compounds. The test sets in these three cases were required to contain some of

the outliers found by applying the τRAMD procedure to estimate relative residence times, see Methods for details. A*–data-set of 80 compounds with outliers discarded. MF—based

on molecular property features only. Ind—only IFs of indazole compounds from data-set A are included. For data-set A, the quinazoline compounds (8 compounds) have a mean MAE

= 0.60 ± 0.2/0.61 ± 0.2 and Q2
F3 = 0.44 ± 0.4/0.41 ± 0.4 for LR and SVR models, respectively; for the data set MF quinazoline compounds have a mean MAE = 0.59 ± 0.21/0.43

± 0.25 and Q2
F3 = 0.45 ± 0.39/0.65 ± 0.42 for LR and SVR models, respectively; for the Dummy model Q2

F3 = 0.

MAE = 0.43. Similarly, a subgroup of 6 resorcinol compounds
shown with different R2 (shown in Figure 1D, their residence
times are colored in orange in Figures 4A,B) substituents has a
low correlation, R2 = 0.72, MAE = 0.32. The mean prediction
uncertainties for the latter three groups are 2.3, 4.3, and 2.2
τ , respectively.

One possible explanation for the poorer correlations for
subgroups of compounds with different R2 fragments is
uncertainty regarding the structure of the bound-state of
the protein-ligand complex. All 21 indazole and 6 resorcinol
compounds mentioned above were modeled using a template
structure since crystal structures were not available for these
complexes. Some of these compounds require a relatively
large substituent to be modeled in, leading to uncertainty in
the protein and ligand conformations and in the position of
the compound, particularly when the fragment fits tightly in
the hydrophobic binding sub-pocket and adaptation of the
protein structure is necessary. The 40 ns MD equilibration
carried out might not be sufficient for achieving an optimal
ligand-protein configuration, which may affect the computed
residence time.

Another possible reason can be deduced from the observation
that sets of compounds with different buried fragments R2

demonstrate inhomogeneous deviations from the general linear
fitting of the complete set, while sets of compounds with the same
buried fragment show very similar deviations. This implies the
systematic omission of a specific contribution to the observed
residence time. In RAMD, conformational changes of the protein
induced by the ligand’s motions on the nanosecond timescale of
the simulations are captured rather well, but the longer time scale
motions of the protein are not fully sampled and these can be
expected to modulate the ligand dissociation times. For example,
if backbone changes, such as the unfolding of a helix, are needed
for ligand egress, then this is likely to be captured to a lesser extent
than side chain rotations in RAMD simulations. Such long-time
motions may facilitate ligand dissociation, and therefore poor
sampling of these motions may result in the overestimation of
residence times with the τRAMD procedure.

Elucidation of the Molecular Features
Affecting Residence Time From Simulated
Ligand Dissociation Trajectories
As discussed above, the relative τ value is obtained in the
τRAMD procedure from the computed ligand dissociation
times that are assumed to be longer for the slower dissociating
compounds and shorter for the faster dissociating ones. By
building a feature set of protein-ligand IFs from the ligand
dissociation trajectories, we deliberately omitted information
on the trajectory length (see section Methods and Materials).
Instead, we assessed whether the pattern of protein-ligand
contacts in the ligand dissociation trajectories contains
information on the ligand dissociation mechanism and whether
it can be used to deduce how ligand substituents affect residence
time prolongation.

To explore this, we employed the largest data-set, A, for
clustering of all 94 compounds by the similarity of their IF
features. We found that the optimal number of clusters was 6 (see
Methods and Materials for details). Although in some clusters,
the distributions of residence times are quite wide, there is a clear
difference in their mean residence times, so that the clusters can
be ranked by their mean τ value, τc (see Figure 5A). The average
cluster properties obtained from 50 repeated clusterings mainly
reflect the general structural similarity of compounds. The
composition of the clusters and their order is mostly preserved
in all 50 clustering rounds: the cluster with the longest average
residence time comprises compounds with a tricyclic fragment,
whereas the two clusters with the shortest average residence times
consist mainly of loop-binders and fast unbinding compounds,
such as quinazolines; in the two intermediate clusters, one
contains indazoles and one contains resorcinols. From the IF
weights in each cluster (Figure 5B), one can see that most of the
contacts associated with large τc values arise from residues lining
the hydrophobic sub-pocket formed due to α-helix3 stabilization:
specifically, residues that belong to α-helix3 (L107- A111, marked
in yellow in Figure 5B), those located in the hydrophobic sub-
pocket at its entrance (F138, Y139, V150, W162, F170, shown in
red and magenta in Figure 5B), and two residues at the bottom

