

Developing metrics and instruments to evaluate citizen science

impacts on the environment and society

EC Horizon-2020 Grant Agreement number 824711

 Call: H2020-SwafS-2018-2020 (Science with and for Society)

Topic: SwafS-15-2018-2019

Type of action: RIA

Deliverable D.3.1: Report on the technical requirements

Delivery year: 2019

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 824711.

MICS_D3.1_WP3_Report on the technical requirements
 2

Document Information

Project Number 824711 Acronym MICS

Full title Developing metrics and instruments to evaluate citizen science impacts on
the environment and society

Project URL www.mics.tools

EU Project officer Colombe Warin

Deliverable Number D3.1 Title Report on the technical requirements

Work package Number 3 Title Toolboxes for methods application,
information visualisation, and delivery to
decision makers, citizens and researchers

Date of delivery

Contractual Month 05

(May 2019)

Actual Month 06

(June 2019)

Dissemination
Level

Public

Authors (Partner) Earthwatch

Responsible
Author

Patino Velasquez, L.F. Email lfvelasquez@earthwatch.org.uk

Partner Earthwatch

Abstract (for
dissemination)

This document sets general, best-practice principles for developing the
MICS platform, analyses tools and projects’ results that can be adapted
and adopted for developing the MICS platform, and contains initial
functional requirements for the development of the MICS platform.

Keywords Toolbox, development

Version Log

Version as
date

Author Partner Change or comments (optional)

2019_02_12 Patino
Velasquez,
L.F.

Earthwatch Initial document creation

2019_03_15 Patino
Velasquez,
L.F.

Earthwatch System characteristics

2019_05_10 Dan Simota GeoEcoMar System architecture overview

mailto:lfvelasquez@earthwatch.org.uk

MICS_D3.1_WP3_Report on the technical requirements
 3

2019_05_13 Patino
Velasquez,
L.F.

Earthwatch System overview and system architecture

2019_05_15 Patino
Velasquez,
L.F.

Earthwatch First draft of the complete document

2019_05_21 Patino
Velasquez,
L.F.

Earthwatch Document re-structuring following feedback

2019_06_03 Nigel Hussain Earthwatch State of the art

2019_06_07 Patino
Velasquez,
L.F.

Earthwatch MICS platform development criteria and principles

2019_06_12 Patino
Velasquez,
L.F.

Earthwatch Document preparation for review by consortium

2019_06_25 Uta Wehn IHE Delft Review

2019_06_27 Luigi
Ceccaroni

Earthwatch Final review

To cite this document:

Patino Velasquez, L.F., Hussain, N., Simota, D. and Ceccaroni, L. (2019). D3.1: Report on the technical

requirements. Deliverable report of project H2020 MICS (grant agreement No 824711).

The information in this document is public.

It can be freely accessed and reused for any purpose and without restrictions.

Table of contents

TABLE OF CONTENTS .. 4

1. INTRODUCTION ... 5

1.1. PURPOSE .. 5
1.2. SCOPE .. 5
1.3. ACRONYMS AND ABBREVIATIONS ... 5
1.4. OVERVIEW .. 6

2. STATE OF THE ART ... 7

2.1. WEB-APPLICATION ARCHITECTURE ... 7
2.1.1 Types of web-application architecture .. 7

2.2. WEB-APPLICATION FRAMEWORKS ... 10
2.2.1. Guaranteed upgradability and maintenance ... 10

2.3. FRAMEWORK ARCHITECTURE .. 10
2.4. AUTHENTICATION AND AUTHORIZATION SYSTEM... 12

2.4.1. OAuth2 ... 12
2.4.2. OpenID Connect .. 12

2.5. MONITORING AND ENSURING SYSTEM PERFORMANCE ... 12
2.6. ASSESSMENT TOOLS .. 13

2.6.1 PIA software .. 14
2.6.2 Impact assessment tools ... 15
2.6.3 Additional projects to be considered ... 15

3. MICS PLATFORM ... 16

3.1. MICS WEB-APPLICATION ... 16
3.2. WEB-APPLICATION FRAMEWORK ... 17
3.3. MICS WEB-APPLICATION ARCHITECTURE .. 26
3.4. AUTHENTICATION AND AUTHORIZATION SYSTEM... 27
3.5. MONITORING AND ENSURING SYSTEM PERFORMANCE ... 28
3.6. MICS ASSESSMENT TOOL... 29

3.6.1. Project-data input ... 30
3.6.2. Result presentation - Assessment Analytics ... 36

3.7. PROGRAMMING STANDARDS .. 39
3.8. CODE REPOSITORY .. 40
3.9. NEXT STEPS ... 40

4. REFERENCES .. 41

1. Introduction

The MICS project develops approaches and tools to evaluate citizen-science impacts.

The MICS project specifically aims to, among other things (The full list of objectives can be found in

the DoA and at [https://www.mics.tools/about-mics].):

• provide comprehensive, participatory and inclusive metrics and instruments to evaluate

citizen-science impacts;

• implement an impact-assessment knowledge-base through toolboxes for methods

application, information visualisation, and delivery to decision makers, citizens and

researchers.

The result of achieving these objectives is an integrated platform where these metrics and

instruments are available for use by anyone involved in a citizen-science project wanting to

understand its impact, whether at the planning stage or several years after the project’s conclusion.

1.1. Purpose

This document contains initial functional requirements for the development of the MICS platform. The

information in this document aims to attain the following objectives:

• to analyse state-of-the-art technology in relation to web-application tools and features;

• to outline a set of principles and guidance for the development of an operational prototype

of the MICS platform;

• to present and define an authentication system for the MICS platform;

• to present a solution for technical performance monitoring;

1.2. Scope

This document provides a set of best practices and principles recommended for the development of

the MICS platform. It discusses the characteristics and technical requirements for the development of

the platform and its translation into a web application.

A high-level view of the state of the art concerning architecture, frameworks, monitoring and

authentication is presented together with publicly available assessment-tools developed as web

application.

The specification within this document will be implemented in the development of an operational

prototype and ultimately the final system. In order to coordinate efforts between the different

partners and encourage transparency, this document includes a description of standards, formats and

technical conventions.

1.3. Acronyms and abbreviations

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

APM Application Performance Monitoring

MICS_D3.1_WP3_Report on the technical requirements
 6

COST European Cooperation in Science & Technology

DoA Description of the Action

DRY Don’t Repeat Yourself

ECSA European Citizen Science Association

GDPR General Data Protection Regulation

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

JVM Java Virtual Machine

LTS Long Term Support

MVC Model – View – Controller

NBS Nature-Based Solution

OSS Open Source Software

REST Representational State Transfer

SaaS Software as a Service

SPA Single Page Application

UTF Unicode Transformation Format

WP Work Package

XML Extensible Mark-up Language

XSS Cross-site scripting

1.4. Overview

This document is structured in two main sections as follows:

Section two presents the state of the art concerning web-application development. In here we

describe concepts with regards to application’s architecture, frameworks, authentication and

authorization, and web-application monitoring and performance. In addition, this section provides

information concerning existing online assessment-tools in fields such as health and economy,

amongst others.

Section three describes the future development of the MICS platform by presenting a set of web-

application design principles, as well as framework selection criteria and best practices that will be

followed throughout the implementation of the operational prototype and final solution of the MICS

platform. In addition, this section discusses the characteristics of authentication and application

monitoring system to be considered in the development. Finally, the section presents the draft version

of the user’s interface wireframes developed. The final part of this section describes standards of

importance for the development of the MICS platform.

MICS_D3.1_WP3_Report on the technical requirements
 7

2. State of the art

This section presents the technological state of the art that will be considered during the development

of the MICS platform.

