
Kernel-mode code signing - A beginner's guide

Michael Schneider
Offense Department, scip AG

misc@scip.ch
https://www.scip.ch

Marc Ruef (Editor)
Research Department, scip AG

maru@scip.ch
https://www.scip.ch

Abstract: Kernel drivers have to be signed. Requirements have become more stringent with
new versions of Windows. Windows 10 requires drivers signed by Microsoft. Drivers with
signatures dated prior to July 2015 are still valid.

Keywords: Dashboard, HTTP, Microsoft, Policy, Request, Research, Tool, Trust, USB,
Windows

1. Preface

This paper was written in 2019 as part of a research project
at scip AG, Switzerland. It was initially published online at
https://www.scip.ch/en/?labs.20190919 and is available in
English and German. Providing our clients with innovative
research for the information technology of the future is an
essential part of our company culture.

2. Introduction

One fascinating aspect of what we do is the fact that, from
one day to the next, we have to deal with topics that we
don’t know much about beforehand and then gather a great
deal of knowledge within a short space of time. Usually, we
then need to familiarize ourselves with the subject matter so
that we can apply what we’ve just learned straight away.

I recently wanted to run code in kernel mode on Windows
and, in so doing, I learned what the prerequisites are and
where the pitfalls lurk. And that’s what this lab is all about:
a beginner’s guide to the topic of code signing for Windows
kernel mode.

3. Theory

3.1. An introduction to code signing

The operating system Microsoft Windows makes a
distinction between the user space and the system space,
which is also known as the kernel space. Normal
applications that do not have direct access to internal or
sensitive operating system resources are run in the user
space. Code executed in the kernel space has more access
to and a direct influence on the operating system, either on
the stability or security of the system. Consequently, code
requirements in the kernel space are higher.

When Windows Vista 64-bit was released, Microsoft
required signatures to load code in the kernel space.
Windows 8 also required driver packages to be signed too.
And with Windows 10, Microsoft required new drivers to
be signed by the Windows Hardware Dev Center [1].

Signing a driver firstly ensures the software’s integrity,
since a change to the driver causes the existing signature to
become invalid. Secondly, it allows the software’s origin to
be determined. This is because when you register for the
Hardware Dev Center, Microsoft can at least track what
account the software comes from. What’s more, one of the
conditions for taking part is the use of an Extended
Validation Code Signing certificate, or EV CS certificate.

For an EV CS certificate to be issued, a certificate authority
(CA) performs a detailed check on the applicant as part of
the issuing process. Any company applying for a certificate
must provide publicly verifiable information such as a
correct address, an official phone number and the people
responsible for signing software. These contacts are then
verified over the phone. Following successful verification,
the EV Code Signing certificate is issued in the name of the
company and delivered on a USB token.

There is currently discussion going on about the purpose of
EV certificates for websites. Security researcher Troy Hunt
described them as “outdated” in his blog article entitled
Extended Validation Certificates are (Really, Really) Dead
[2]; he believes that they can be replaced by free solutions.
However, there is no alternative to kernel-mode code
signing, since Microsoft requires EV CS certificates to be
used.

3.2. Windows requirements

Let’s take a step back and look at the requirements of the
different versions of Windows. Microsoft’s Driver Signing
Policy [3] stipulates that, for Windows 7 64-bit, Windows 8
and Windows 10 up to version 1511, a driver must be
signed with SHA1 and the certificate used must come from
a CA that is on Microsoft’s Cross-Certificate List [4]. For
Windows 10 versions 1607 to 1709, SHA1 or SHA2 is
allowed as the signature algorithm, while only SHA2 is
allowed from Windows 10 version 1803 and higher. The
signature must come from a Microsoft root authority too. In
other words, a new installation of Windows 10 version
1607 will no longer load new kernel drivers that have not
been signed by the Hardware Dev Center.

https://docs.microsoft.com/en-us/windows-hardware/drivers/dashboard/get-started-with-the-hardware-dashboard
https://www.troyhunt.com/extended-validation-certificates-are-really-really-dead/
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-#signing-requirements-by-version
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/cross-certificates-for-kernel-mode-code-signing#cross-certificate-list

These changes were described in detail in the blog article
entitled Driver Signing changes in Windows 10, version
1607 [5]. In the interests of backward compatibility,
Microsoft defined exceptions so that not all drivers have to
be re-signed:

Computers deployed before Windows 10 version
1607 and updated since then still allow the
installation of cross-signed drivers
Computers without secure boot still allow the
installation of cross-signed drivers
Drivers with the signature of a certificate issued
before 7/29/2015 that contains a supported cross-
signed CA in the certificate chain are still allowed

This means that all new drivers for current Windows 10
versions must therefore be signed with an EV CS
certificate, then validated by the Windows Hardware
Developer Center, then signed by Microsoft.

4. Practice

4.1. Signing a driver

Microsoft offers a comprehensive Windows Driver Signing
Tutorial [6], which includes instructions for implementing a
test signature. However, you will need to boot the operating
system in a special mode to deactivate the driver signature
enforcement option for the session. You can then create
your own certificate and use it to sign and load drivers.
These steps can be useful for initial attempts and tests.
However, self-signed drivers cannot be used on external
machines with current Windows versions.