Frontiers in Molecular Biosciences | www.frontiersin.org 11 May 2019 | Volume 6 | Article 36

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Kokh et al. Determinants of Drug-Target Residence Time

of the ATP binding pocket (V186 and T184, highlighted in
gray). These residues are shown in Figure 5C in the same color
as in Figure 5B. It is noteworthy, that the weights of several
residues located at the entrance of the hydrophobic sub-pocket,
specifically F138, V150, and L107, gradually increase with the
residence time. This result agrees with the conclusion of our
previous study that steric hinderance at the egress channel for
compounds partially located in the hydrophobic sub-pocket is an
important factor in increasing the transition state energy and thus
prolonging the residence time (Kokh et al., 2018). The interaction
with exposed residues lining the entrance to the ATP binding
pocket (polar residues N51, D54) has a large contribution for the
clusters III-V with intermediate residence times. However, they
do not show a notable correlation with the residence time in this
cluster splitting.

Overall, the splitting of the 94 compounds into just six
clusters reveals several very general tendencies, showing that
the interactions of the compound fragment located in the
hydrophobic sub-pocket generally promote slower dissociation,
while the interactions with exposed residues lining the entrance
to the ATP binding pocket may affect the residence time, but
without showing a systematic trend. Increasing the number
of clusters leads to a general reduction of the residence time
diversity in each cluster (see Supplementary Figure 5C),
which suggests that the similarity of the IFs in dissociation
trajectories does generally correlate with the residence
time. However, to obtain a more detailed understanding of
dissociation mechanisms, one has to consider clustering of
specific compound sub-sets. For example, clustering of the
11 resorcinol-based loop-binders from cluster I effectively
separates the faster dissociating compounds from the slower
dissociating compounds (Figure 5D). Interestingly, although the
cluster composition varies during repeated clustering, the main
difference between the slower dissociating compounds (clusters
III and IV) and the faster dissociating ones (cluster I and II) is
retained: either a halogen (Cl or Br) or an aliphatic fragment (for
example, a methyl group) on the resorcinol group (fragment R3
in Figure 5D) is always associated with longer residence time.
All other fragments (R1, R2, and R4) appear in both groups
with short and long residence times (clusters I/II and III/IV,
respectively). We therefore surmise that the interaction with
F138 (in particular from the Cl atom) is one of the important
factors for prolongation of the residence time even though this
interaction is not clearly established in the bound state (see
structure shown in Figure 5E).

Furthermore, we have performed clustering on the largest
subset of compounds available (indazole compounds bound
to the helix-type conformation). The averaged weights of
different types of IFs that distinguish the four clusters are
shown in Figure 6A. The mean residence time variation over
the clusters (Figure 6B) shows that there is a significant gap
between the fastest dissociating compounds in cluster I and
the slower dissociating ones in clusters II-IV. As we observed
for the complete set of compounds, the slowest dissociating
clusters are characterized by a large contribution of the IF
from residues lining the hydrophobic sub-pocket located at
α-helix3 (L107, G108, I110, A111) or at the entrance of or

inside the hydrophobic pocket (F138, V150, T139, W184).
Additionally, residues G135 and V136, located between the
entrance to the hydrophobic sub-pocket and the ATP binding
pocket, contribute (Figure 6D). These residues may interact with
the solvent-exposed part, R1, of the ligand, a 4-(40morpholinyl)
phenyl fragment (see Figure 1D). To obtain a more detailed
understanding of these protein-ligand interactions, we selected
several molecular fragments that predominantly define structural
variance in the indazole set (see Supplementary Figure 6) and
computed the average occurrence of these fragments in each
cluster (Figure 6C). It can be seen that all compounds with
a carbonyl oxygen at the R2 fragment (located between N51
and F138 in the bound complex, see Figure 6D), belong to
the long-residence time clusters III and IV. On the other
hand, although N51 can form an H-bond with the carbonyl
oxygen, this interaction does not have a large contribution to the
slowest unbinding clusters (see Figure 6A). The results suggest
that the carbonyl oxygen plays a similar role to the halogen
atom in the loop-binders discussed above, and forms transient
interactions with F138. Also, all compounds with alicyclic (and
methoxy) groups in the hydrophobic binding pocket (indicated
in Figure 6C as R2:Cy and R2:O, respectively) appear in the
clusters with the longest residence times. Consistently, the
hydrogen bonding (HB) interactionwith the buried Y139 appears
only in the slowest dissociating cluster and can be associated with
a polar (carboxyl) group at the R2 fragment. Finally, the effect of
the exposed R1 fragment on the residence time is less well-defined
than the buried R2 fragment (apart from a large contribution of
the 4-(40morpholinyl) phenyl fragment, R1:M, which is present
in about half of the indazole compounds).