2.1. Web-application architecture

Technological advances in the area of web applications have given place to complex and sophisticated

software solutions (Madeyski & Sochmialek, 2005; Gordillo et al., 2006).

Before starting a web-application development project, it is important to choose both the type of web-

application architecture and the model of the web-application components as the architecture and

model will guide the next steps in development.

The web application architecture describes the interactions between applications, databases, and

middleware systems on the web. Web application architecture has to not only deal with efficiency,

but also with reliability, scalability, security, and robustness.

The application’s architecture could be described as the structure of a system focused on arranging

the different components that enable and support specific functionalities. Importantly, this

arrangement of components is commonly referred to as “areas of concern” (Meier et al., 2008). Figure

1 illustrates a general application-architecture grouping the different components by areas of concern.

 2.1.1 Types of web-application architecture

The type of web application architecture depends on how the application logic is distributed among

the client and server sides. There are three primary types of web application architecture:

Single-page applications (SPAs): instead of loading completely new pages from the server each time

for a user action, SPAs allow for a dynamic interaction by means of providing updated content to the

current page. AJAX, a concise form of Asynchronous JavaScript and XML, is the foundation for enabling

page communications and, hence, making SPAs a reality. Because single-page applications prevent

interruptions in user experience, they, in a way, resemble traditional desktop applications. However,

there are a few downsides to using SPAs:

• dependencies: SPAs are built with JavaScript, so JavaScript should be enabled in client

browser.

• security: Compared to a traditional page, a SPA is less secure due to cross-site scripting (XSS).

• memory leak: A memory leak in JavaScript can cause even the most powerful system to slow

down.

SPAs are designed in a way so that they request for most necessary content and information elements.

This leads to the procurement of an intuitive as well as interactive user experience.

MICS_D3.1_WP3_Report on the technical requirements
 8

Figure 1. Common web-application architecture (Meier et al., 2008)

Microservices: these are small, and lightweight services that execute a single functionality, connected

by API’s. The microservices architecture framework has a number of advantages that allows

developers to not only enhance productivity but also speed up the entire deployment process.

The components making up an application build using the microservices architecture aren’t directly

dependent on each other. As such, they don’t need to be built using the same programming language.

Hence, developers working with the microservices architecture are free to pick up a technology stack

of choice. This practice streamlines development by making it simpler and quicker.

However, there are a few disadvantages documented by the web application development

community to using the microservices framework [https://www.qat.com/15-benefits-microservices].

These are outlined below:

• testing difficulties: Automated testing becomes more challenging when each microservices is

running on different runtime environment;

• decreased performance: In the microservice architecture, each service runs as an

independent process (multiple java virtual machine (JVM) instances). However, in a

MICS_D3.1_WP3_Report on the technical requirements
 9

monolithic application, all services are part of single shared process (single JVM instance). As

a shared process communication is faster than an inter-process communication, the

microservice’s performance is slightly worse than that of a monolithic application;

• increased memory consumption: Applications built with a microservice architecture replaces

N monolithic application instances with N (monolithic) instances x M (microservices)

instances. If each service runs in its own JVM (or equivalent), which is usually necessary to

isolate the instances, then there is the overhead of M times as many JVM runtimes. In

addition, when services are deployed on multiple machines, there might be several utility

classes and libraries that will get replicated. Consequentially, the application will have an

overall higher memory footprint

• deployment complexity: If services span multiple systems then operational cost of deploying

and managing those services and systems will be greater due to the many deployment

configuration files and job scripts running;

• coding complexity: Developers must properly implement the inter-service communication

mechanism. Implementing use cases that span multiple services without using distributed

transactions will need extra efforts. Implementing use cases that span multiple services would

requires careful coordination between the teams;

Serverless architectures: in this type of web-application architecture, an application developer

consults a third-party cloud infrastructure services provider for outsourcing server as well as

infrastructure management. The benefit of this approach is that it allows applications to execute the

code logic without interfering with the infrastructure-related tasks. The serverless architecture is

preferable when the development company does not want to manage or support the servers as well

as the hardware they have developed the web application for. Once again, some of the disadvantages

include [https://www.techpally.com/serverless-architecture-disadvantages/]:

• vendor exclusivity: The architecture is dictated by the vendor. As the servers are in the hands

of third-party providers, we do not have control over the run times, updates and even the

hardware. This leads to inconsistencies and a limitation of resources. In addition, if we switch

vendors, we would have to invest even more time, effort and resources into reengineering

the software. Finally, the vendor can revise its service terms or pricing policies as and when

required, and even cease offering the option;

• long-term tasks: It is found that a serverless architecture is one of the best options for a short-

term process. But when the duration of your task increases, there would be functionalities

that might need to be executed more often, leading to increased payments for the time these

functionalities run and making serverless architecture ill-suited for long-term tasks;

• complexity: It is not easing to get a hold of how serverless applications operate. It might take

a lot of effort. The integration units that come in serverless are smaller than those you might

find in other architectures. This might need you to take some time to organize the functions

such that they work in sync with the data. You might have problems with the versioning and

deployment side.

MICS_D3.1_WP3_Report on the technical requirements
 10

2.2. Web-application frameworks

Advances in Web 2.0 and online technologies have transformed the development of web-based

software by making it as influential and significant as desktop-based solutions. Developing web

applications able to provide high levels of functionality is now a complex task requiring evolving

toolsets and in the majority of cases multiple developers, and this level of complexity has resulted in

the creation and implementation of frameworks for web application development.

Frameworks are a high-level development environment in which programmers are able to reuse

software pieces making the process of developing applications much easier and faster. Frameworks

comprise source code libraries, and a wide range of tools amongst other characteristics that accelerate

the development pace ensuring a better level of quality of the final product (Chao et al., 2013).

The use of frameworks for web application development is not a paramount process. However, a

framework provides the development team/individual with the certainty that the application in

development is in full compliance with the requirements, that is structured, well-tested, and that is

both maintainable and upgradable. More importantly, any framework independent of the technology

used for their development ought to have the following minimum set of characteristics (Hu et al.,

2008):

• based on the mature web framework, the software developer does not need to directly

contact the bottom of the API, just write some necessary code. It simplifies the developed

process, and then improves system stability and operational efficiency;

• each mature web framework has a professional team to provide full-time work by offering the

frame for free to reduce development cost;

• simplifying development model to easily separate the user interface and navigation from the

business logic;

• the distinct system structure can be provided by well-designed web framework, increasing the

cohesion of the system. Good structure makes it easier for other people to join the project;

• an easy-to-use web framework offers some of examples and documentation for users to

optimal practice;

• the code of a mature web framework often has been tested in various application

environments, simplifying the software developers’ code testing process.

The two main reasons for choosing a framework are described in the following two subsections.

2.2.1. Guaranteed upgradability and maintenance

The structure that a framework provides for the application allows any developer to easily “adopt” an

application, maintain it over time, and to upgrade it both quickly and neatly, whenever necessary.

Thus, in the long run, a framework ensures the longevity of your applications.

2.3. Framework architecture

A framework is a high-level solution for the reuse of software pieces. The framework delivers

application behaviour at a high level of abstraction by providing functionalities within a distinct

MICS_D3.1_WP3_Report on the technical requirements
 11

domain, defining interaction patterns between known components, and providing enough flexibility

to be tailored to tangible context (Chao et al., 2013).