You will need the Windows Driver Kit [7] (WDK) to sign
drivers. The most important tool in the WDK is the
SignTool [8]. It is used for signing and potentially verifying
drivers. Microsoft advises against using a certificate file
(PFX) for signature purposes; instead, it recommends
importing the certificate into the operating system’s
certificate store and then performing the signature process.
Additionally, an EV CS certificate is delivered on a USB
token or smartcard rather than a PFX file.

In its simplest form, the command to sign a driver is:

signtool.exe sign /v /n "SubjectName"
DriverFile.sys

The parameter /n is the certificate’s common name. But you
will need to use a certificate from a cross-signed CA for the
driver to also load in kernel mode. You can download the
appropriate CA certificate from the Cross-Certificate List
[9]. This certificate is then integrated using the parameter
/ac:

signtool.exe sign /v /n "SubjectName" /ac
CrossSignedCARoot.cer DriverFile.sys

A driver must be signed with SHA2 for Windows 10. The
driver should also contain a signature timestamp. You can
use the timestamp server of the CA in question:

signtool.exe sign /v /n "SubjectName" /ac
CrossSignedCARoot.cer /fd sha256 /td sha256
/tr http://timestamp.example.com/rfc3161
DriverFile.sys

Drivers signed in this way can be used on Windows 7, 8
and earlier versions of Windows 10.

4.2. Verifying a signature

The signtool.exe application is, in turn, used to verify
signatures. During the verification process, a distinction is
made between the parameters /pa for validating the Plug
and Play driver (PnP) and /kp for the kernel mode driver.

signtool.exe verify /pa /v DriverFile.sys

signtool.exe verify /kp /v DriverFile.sys

The following errors may occur during verification:

The signing certificate is not valid for the
requested usage: An EV CS certificate is required;
other certificates are not accepted for kernel mode
The provided cross-certificate would not be
present in the certificate chain: The
certificate downloaded from the Cross-Certificate
List does not match the certificate chain; the
appropriate root certificate must be selected
A certificate chain processed, but terminated
in a root certificate which is not trusted by
the trust provider: Message on Windows 10
from version 1607 if the driver was signed using
the cross-certificate, but not by the Hardware Dev
Center

The certificate chain for a certificate can be checked using
certutil.exe. Pentesters now have a legitimate reason to
run certutil on a client:

certutil.exe -dump Certificate.cer

5. Conclusion

It took a good two weeks, including time waiting for
verification of the EV CS certificate application and
delivery of the USB token, as well as a few failed attempts
with self-signed and normal CS certificates and reading
Microsoft documents, until I managed to sign a driver so
that Windows would load it in kernel mode. This article
should help others to achieve this goal more quickly and
easily. Please feel free to send feedback and share your own
experiences.

6. External Links

[1] https://docs.microsoft.com/en-us/windows-
hardware/drivers/dashboard/get-started-with-the-hardware-
dashboard
[2] https://www.troyhunt.com/extended-validation-
certificates-are-really-really-dead/
[3] https://docs.microsoft.com/en-us/windows-
hardware/drivers/install/kernel-mode-code-signing-policy--
windows-vista-and-later-#signing-requirements-by-version
[4] https://docs.microsoft.com/en-us/windows-
hardware/drivers/install/cross-certificates-for-kernel-mode-
code-signing#cross-certificate-list
[5] https://techcommunity.microsoft.com/t5/Windows-
Hardware-Certification/Driver-Signing-changes-in-
Windows-10-version-1607/ba-p/364894
[6] https://docs.microsoft.com/en-us/windows-
hardware/drivers/install/windows-driver-signing-tutorial

https://techcommunity.microsoft.com/t5/Windows-Hardware-Certification/Driver-Signing-changes-in-Windows-10-version-1607/ba-p/364894
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/windows-driver-signing-tutorial
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/signtool
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/cross-certificates-for-kernel-mode-code-signing#cross-certificate-list
https://docs.microsoft.com/en-us/windows-hardware/drivers/dashboard/get-started-with-the-hardware-dashboard
https://www.troyhunt.com/extended-validation-certificates-are-really-really-dead/
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-#signing-requirements-by-version
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/cross-certificates-for-kernel-mode-code-signing#cross-certificate-list
https://techcommunity.microsoft.com/t5/Windows-Hardware-Certification/Driver-Signing-changes-in-Windows-10-version-1607/ba-p/364894
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/windows-driver-signing-tutorial

[7] https://docs.microsoft.com/en-us/windows-
hardware/drivers/download-the-wdk
[8] https://docs.microsoft.com/en-us/windows-
hardware/drivers/devtest/signtool

[9] https://docs.microsoft.com/en-us/windows-
hardware/drivers/install/cross-certificates-for-kernel-mode-
code-signing#cross-certificate-list

https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/signtool
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/cross-certificates-for-kernel-mode-code-signing#cross-certificate-list