Regression Models for the Prediction of
Residence Time
The results of two regression models, Linear Regression with a
regularization term (LR) and Support Vector Regression (SVR),
to different data-sets are shown in Figures 7, 8, and the computed
model quality metrics are given in Table 1. In particular, Figure 7
shows representative plots of computed against experimental
residence times for the data-sets A and C. The linear and non-
linear regression methods provide very similar results. Moreover,
the predictions of the two methods were strongly correlated
(similar under- or over-estimation of the residence times), which
indicates that the data set quality, not the complexity of the RM
chosen, poses the main limitation on the accuracy. Consistently,
the MAE distributions for both methods obtained from 200
different test sub-sets are similar, as shown in Figure 8. The
mean MAE value for the test sets are about 0.47 ± 0.08 for
both RMs, while the Dummy model yields 0.71 ± 0.11 (see
Table 1; the MAE histogram for the training and validation sets
are shown in Supplementary Figure 7). The predictions have
a Q2

F3 = 0.57/0.56 ± 0.2 for LR and SVR RMs, respectively,
which indicates that the model quality is acceptable, albeit with
a relatively large standard deviation. Note, that in this model
we included all compounds, even those that were considered as
outliers in τRAMD simulations in Kokh et al. (2018) and each
test set was required to contain at least 2 quinazoline compounds,
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FIGURE 9 | Average value of MAE for the sub-set of compounds with experimental residence times in the ranges of (<1s), (1s-2s), (2s-3s), and (>3s) as obtained in

100 simulations for different test sets and compared with the Dummy-model (null-hypothesis) and τRAMD for the same set of compounds. (A–C) For the complete

set of compounds in models (A–C), respectively; (D) For the data-set model A* (model A without outliers); (E) Only a sub-set of indazole compounds from the

data-set A was used; (F) Only molecular features were used.

whose τ is strongly underestimated in τRAMD simulations,
as can be seen in Figure 4A. Therefore, the τ estimated
directly from the τRAMD simulations has a large mean MAE
of 0.76± 0.12 (the MAE distribution is shown in Figure 4C).

To gain deeper insight into the determinants of the quality of
the RMs, we split the τ interval into four regions and plotted the
mean of the MAE distributions for each region (Figure 9). Both
RMs have almost identical results and they clearly outperform
τRAMD for all four intervals used if all the compounds are
considered (Figure 9A). However, the τRAMD method yields
better prediction accuracy than the RMs for the shortest and
longest residence time intervals if the 14 outliers (highlighted in
Figure 4A) are not included in the compound set (Figure 9D,
data-set A without outliers), with a mean of MAE = 0.39 ± 0.06
andQ2

F3 = 0.69± 0.10, seeTable 1. On the other hand, the quality
of the RMs is only slightly changed on removal of the outliers, see
Table 1. This is likely due to the much larger number of ligands
with intermediate τ values than those with short or long τ , as can
be seen from the histogram in Figure 4A, which ensures better
training of RMs in the middle of the interval but difficulties in
the prediction of more extreme values.

To further assess the ability of the RMs to correctly predict
the residence times of the compounds that appear as outliers
in τRAMD simulations, we computed the MAE distribution for
a test subset consisting of quinazoline compounds only, which
yielded a mean value of MAE = 0.60 ± 0.2 (MAE distribution
from the model dataset A is shown by a red line in Figure 8)
and a mean Q2

F3 = 0.44 ± 0.4. This result is worse than for
the whole set of compounds, probably because of the small

number of quinazoline compounds in the training set: 6, and in
the external test set, 2. Nonetheless, the estimation of τ from
RMs is much better for these compounds than that obtained
from τRAMD simulations of the residence time based on the
trajectory length, which results in underestimation of τ by several
orders of magnitude. This is an important result suggesting that
the residence time can be reasonably well-predicted by RMs
trained on diverse compounds whereas τRAMD simulations
cannot always be used to rank τ computed for compounds with
different scaffolds. In Kokh et al. (2018), it was hypothesized that
the main reason for the underestimation of the residence time
of the quinazoline compounds in τRAMD simulations was the
deficiency of the bound state representation in MD simulations.
Following this hypothesis, one may assume that the robustness
of ML models for such compounds is a consequence of the data
preprocessing, where the major part of the trajectory in which the
bound-state is sampled is discarded (i.e., the main bound-state
IFs are still considered but the exact length of the bound-state
trajectory is not retained).