Further, these provide reuse of code and design. An example of the framework is the Model-View-

Controller (see Figure 2. Model - View – Controller architecture). The architecture itself is specifically

designed to separate the internal representations of the information from the ways the information

is presented to the user. As a result, the framework is sufficient at separating business logic from

presentation logic. To accomplish this, the MVC framework separates the project into three

components1. They are:

• the model: This component handles the application logic for the application data and it usually
interacts with the file, database, and the web service. It is here where data passing and leaving
the controller and in some particular cases the view is manipulated, this process takes place
without having a direct link to HTTP and/or web servers;

• the view: component is also known as presentation layer, thus encompassing the
functionalities responsible for the interaction of the end user with the system, and, in most
cases, this corresponds to some form of UI;

• the controller: This component as per its name controls the application logic and flow of the
application execution. This is achieved by passing inputs through the view component and
directing it to the modal component for processing and logical operations, and gathering the
end product of the request and sending it back using the view component. MVC application
should have one or more controller as each controller contains a class that represents a
different method (Reenskaug and Coplien, 2013).

Figure 2. Model - View – Controller architecture

1Burbeck (1992), p.2: "the user input, the modeling of the external world, and the visual feedback to the user are

explicitly separated and handled by three types of object."

MICS_D3.1_WP3_Report on the technical requirements
 12

2.4. Authentication and authorization system

Proliferation of web applications and in particular the use of a centralised and interoperable login

system has become imperative. Social login, the ability to sign-in to a website using online identity

from provider like Facebook, Google and Twitter, continues to dramatically increase amongst web

application end user, as using an existent identity in order to bypass the traditional online registration

process has become a more common practice (Gafni and Nissim, 2014).

Social login only concern is establishing the identity of the user and then sharing that information with

each subsystem that requires the data.

There are multiple solutions for implementing social login, the two most common web security

protocols outside enterprise deployments are OAuth2, OpenID Connect (Naik et al., 2017).

2.4.1. OAuth2

OAuth 2.0 is the industry-standard protocol for authorization. OAuth 2.0 supersedes the work done

on the original OAuth protocol created in 2006. OAuth 2.0 focuses on client developer simplicity while

providing specific authorization flows for web applications, desktop applications, mobile phones, and

living room devices. This specification is being developed within the IETF OAuth WG.

OAuth2 provides secure delegated access, meaning that an application, called a client, can take actions

or access resources on a resource server on the behalf of a user, without the user sharing their

credentials with the application. OAuth2 does this by allowing tokens to be issued by an identity

provider to these third-party applications, with the approval of the user. The client then uses the token

to access the resource server on behalf of the user [https://oauth.net/2/].

2.4.2. OpenID Connect

OpenID Connect is a simple identity layer on top of the OAuth 2.0 protocol. OpenID Connect is an

authentication layer on top of OAuth 2.0, an authorization framework. The OpenID Foundation

controls the standard. It allows Clients to verify the identity of the end user based on the

authentication performed by an Authorization Server, as well as to obtain basic profile information

about the end user in an interoperable and REST-like manner.

OpenID Connect allows clients of all types, including Web-based, mobile, and JavaScript clients, to

request and receive information about authenticated sessions and end users. The specification suite

is extensible, allowing participants to use optional features such as encryption of identity data,

discovery of OpenID Providers, and session management, when it makes sense for them.

[http://openid.net/connect/]

2.5. Monitoring and ensuring system performance

Once a platform has been deployed, the technical performance should be monitored to ensure that

all functionalities are running adequately and all the components are working properly, as well as, to

gain a greater understanding of the platform use.

MICS_D3.1_WP3_Report on the technical requirements
 13

Whilst monitoring and ensuring web application performance there are two types of metrics that are

commonly monitored:

• concurrency and throughput: this is the largest number of concurrent system users that

the system is expected to support at any given moment. For example, if the web

application has the maximum performance of the server, this will be able to have the

highest number of concurrent system users;

• server response time: this refers to the time taken for one system node to respond to the

request of another system node. A simple example would be a HTTP 'GET' request from

browser client to web server. In terms of response time this is what all load testing tools

actually measure. It may be relevant to set server response time goals between all nodes

of the system. For instance, if a web application has higher server response time, then this

will have a better user experience.

The benefits of this kind of testing include:

• improving user experience;

• carrying out important metrics to fine-tune the systems;

• identifying bottlenecks in the database configuration;

• comparing actual performance compared with expectations.

In addition, there are several kinds of test to measure system performance, the most common test

within the web development community are:

• load testing: this test will give out the response times of all the important business critical

transactions. The database, application server, etc. are also monitored during the test;

this will assist in identifying bottlenecks in the application software and the hardware that

the software is installed;

• stress testing: this kind of test is done to determine the system's robustness in terms of

extreme load. It also helps application administrators to determine if the system will

perform sufficiently if the current load goes well above the expected maximum;

• soak testing: is usually done to define if the system can sustain the continuous expected

load. During soak tests, memory utilization is monitored to detect any potential leaks. It

essentially involves applying a significant load to a system for an extended, significant

period of time. The goal is to discover how the system behaves under sustained use.

2.6. Assessment tools

This section presents the state of the art in assessment tools that have been designed as online

applications. These assessment tools have implemented some of the characteristics described in

previous sections of this document; additionally, by exploring these tools, we had the opportunity to

identify features necessary for a successful implementation of the concepts and methodologies that

form part of a platform.

Table 1. Assessment tools description” presents a description of the assessment tools. They were

selected taking into consideration characteristics inherent to the MICS project, such as online (free)

availability, user interactivity, use of quality assurance process, and consideration of many types of

MICS_D3.1_WP3_Report on the technical requirements
 14

activities. In addition to these characteristics, the selection also considered the usability web principles

defined by Abrahão et al. (2008):

• web application learnability: ease of understanding the content and services made available

through the assessment tool;

• web application efficiency: content accessibility through the links available within the

assessment tool;

• memorability: orientation around the assessment tool after a period of inactivity;

• few errors;

• user satisfaction.

Table 1. Assessment tools description

Assessment tool Description

PIA software This software tool facilitates carrying out a data protection

impact assessment.

The SDG impact

assessment tool
A self-assessment tool for learning the impact of an activity,

organisation or innovation over the SDGs

IMPACT Tool developed by Aquatera to identify potential impacts of

marine energy development on Scotland’s marine ecological

environment

Health economic

assessment tool (HEAT) for

walking and cycling

The HEAT tool is designed to enable users to conduct economic

assessments of the health impacts of walking or cycling.

Ramboll's SDG assessment

tool

This tool carries out a high-level assessment of SDG impact or

potential.

The B impact assessment

tool

Tool designed to measure the impact of companies on community,

environment and customers

2.6.1 PIA software

This software tool facilitates carrying out a data protection impact assessment (PIA). The software,
guidelines, and assessment tools can all be found at [https://www.cnil.fr/en/open-source-pia-
software-helps-carry-out-data-protection-impact-assesment]. As the MICS tools will involve much
data flow and will potentially involve sensitive pieces of information including names and emails,
having an important data protection is vital to ensure the success and continued funding of the
project.

The PIA tool has been designed around three principles:

• A didactic interface to carry out PIAs: the tool relies on a user-friendly interface to allow for
a simple management of PIAs. It clearly unfolds the privacy impact assessment methodology
step by step. Several visualisation tools offer ways to quickly understand the risks.

• A legal and technical knowledge base: the tool includes the legal points ensuring the
lawfulness of processing and the rights of the data subjects. It also has a contextual knowledge
base, available along all the steps of the PIA, adapting the contents displayed.

https://www.cnil.fr/en/open-source-pia-software-helps-carry-out-data-protection-impact-assesment
https://www.cnil.fr/en/open-source-pia-software-helps-carry-out-data-protection-impact-assesment

MICS_D3.1_WP3_Report on the technical requirements
 15

• A modular tool: designed to help build compliance, the tool contents can be customised to
specific needs or business sector. Published under a free licence, it is possible to modify the
source code of the tool in order to add features or include it into tools used in your
organisation (see also [https://www.fsb.org.uk/resources/why-is-data-protection-so-
important]).