To explore the importance of the bound state IFs for RMs,
we applied the same protocol using trajectories starting from
snapshots where 20% and 60% of the bound-state contacts were
lost (model data-sets B and C, respectively), which corresponds
to loss of 2–3 and 5–16 contacts, depending on the compound
size. Data-set B yielded only slightly worse prediction accuracy
than data-set A, whereas the predictive ability for data-set C was
notably worse and closer to the null hypothesis (see Figures 7–
9 and Table 1), especially for compounds with short residence
times, Figure 9C. The Q2

F3 score of the RMs drops from 0.57 to
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FIGURE 10 | Coefficients of the LR model in the test set averaged over 200 different splitting of the training and external test sets for the A and C data-sets (A) and

for the LR built on molecular descriptors only (B), as denoted in each plot.

0.44 and then to 0.29 for the data sets A, B, and C, respectively,
with SD values increasing, indicating a strong dependence of the
model performance on the test subset selected.

The coefficients of the IFs in the LR model on the data-set
A and C are compared in Figure 10A. The features that have
major contributions are quite similar for the data-sets A and
B (data for the set B are not shown). The largest contribution
comes from several residues lining the binding pocket and
located at the entrance of the hydrophobic sub-pocket (F138,
V150, G135), which is generally consistent with the clustering
analysis given above. Additionally, several more distant residues,
such as D102 and H154, appear to be important for the LR
model. It is noteworthy that in both the clustering analysis and
LR, the interaction with F138 plays a major role and correlates
with longer residence times. For the data-set C, however, the
hydrophobic sub-pocket residues do not contribute essentially.
Instead, the role of polar residues around the pocket entrance
(D54, N106, K58) and more distant residues, such as I110 and
T61, or even F20 (located at the exit of the hydrophobic sub-
pocket) increases. These results suggest that: (i) the presence of
the bound state IFs in the feature set is crucial for the quality
of RMs for prediction of residence times, although the RMs
do not seem to be very sensitive to the exact duration of the
bound state, (ii) dissociation pathwaysmay be very diverse, which
makes it difficult to build a consistent model from transition state
information only.

Notably, the residues that make the main contributions to
the LR and to the clustering models in the present study are
quite similar to those reported for COMBINE analysis of HSP90
inhibitors (Ganotra and Wade, 2018). They include residues of
the part of the α-helix3 fragment that lines the ATP binding
pocket (L107-A111), as well as some polar residues surrounding
the ATP binding site (N51, D54, D93, G97, D102), and several

residues inside the hydrophobic sub-pocket (Y139 and T184).
This agreement supports the main trend in the dissociation
kinetics of the HSP90 inhibitors studied, namely that large
compounds that bind in the hydrophobic sub-pocket formed by
αhelix3 are generally slower dissociators. The importance of the
interaction of the ligand with F138 was not highlighted by the
COMBINE analysis, likely because this residue does not always
directly interact with the ligand in the bound state. On the other
hand, some polar residues, such as K58, N51, and D54, seem to
have less importance when the complete dissociation trajectory
is considered. For example, although a H-bond between some
ligands and K58 is observed in the crystal structures, it is quite
unstable in MD simulations and its contribution is negligible to
both the LR and the clustering models.

RMs built for the congeneric series of 45 indazole compounds
(data-set Ind) demonstrate similar performance for the mid-
and long-range residence times to those for the complete data
set (Table 1, Figure 9E and Supplementary Figure 8). For the
region with koff > 0.01 s−1, however, the model quality is poor
because only 3 indazole compounds belong to this region.

Finally, we considered whether the model could be improved
by the inclusion of parameters describing the molecular features
of the ligands or even by training the model solely on ligand
parameters. Thus, we added several molecular descriptors, such
as solvation energy, number of heavy atoms, single, double
and aromatic bonds, hydrogen donors and acceptors, and
radius of gyration (see Supplementary Table 2) to the set of
IF features. Although the RMs were not notably improved
(data not shown), the number of heavy atoms appeared as a
major term in the LR model. We therefore went further and
trained RMs on molecular descriptors alone. Surprisingly, the
SVR model based on just molecular descriptors demonstrated
a good performance (Q2

F3 = 0.52 ± 0.30), comparable to
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that for data-set A, albeit with a larger SD, and better than
the LR model (Q2

F3 = 0.36 ± 0.52) on the same dataset
(see also MAE and Q2

F3 histograms in Figure 9F). The latter
is mostly driven by the number of the heavy atoms in the
molecule (Figure 10B), which is an expected result since there
is a clear correlation between the residence time and the
number of heavy atoms (R2 = 0.74, Supplementary Figure 9A).
The number of single bonds and solvation energy are the
next most important factors, where the dependence on the
solvation energy is mostly driven by the compounds with
different buried fragments, in particular, indazole compounds
(Supplementary Figure 9C) while variation of the exposed
fragment does not have much effect (the correlation of solvation
energy with log(1/koff) for different sub-sets is shown in
Supplementary Figures 9B–F).

CONCLUSIONS

In the present study, we propose a protocol for estimating
drug-target residence times and for exploring which protein-
ligand interactions affect the residence time. We performed
a machine learning analysis of ligand dissociation trajectories
obtained from τRAMD simulations. For the evaluation of the
method, we analyzed the ligand dissociation trajectories of 94
inhibitors of HSP90 [previously published for 69 compounds
(Kokh et al., 2018) and simulated for an additional 25 compounds
from Schuetz et al. (2018b)]. We excluded from the analysis
the first part of each simulated trajectory where the majority
of protein-ligand interactions were retained as in the starting
complex structure. We considered three different thresholds for
defining the minimum number of protein-ligand contacts that
must be lost to assign a snapshot to the transition part of the
trajectory: (i) 2 contacts, (ii) 20%, and (iii) 60% of all bound-
state contacts (data-sets A, B, and C, respectively). A collection
of protein-ligand interaction fingerprints, IFs, extracted from
the transition part of each dissociation trajectory as defined
above, was employed to build a set of features for machine
learning analysis.

We first explored the possibility to obtain insights into
key protein-ligand contacts and to reveal ligand fragments
that influence the ligand residence time using a clustering
algorithm and the data-set A. Then, we built regression models,
RMs, for the prediction of ligand dissociation rates using
experimental data. We tested different data models, as well
as a data sub-set containing indazole compounds only, and a
set of molecular descriptors. We systematically compared the
predictive performance of the RMs with the null-hypothesis,
as well as with the results of the τRAMD method, where
relative residence times were estimated based on the lengths
of the dissociation trajectories for each compound. We found
that RMs have good predictive ability for residence times, even
for compounds where the τRAMD method fails because of
deficiencies in the modeling of the ligand-protein bound state
due to force field or sampling issues.

Comparison of the three data-sets, with different definitions
of the transition part of the trajectory, shows that the residence

time strongly depends on the interaction of the ligand with
residues of the binding cavity, when most of the bound state
protein-ligand contacts are still preserved. This is in accord
with the recent calculations of relative residence times for
HIV-1 protease inhibitors (Huang et al., 2019) and HIV-1
protease and HSP90 inhibitors (Ganotra and Wade, 2018),
which demonstrated that protein-ligand contacts in the complex
could be used to deduce ligand residence times. From the
linear regression model, as well as from clustering analysis, we
found out that the interaction of the ligand with F138 is very
important. Although F138 is not always directly contacting the
ligands in their bound states, it forms transient interactions with
aromatic groups as well as with polar groups of the binding
core (either halogen or carbonyl oxygen) present in most of the
compounds, and thereby promotes prolongation of the ligand
residence time.

As expected, the quality of the ML models strongly
depends on the range and the homogeneity of the distribution
of kinetic rate constants for the compounds studied, and
the size of the set of compounds with similar scaffolds
but different substitutions. In particular, the quality of the
present models is strongly affected by the fact that about
50% of the compounds have intermediate residence times,
while there are much fewer compounds with short or long
values of τ .

Finally, we demonstrated that the LR model based only on
the molecular features of the compounds reproduced the general
trend in τ reasonably well. It showed an increase of τ with
molecular size, but was less reliable for the prediction of the
dissociation rates of compounds with short τ values, for which
the determinants of the dissociation kinetics are more complex.
On the other hand, the SVR model trained on the molecular
features shows surprisingly good performance (similar to that
obtained when the model was trained on the complete set of
IFs), albeit with a larger variation in the performance for different
sub-sets of compounds.

Overall, this study demonstrates that the proposed machine
learning procedures can effectively extend the value of the
τRAMD procedure by making corrections for outliers,
improving the predictive ability for ligand residence time,
and giving information on key determinants of the ligand
dissociation mechanism and the ligand functional groups that
are critical for residence time prolongation.
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