As a result of these design principles, using the PIA software will ensure that the MICS project will
adhere to the principles laid out by the EU’s GDPR, according to which data are:

• only used in specifically stated ways;

• not stored for longer than necessary;

• used only in relevant ways;

• kept safe and secure;

• used only within the confines of the law;

• not transferred out of the European Economic Area;

• stored following people’s data protection rights.

2.6.2 Impact assessment tools

Impact assessment tools exist for learning the impact of an activity, organisation or innovation over
the sustainable development goals (SDGs). In particular, the SDG impact assessment tool
[https://sdgimpactassessmenttool.org/] and Ramboll’s SDG assessment tool [Error! Hyperlink
reference not valid.] are free online learning tools that visualise the results from a self-assessment of
how an activity, organisation or innovation affects the SDGs. These aim to stimulate the user to get a
better understanding of the complexity of sustainable development and the different aspects of the
SDGs.

Although the SDGs should be implemented by nations, they also represent a framework towards
which any activity can be evaluated.

To work with sustainable development and the implementation of the SDGs can be hard since it entails
almost all aspects of human societies. Furthermore, our knowledge of human societies, the
environment and the Earth systems continuously grow. Any SDG impact assessment is dependent of
the knowledge level and ambition of the person performing the assessment. Hence, it is inherently
subjective and preliminary, and should be open for revision [https://sdgimpactassessmenttool.org/
about].

In MICS, the reason for exploring these tools is that they promote trans-disciplinary thinking and a
deeper understanding of the SDGs and how they can be related to the project. This allows to reflect
on the project's results and has the potential of unlocking new, sustainable actions to drive long-
lasting transformation in citizen science.

2.6.3 Additional projects to be considered

The IMPACT tool was developed by Aquatera to identify potential impacts of marine energy

development on Scotland’s marine ecological environment and can be found at [http://www.marine-

impact.co.uk/assessment-tool.asp?cat=2]. This is a single page application with a dynamic list of

https://sdgimpactassessmenttool.org/

MICS_D3.1_WP3_Report on the technical requirements
 16

questions, which change depending on the inputs to the previous questions. This model provides a

possible blueprint to build the MICS web application.

The HEAT tool is designed to enable users to conduct economic assessments of the health impacts of

walking or cycling. The format and design of this tool are of particular interest to MICS, as it provides
a blueprint of what the MICS toolbox interface could become. The HEAT tool asks the participant what
they want to assess, the user inputs the appropriate data, the tool then performs various calculations
to determine the impacts of the activity. The flexibility of the approach given the questions is of
particular interest, and could be adopted by MICS. More information can be found at
[https://www.heatwalkingcycling.org/#how_heat_works].

The B impact assessment tool is designed to measure the impact of companies on community,

environment and customers. In particular, what is most interesting for MICS are the visualisation and

the metrics used. The assessment tool uses a combination of charts and graphs to help companies

visualise how they compare to other companies as well as reports with detailed statistics. This will

inspire MICS on how to display the results of the analysis. However, MICS will try to streamline the

questions asked to ensure a straightforward approach. More information on the tool can be found at

[https://bimpactassessment.net/].

3. MICS Platform

This section presents the guidelines, principles and practices that will be followed throughout the

development of the MICS platform.

3.1. MICS web-application

Advances in web technology jointly with the evolution of WEB 2.0 have provided the vehicle through

which building and developing web applications have benefited and improved (Musser and O’Reilly,

2006). The adoption of web-based software presents the possibility of creating complex web

applications able to digest and present real-time data, perform transaction and increase the level of

user interactive experience, thus making this technology as powerful and important as desktop

software (Plekhanova, 2009).

Some of the advantages of developing the MICS platform using web technologies have been described

by Dogan et al. (2015) and these include:

• automatic upgrade with new feature for all users;

• universal access from any machine connected to the Internet;

• being independent of the operating system of users.

During the evaluation of the type of application (see section “2.1.1 Types of web-application

architecture” 0) and the web technology to be utilised for the development of the MICS platform, the

development team will review and follow, where applicable, the guidelines / design considerations

proposed by Meier et al. (2008) outlined below:

• separate the areas of concern;

https://www.heatwalkingcycling.org/#how_heat_works
https://bimpactassessment.net/

MICS_D3.1_WP3_Report on the technical requirements
 17

• a component or an object should not rely on internal details of other components or objects;

• do not duplicate functionality within an application;

• identify the kinds of components you will need in your application;

• group different types of components into logical layers;

• you should not mix different types of components in the same logical layer;

• do not overload the functionality of a component;

• understand how components will communicate with each other;

• keep the data format consistent within a layer or component;

• keep cross-cutting code abstracted from the application business logic as much as possible;

• be consistent in the naming conventions used.

3.2. Web-application framework

Web-application frameworks bring benefits such as open source software solutions, community

support and robust documentation (Prokofyeva and Boltunova, 2017).

With a myriad of frameworks for developing web application, the development team of the MICS

project will select a framework based on:

• the criteria for comparing frameworks defined and used regularly by the web development

community (e.g., Symphony [https://symfony.com/ten-criteria],

[https://hackernoon.com/how-to-choose-a-framework-ea8b5b1e1f44], IDEAS2IT

[https://www.ideas2it.com/blogs/right-php-framework/]) (see also Table 2. Criteria for

comparing frameworks web development community);”);

• the set of best practices defined by del Pilar Salas-Zárate et al. (2015) (see also Table 3. Best

practices for frameworks selection.”).

Table 2. Criteria for comparing frameworks web development community

Category Factor What it is

 Ecosystem

History and longevity How mature is the
framework? Why was it
created?

Popularity of framework How widely used is the
framework?

Corporate support Is there a corporate entity
involved as a sponsor or
interested party?

Community and ecosystem Is the framework supported by
a large community? Is there a
healthy ecosystem of plugins
and libraries that extend core
functionality?

Framework

Getting started experience and
learning curve

How quickly can a new
developer start to use the
framework? How hard is it to

MICS_D3.1_WP3_Report on the technical requirements
 18

use as applications get more
complex?

Skills required What skills does a developer
need to have in order to be
productive with this
framework? Do they need to
learn syntax or patterns that
are specific to the framework
itself?

Completeness of offering Does the framework provide
everything “in the box” or do
developers need to provide
their own solutions to solve
common problems?

Performance factors How does this framework
perform in a complex
application? What approaches
does it take to help me make
my apps run faster?

Beyond the browser options Can this framework be used in
authoring non-browser apps,
like mobile and desktop?

Tooling

UI & component libraries Are there UI & component
libraries available for this
framework?

IDE & tooling support Is there support for this
framework in my IDE or other
popular IDEs?

Companion & CLI tools What kind of tooling is
available to help me create
and manage apps with this
framework?

Enterprise

Licensing Under what license is this
framework maintained? Does
this license conflict with my
enterprise’s use of the tool?

Support & upgrade paths Do the maintainers of this
library provide long-term
support (LTS) versions? Are
there enterprise support
options available?

Security How do the maintainers
handle security issues? How
are security patches
distributed?

Talent pool & resources How easy is it to hire
developers who already know

MICS_D3.1_WP3_Report on the technical requirements
 19

this framework, or who can
learn it easily?

From Satrom, B., Choosing the Right JavaScript Framework for your Next Web Application. Available

at [https://softarchitect.files.wordpress.com/2018/03/choose-the-right-javascript-framework-for-

your-next-web-application_whitepaper1.pdf] (accessed 17 May 2019).

https://softarchitect.files.wordpress.com/2018/03/choose-the-right-javascript-framework-for-your-next-web-application_whitepaper1.pdf
https://softarchitect.files.wordpress.com/2018/03/choose-the-right-javascript-framework-for-your-next-web-application_whitepaper1.pdf

Table 3. Best practices for frameworks selection (del Pilar Salas-Zárate et al., 2015)

Best practice JSF Ruby on

Rails

Struts CakePHP

[https://

cakephp.org]

Lift Grails Django Catalyst

AJAX support Yes Yes

(Prototype,

script.aculo.

us, jQuery,

among

others)

Yes Yes (Prototype,

script.aculo.us,

jQuery,

MooTools

[https://

mootools.

net/], among

others)

Yes Yes (jQuery,

prototype,

Dojo, YUI,

MooTools,

among

others)

Yes (jQuery,

prototype,

Dojo,

Mootools,

among

others)

Yes (jQuery,

Ext JS

[https://

en.wikipedia.

org/

wiki/Ext_JS],

Dojo, YUI,

Mootools,

among

others)

Cloud computing Yes (Oracle

Public

Cloud,

Oracle

Web Logic

Server and

Google

App

Engine)

Yes (Amazon

EC2, Linode

[https://

www.linode.

com/],

Rackspace

[https://

www.

rackspace.

com/] and

Heroku)

Yes (Jelastic

[https://

jelastic.com]

and Google

App Engine)

Yes (Amazon

EC2 and

Rackspace)

Yes (Cloud

Foundry)

Yes (Cloud

Foundry,

Google App

Engine,

Amazon EC2

and Heroku)

Yes (dot

Cloud,

Google App

Engine and

Amazon

EC2)

Yes (Amazon

EC2)

Comet support Yes

(ICEfaces

[https://

en.

wikipedia.

No No No Yes (Comet

Actor)

Yes

(Atmosphere

or CometD

[https://

Yes

(Orbited)

Yes (Twiggy)

MICS_D3.1_WP3_Report on the technical requirements 21

Best practice JSF Ruby on

Rails

Struts CakePHP

[https://

cakephp.org]

Lift Grails Django Catalyst

org/wiki/

ICEfaces])

cometd.org/]

plugins)

Custom error

messages

Yes (File

properties)

Yes (File

.yml

[https:// en.

wikipedia.or

g/wiki/YAML

])

Yes (File

properties)

Yes (Model-

message)

Yes

(Snippet-

s.notice,

s.error)

Yes (File

properties)

Yes (model-

validation

Error)

Yes

(Catalyst::Acti

on::

RenderView::

ErrorHandler)

Customization and

extensibility

Yes

(PrimeFace

s [https://

www.

primefaces

.org/],

RichFaces

[https://ric

hfaces.jbos

s. org/],

ICEfaces)

Yes (Plugins

e.g. LessCSS

[http://lessc

ss.org/],

Authlogic

[https://gith

ub.com/

binarylogic/

authlogic]

among

others)

Yes (Plugins,

e.g., jsCalendar

[https://

gramthanos.git

hub.io/

jsCalendar/],

Google Guice

[https://

github.com/go

ogle/ guice],

among others)

Yes (Plugins,

e.g., Mandrill,

CakeDC

[https://

github.com/

CakeDC],

among others)

Yes

(Modules,

e.g.,

PayPal,

Widgets,

among

others)

Yes (Utility,

e.g.,

iCalendar,

Smartionary

[https://grails

. org/plugin/

smartionary],

among

others)

Yes

(Django-

Utilse.g.

safestring,

translation,

among

others)

Yes (Plugins-

Catalyst::Plugi

n::

AutoCRUD,

among

others)

Debugging Yes

(ui:debug)

Yes (debug,

to_yamland

inspect)

Yes (Struts 2

configuration

plugin and

debugging

interceptor)

Yes (Debug Kit

plugin)

Yes (SBT

and

Maven)

Yes (X-Grails-

Resources-

Original- Src

Header)

Yes (Django

Debug

Toolbar)

Yes (Komodo)

MICS_D3.1_WP3_Report on the technical requirements 22

Best practice JSF Ruby on

Rails

Struts CakePHP

[https://

cakephp.org]

Lift Grails Django Catalyst

Documentation Yes

(Javadoc

[https://en

.wikipedia.

org/wiki/

Javadoc])

Yes (Rdoc) Yes (Javadoc) Yes (php

domain)

Yes

(Scaladoc

[https://do

cs. scala-

lang.org/st

yle/

scaladoc.ht

ml])

Yes (grails

doc)

Yes

(Sphinx)

Yes (Plain Old

Documentati

on, POD)

Forms validation Yes (JSF

standard

validators

and Bean

validation)

Yes (Active

Record

[https://

guides.ruby

onrails.org/a

ctive_

record_

basics. html]

validations)

Yes

(ActionForm)

Yes (Form

Helper)

Yes

(LiftScreen

and

Wizard)

Yes (Spring’s

Validator)

Yes (Django

Form)

Yes

(HTML::Form-

Handler and

HTML::Form-

Validator)

HTML5 support Yes (Pass-

through

attributes)

No No No Yes

(HTML5

Properties)

Yes

(Modernizr

[https://

modernizr.

com/])

Yes (HTML5

Boilerplate,

H5BP)

Yes

Internationalisation Yes Yes Yes Yes Yes Yes Yes Yes

MICS_D3.1_WP3_Report on the technical requirements 23

Best practice JSF Ruby on

Rails

Struts CakePHP

[https://

cakephp.org]

Lift Grails Django Catalyst

JavaScript

framework support

Yes (Dojo,

Ext JS,

jQuery,

among

others)

Yes (jQuery,

script.aculo.

us, Dojo,

among

others)

Yes (jQuery,

Dojo, Ext JS,

among others)

Yes (Ext JS,

jQuery, Dojo,

among others)

Yes

(jQuery,

script.

aculo.us,

Ext JS,

among

others)

Yes (jQuery,

Dojo,

script.aculo.

us, among

others)

Yes (jQuery,

Ext JS, Dojo,

among

others)

Yes (jQuery,

Dojo, Ext JS,

among

others)

ORM (object

relational mapping)

Yes Yes (Active

Record)

Yes Yes (Active

Record and

Data mapper

patterns)

Yes

(Mapper

and

Record)

Yes (GORM) Yes (Django

ORM)

Yes

(DBIx::Class

and

Rose::DB::

Object)

Parallel rendering No No No No Yes No No No

Platform support Windows

(Java

Developers

Kit(JDK)) -

Linux (JDK)

- OS X

(JDK)

Windows

(Rails

installer) -

Linux (JDK) -

OS X (JDK)

Windows (JDK)-

Linux (JDK) - OS

X (JDK)

Windows

(PHP5.2.8 or

greater, HTTP

Server)-Linux

(PHP 5.2.8 or

greater,

HttpServer) -

OS X (PHP 5.2.8

or greater,

HttpServer)

Windows

(Scala and

Java

Runtime

Environme

nt (JRE)) -

Linux

(Scala and

JRE) - OS X

(Scala and

JRE)

Windows (JDK

and Grails

libraries) -

Linux (JDK

and Grails

extensions) -

OS X (JDK and

Grails

libraries)

Windows

(Python,

Setup tools

and PIP) -

Linux

(Python

and PIP) -

OS X

(Python

and PIP)

Windows

(perl5.8.6 or

higher,

Catalyst::

Runtime and

Catalyst::

Devel) - Linux

(perl 5.8.6 or

higher,

Catalyst::

Runtime and

Catalyst::

MICS_D3.1_WP3_Report on the technical requirements 24

Best practice JSF Ruby on

Rails

Struts CakePHP

[https://

cakephp.org]

Lift Grails Django Catalyst

Devel) - OS X

(perl 5.8.6 or

higher,

Catalyst::

Runtime and

Catalyst::

Devel)

REST support Yes Yes Yes Yes (File config-

map

Resources)

Yes (Rest

Helper)

Yes Yes (Django

REST

framework)

Yes (Catalyst::

Controller::

REST)

Scaffolding No Yes No Yes Yes Yes Yes Yes

Security Yes Yes Yes Yes Yes Yes (Spring

security and

Shiro)

Yes Yes

Site map or

automatic menu

creation

No No No No Yes (Site

map)

No Yes (NAV

Menu

currently

being

evaluated)

Yes (Menu

Grinder)

MICS_D3.1_WP3_Report on the technical requirements 25

Best practice JSF Ruby on

Rails

Struts CakePHP

[https://

cakephp.org]

Lift Grails Django Catalyst

Template

framework

Yes

(Facelets

[https://en

.wikipedia.

org/wiki/

Facelets])

Yes Yes Yes (Views,

elements and

layouts)

Yes Yes (Layout

and Site

Mesh)

Yes (Django

template

language)

Yes (Template

Toolkit,HTML:

:Mason,PHP

and any

extant Perl

template

engine)

Testing Yes

(JSFUnit

[https://jsf

unit.jboss.

org/])

Yes (Rspec

[https://

rspec.info/])

Yes (Struts Test

Case)

Yes (PHPUnit,

Fixtures and

Mocking)

Yes

(ScalaTest,

JUnit,

Mocking

and

Selenium)

Yes (GMock

and Easy

Mock)

Yes (Unit

test,

doctest,

nose)

Yes (Supports

Perl testing

standards)

Use actors No No No No Yes (Lift

Actor)

Yes (GPars) No No

Use Lazy loading as

part core

framework

No No No No Yes No No No

Use pattern

matching

No Yes No No Yes No Yes Yes

Use Wiring No No No No Yes No No No

3.3. MICS web-application architecture

During the web application development process, defining the correct system architecture presents a

significant challenge, particularly as the chosen architecture will influence the system maintainability

or scalability (Madeyski & Sochmialek, 2005). As part of the definition of the right architecture for the

development of the MICS platform the following list of principles (Meier et al., 2008) aims to ensure

best practices, promote usability and extendibility, and minimise cost and maintenance requirements.

The list will be considered when getting started in the design of the operational prototype and the

final system:

• separation of concerns;

• single responsibility principle;

• principle of least knowledge;

• don’t repeat yourself (DRY);

• avoid doing a big design upfront;

• prefer composition over inheritance.

The development of the MICS platform will aim to implement the MVC framework architecture (Figure

2. Model - View – Controller architecture”), thus reducing the complexity of the web application by

separating the logic of the platform into three layers, allowing parallel and autonomous development,

potentially using different programming languages. Furthermore, MVC is arguably the most endorsed

design pattern, widely becoming the standard in modern software development (Chao et al., 2013)

and its implementation in the development of web applications has been well documented by other

studies (Majeed & Rauf, 2018; Sarker & Apu, 2014; Pop & Altar, 2014; Leff & Rayfield, 2001), as well

as the web development community (Angular2, Django3, Laravel4 and Symfony5).

The main value of using MVC architecture in the development of the MICS platform is based on the

separation of the model and presentation, as well as, the separation of the view and controller

(Madeyski & Sochmialek, 2005). In addition, other advantages (Selfa et al., 2006) with respect to other

architectures are:

• less coupling;

• higher cohesion;

• more design clarity;

• facilitated maintenance;

• bigger scalability.

2https://angular.io/
3https://www.djangoproject.com/
4https://laravel.com/
5https://symfony.com/

https://angular.io/
https://www.djangoproject.com/
https://laravel.com/
https://symfony.com/

MICS_D3.1_WP3_Report on the technical requirements
 27

3.4. Authentication and authorization system

Users of the MICS platform will be encouraged to use social login through the implementation of

OpenID Connect6 as means to access the platform functionalities. This represents one of the most

important single sign-on (SSO) protocols widely implement for delegate authentication, and it is

currently used by Amazon, Google, LinkedIn, and Microsoft amongst others (Mainka et al., 2017).

Figure 3. Sign in page for the MICS platform” shows an example of a draft sign in page for the MICS

platform.

The implementation of social login within the MICS platform is based on the principle of separation of

concerns (see section 3.3. “MICS web-application architecture”). By using OpenID Connect, the MICS

platform is aiming to decentralise the user-identity authentication, in addition to comply with article

five of the guide to the general data protection regulation (GDPR)7; consequently, the development

will benefit by:

• not having to store user identity information in the application database;

• user’s identity being completely separate from the application;

• avoiding developing an authentication and authorization system (development simplicity).

What will be stored about the user is the following information, which will be used to identify

returning users within the MICS platform:

SocialMediaID_SocialMedia

For example, email or phone are the IDs used by Facebook, therefore an instance of stored

information for a user logging in via Facebook would be:

aloneinthemyst@yahoo.com_facebook

Security analysis and guidelines with regards to the implementation of OpenID Connect are well

documented by different studies (Fett et al., 2017; Li & Mitchell, 2016; Muhammad & Tripathi, 2012).

Therefore, and in order to avoid some of these security threats, the development of the MICS platform

will be implementing Auth08 as authentication and authorization service using the Open Source

Program licence, under which the project must comply with the following conditions as stated by the

licence:

• the entire codebase must be open source and publicly available on GitHub or similar code

hosting services;

• the project cannot charge money for the open source project or any of its derivatives;

• the project must add an Auth0 badge to its website (any badge of the ones shown at

[http://auth0.github.io/auth0-oss-badges/]; the code to include can be seen

at [https://github.com/auth0/auth0-oss-badges/blob/gh-pages/index.html#L8-L9]);

6https://openid.net/connect/
7The personal data you collect must be limited to what is necessary for processing and must be kept only as long
as needed. Appropriate security must be ensured during data processing, including protection against
unauthorized or unlawful processing and against accidental loss, destruction, or damage.
[https://gdpr.algolia.com/gdpr-article-5].
8https://auth0.com

http://auth0.github.io/auth0-oss-badges/
https://github.com/auth0/auth0-oss-badges/blob/gh-pages/index.html#L8-L9
https://openid.net/connect/
https://gdpr.algolia.com/gdpr-article-5
https://auth0.com/

MICS_D3.1_WP3_Report on the technical requirements
 28

• the open source software (OSS) project cannot be deployed to production by another

company who will use it to generate revenue.

Figure 3. Sign in page for the MICS platform

3.5. Monitoring and ensuring system performance

Capturing and analysing data aimed to understand the MICS platform behaviour is critical to

proactively deal with stability, performance, and anomalies.

Monitoring of the MICS platform will be done by implementing a web application performance

monitoring (APM) tool; this will provide the data needed to quickly discover, isolate and solve any

issues affecting the application’s performance, as well as request and response information, and

database connection information.

The MICS platform will implement an API-based approach. This provides a programming interface

giving the project a level of freedom on how to utilize the APM. Other advantages of this approach

include, enabling monitoring components, tracing transactions, and performing error analysis (Rabl et

al., 2012).

The development team of the MICS project will select a solution that incorporates as many as possible

of the following tools and characteristics:

• application performance monitoring;

• transaction tracing;

• metrics;

• logs;

• errors;

• alerts;

• open source solution.

MICS_D3.1_WP3_Report on the technical requirements
 29

Currently the MICS project has been offered a 25% discount in the licence for the implementation of

a software as a service (SaaS) solution named Retrace9. Figure 4. Retrace APM dashboard” shows an

example of the Retrace dashboard depicting the performance and monitoring graphs for the above-

mentioned characteristics.

Figure 4. Retrace APM dashboard

3.6. MICS assessment tool

The front-end10 development of the MICS platform will aim to use and adapt, where possible,

characteristics and functionalities similar to those of the HEAT and PIA software assessment tools (see

Table 1. Assessment tools description”) particularly in the area of impact visualisation.

As part of the exploration process for the development of the graphical interface and visualisation as

part of the MICS platform, characteristics such as learnability and efficiency were considered whilst

assessing the most feasible and suitable group of features (e.g., user interface, data visualisation) and

functionalities (e.g., question types, data updates) for the future development of the operational

prototype and the final solution of the MICS platform.

Furthermore, the main principle taken into consideration whilst prioritising groups of characteristics

and functionalities, independently of each assessment tool reviewed, was usability. This principle,

has received great attention, and it is viewed as one significant factor in web application’ quality; in

addition, this is also considered as a central property when measuring the success of web application

development (Abrahão et. al, 2008; Mvungi & Tossy, 2015). The main group of characteristics and

functionalities considered were:

9https://stackify.com/retrace/
10Front-end, also commonly known as the visible part of the website, is everything involved in the graphical
interfaces for visualisation and interaction by users using languages such as HTML, CSS and JavaScript.

https://stackify.com/retrace/

MICS_D3.1_WP3_Report on the technical requirements
 30

• data input requirements;

• clarity of questions and hints;

• design and flow of the different interfaces;

• result presentation – including analytical representations;

• interactivity;

• complexity of the design.

Based on this principle and the characteristics and functionalities mentioned above, the development

team of the MICS platform has designed a group of wireframes as first stage in the iterative process

for the design of the front-end element of the web application. Further changes and enhancements

are expected as part of the development process as result of end users’ and consortium’s feedback.

3.6.1. Project-data input

Data input for the MICS platform by the user will aim to collect project information needed to measure
the impact of the project, and to guarantee interoperability of the platform with existent and future
citizen-science initiatives (e.g., SciStarter11, Zoouniverse12, CitSci.org13 and the organisations
supporting the Geneva Declaration on Citizen Science Data and Metadata Standards [www.cs-eu.net/
news/workshop-report-wg-5-geneva-declaration-citizen-science-data-and-metadata-standards]).

The European Citizen Science Association (ECSA) and the COST Action on citizen science14 have
contributed to develop a data model (or ontology)15 for representing citizen-science projects; thus
the MICS platform will be implementing this model as means of data standardisation.

In the design of the platform interface to collect project data, results of existing projects, such as the
European project WeObserve [https://www.weobserve.eu/], of which IHE Delft is a partner, will be
considered. For example, WeObserve is already using a questionnaire to collect data such as
“Geographical Scale”, “Stakeholders” or “Sponsor”. These concepts will be standardised using the
citizen-science ontology, adapted to MICS, integrated into the interface and expanded to cover the
scope of the MICS project, which is different from the one of WeObserve.

11https://scistarter.org/
12https://www.zooniverse.org/
13https://citsci.org/
14https://www.cs-eu.net/
15https://github.com/CitSciAssoc/DMWG-PPSR-Core

https://scistarter.org/
https://www.zooniverse.org/
https://citsci.org/
https://www.cs-eu.net/
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FCitSciAssoc%2FDMWG-PPSR-Core&data=02%7C01%7Clfvelasquez%40earthwatch.org.uk%7Cd43c2366a6ea4148e37308d6d9f65e73%7Cc22d2f2d6e5a4c3b8738fe0c03f2dc41%7C1%7C0%7C636936049495296098&sdata=Kr5JoFt8yWsC5rjRpV9drI9EP80PrR3wJ8YvksFJt%2F0%3D&reserved=0

MICS_D3.1_WP3_Report on the technical requirements
 31

For example, and more specifically, the concept “Geographical Scale” will be formalised using the
“GeographicLocation” concept of the ontology (see Figure 5); the concept “Stakeholders” will be
formalised using the “Party” and “Participant” concepts of the ontology (see Figure 6 and Figure 7);
and the concept “Sponsor” will be formalised using the “FundingProgram” concept of the ontology
(see

Figure 8).

Figure 5. “Project.Geography” module of the citizen-science ontology

MICS_D3.1_WP3_Report on the technical requirements
 32

Figure 6. “Project.Affiliates” module of the citizen-science ontology

MICS_D3.1_WP3_Report on the technical requirements
 33

Figure 7. “Project.Participants” module of the citizen-science ontology

Figure 8. “Project.Funding” module of the citizen-science ontology

MICS_D3.1_WP3_Report on the technical requirements
 34

Figure 9. MICS tools - project-data input shows an example of the possible front-end page displaying
a predefined set of questions linked to the citizen-science metadata ontology for citizen science
projects.

Figure 9. MICS tools - project-data input

MICS_D3.1_WP3_Report on the technical requirements
 35

MICS_D3.1_WP3_Report on the technical requirements
 36

Data input for impact assessment are related to the five domains16 that form part of the MICS project,

as well as, to the set of indicators and metrics defined for each one of these as part of Work Package

2.

Figure 10. MICS tools - project-data input about MICS domains depicts a potential representation of

the data input for impact assessment.

Figure 10. MICS tools - project-data input about MICS domains

3.6.2. Result presentation - Assessment Analytics

Through the integration, and analysis of the data entered by the user and data that form part of the

system, the MICS platform will aim to develop a stable and innovative graphical interface for the

visualisation of the assessment results and user experience.

Whilst the process of designing the front-end for the impact assessment results will take advantage of

the usability principle (section 2.8. Assessment tools), this is not enough to guarantee the MICS

platform usability as a final product. Therefore, and taken into consideration the iterative nature of

front-end development, the MICS platform development team will also considered some of the

evaluation methods defined by Abrahão et al. (2008), which include user testing, heuristic evaluation

and cognitive walkthrough, before defining the final look and feel of the result presentation interface.

As an initial draft of the development, the operational prototype of the MICS platform will aim to

produce three different graphical and interact outputs.

16Society, governance, economy, environment, and science

MICS_D3.1_WP3_Report on the technical requirements
 37

User input will be analysed through an assessment questionnaire against the indicators defined for

each domain of the MICS platform. The aim of the assessment analysis is to provide the end user with

an interactive and impactful visualisation of the impact assessment of citizen-science projects (see

Figure 11. MICS tools - analytics).

Figure 11. MICS tools - analytics

MICS_D3.1_WP3_Report on the technical requirements
 38

A report will represent a condensed version of the score obtained as result of analysing the user’s

project data input against the MICS’s indicators. This type of report (

Figure 12. MICS tools - report) aims to foster the relationship between project managers and citizen

scientist by sharing the outcomes of the impact assessment, as well as providing transparency in the

application outcomes.

Figure 12. MICS tools - report

MICS_D3.1_WP3_Report on the technical requirements
 39

The result of the assessment analysis of an individual project will be compared against the data held

by the MICS database. The aim of the comparative analysis (

Figure 13. MICS tools - comparative analysis) is to foster community collaboration between projects

using the assessment tool.

Figure 13. MICS tools - comparative analysis

3.7. Programming standards

Coding standards are a set of industry-recognized best practices that provide a variety of guidelines

for developing software code. There is evidence to suggest that compliance to coding standards in

software development can enhance team communication, reduce program errors and improve code

quality (Li & Prasad, 2005). Coding style guidelines will improve code readability and maintenance,

and these cover aspects such as naming and declaration rules for variables and functions, as well as

use of white space, indentation, and comments. An example of the type of coding style guidelines to

be followed during the development is JavaScript, Figure 14. JavaScript name and coding conventions

depicts the JavaScript name and coding conventions that will be implemented during the development

of the MICS platform. Further information regarding coding standards for other programming

languages as well as relation databases that will be implemented in the development of the MICS

platform can be found at [https://github.com/Earthwatch-Institute/naming-convention].

https://github.com/Earthwatch-Institute/naming-convention

MICS_D3.1_WP3_Report on the technical requirements
 40

Figure 14. JavaScript name and coding conventions

Other standards and conventions, which will be considered are:

• Exchange formats: For structure data when possible the preferred format for data exchange

and representation in MICS platform will be JSON. Further, XML will be used when specific

tool and/or systems will benefit from doing so, i.e. increase in performance, tool optimization.

• Encoding: Documents, tool and subsystem will be constructed to receive and produce UTF-8,

hence all textual data in MICS platform is UTF-8.

3.8. Code repository

GitHub is the version control system chosen for the development of the MICS platform. The repository

will be created under the Earthwatch institutional account in GitHub and will be made public but only

commits from the MICS development team will be accepted into the master branch. The repository

URL for the MICS platform will be [https://github.com/Earthwatch-Institute/mics].

3.9. Next steps

The intended users of this document are the software engineers at GeoEcoMar and Earthwatch in

charge of developing the MICS platform. Starting from August 2019, and together with the rest of the

Consortium, especially WP2 and WP3, they will lead the design of the technological part of the

platform and will consequently implement its first prototype, corresponding to deliverable D3.4

“Participatory, adaptive, personalised, information-delivery web platform, period-1 prototype (P1P)”

(DEM, PU, M18).

https://github.com/Earthwatch-Institute/mics

MICS_D3.1_WP3_Report on the technical requirements
 41

4. References

Abrahão, S., Cachero, C., & Matera, M. (2008). Web usability and accessibility. Journal of Web

Engineering, 7(4), 257-257.)

Burbeck, S. (1992). Applications programming in smalltalk-80 (tm): How to use model-view-controller

(mvc). Smalltalk-80 v2, 5, 1-11.

Chao, J., Parker, K., & Davey, B. (2013, July). Navigating the framework jungle for teaching web

application development. In Proceedings of the Informing Science and Information Technology

Education Conference. Informing Science Institute.

del Pilar Salas-Zárate, M., Alor-Hernández, G., Valencia-García, R., Rodríguez-Mazahua, L., Rodríguez-

González, A., & Cuadrado, J. L. L. (2015). Analyzing best practices on Web development frameworks:

The lift approach. Science of Computer Programming, 102, 1-19.

Fett, D., Küsters, R., & Schmitz, G. (2017, August). The web SSO standard openid connect: In-depth

formal security analysis and security guidelines. In 2017 IEEE 30th Computer Security Foundations

Symposium (CSF) (pp. 189-202). IEEE

Gafni, R., & Nissim, D. (2014). To social login or not login? Exploring factors affecting the

decision. Issues in Informing Science and Information Technology, 11, 57-72.

Gordillo, S., Rossi, G., Moreira, A., Araujo, J., Vairetti, C., & Urbieta, M. (2006, October). Modeling and

Composing Navigational Concerns in Web Applications. Requirements and Design Issues. In 2006

Fourth Latin American Web Congress (pp. 25-31). IEEE.

Hu, R., Wang, Z., Hu, J., Xu, J., & Xie, J. (2008, October). Agile web development with web framework.

In 2008 4th International Conference on Wireless Communications, Networking and Mobile

Computing (pp. 1-4). IEEE

Leff, A., & Rayfield, J. T. (2001). Web-application development using the model/view/controller design

pattern. In Proceedings fifth ieee international enterprise distributed object computing

conference (pp. 118-127). IEEE.

Li, W., & Mitchell, C. J. (2016, July). Analysing the Security of Google’s implementation of OpenID

Connect. In International Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment (pp. 357-376). Springer, Cham.

Li, X., & Prasad, C. (2005, October). Effectively teaching coding standards in programming.

In Proceedings of the 6th conference on Information technology education (pp. 239-244). ACM.

Madeyski, L., & Sochmialek, M. (2005). Architectural design of modern web applications. Foundations

of Computing and Decision Sciences, 30(1), 49-60.

Mainka, C., Mladenov, V., Schwenk, J., & Wich, T. (2017, April). SoK: single sign-on security—an

evaluation of openID connect. In 2017 IEEE European Symposium on Security and Privacy

(EuroS&P) (pp. 251-266). IEEE.

MICS_D3.1_WP3_Report on the technical requirements
 42

Majeed, A., & Rauf I. (2018, September). MVC Architecture: A Detailed Insight to the Modern Web

Applications Development. Peer Rev J Sol Photoen Sys .1(1). PRSP.000505. 2018.

Meier, J., Homer, A., Hill, D., Taylor, J., Bansonde, P., Wall, L., Boucher Jr, R. & Bogawat, A. (2008). Web

Application Architecture Guide - Application Architecture Pocket Guide Series. [online] Cis.msjc.edu.

Available at: http://cis.msjc.edu/CSIS116B/Resources/WebArchitecturePocketGuide.pdf [Accessed

10 May 2019].

Muhammad, A., & Tripathi, N. (2012). Evaluation of OpenID-based double-factor authentication for

preventing session hijacking in web applications. Journal of Computers (Finland), 7(11), 2623-2628

Musser, J., & O’reilly, T. (2006). Web 2.0. Principles and Best Practices.[Excerpt]. oO: O'Reilly Media.).

Mvungi, J., & Tossy, T. (2015). Usability evaluation methods and principles for the web. International

Journal of Computer Science and Information Security, 13(7), 86.

Naik, N., & Jenkins, P. (2017, May). Securing digital identities in the cloud by selecting an apposite

federated identity management from saml, oauth and openid connect. In 2017 11th International

Conference on Research Challenges in Information Science (RCIS) (pp. 163-174). IEEE.

Plekhanova, J. (2009). Evaluating web development frameworks: Django, Ruby on Rails and

CakePHP. Institute for Business and Information Technology.

Pop, D. P., & Altar, A. (2014). Designing an MVC model for rapid web application

development. Procedia Engineering, 69, 1172-1179.

Prokofyeva, N., & Boltunova, V. (2017). Analysis and Practical Application of PHP Frameworks in

Development of Web Information Systems. Procedia Computer Science, 104, 51-56.

Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H. A., & Mankovskii, S. (2012).

Solving big data challenges for enterprise application performance management. Proceedings of the

VLDB Endowment, 5(12), 1724-1735.

Reenskaug, T., & Coplien, J. (2013). More deeply, the framework exists to separate the representation

of information from user interaction. The DCI Architecture: A New Vision of Object-Oriented

Programming.

Sarker, I. H., & Apu, K. (2014). MVC architecture driven design and implementation of java framework

for developing desktop application. International Journal of Hybrid Information Technology, 7(5), 317-

322.

Selfa, D. M., Carrillo, M., & Boone, M. D. R. (2006, February). A database and web application based

on MVC architecture. In 16th International Conference on Electronics, Communications and

Computers (CONIELECOMP'06) (pp. 48-48). IEEE.

